

Software Engineering - The
Soft Parts

By Addy Osmani

2

Table of Contents
Prologue
5
About the Author
6
Learning New Things
8
Mastery
8
Think critically and formulate well-reasoned arguments
9
Building a strong base
11
Transferable skills
11
Efficiency
12
Better decision-making
12
Focus on the User and the rest will follow
13
Upgrading your skills
15
Depth and breadth of skills
17
To experience is to learn
18
Technical Complexity
20
Generic vs Specific code
20
Deep modules
21
Learning on a maintenance project
21
Learning on a green-field project
22
Definition of done
23
Phased roll-outs
23
Systematic debugging
23
Communication
26
Importance of design docs
26
Documentation process
26
Communication
27
Customized communication
27

3

Being kind and considerate
28
Be liberal in telling folks they're doing a great job.
28
The power of NO
29
Acceptance and respect
30
Information sharing
30
Flexibility
30
Maintaining a record
31
Good faith
31
Seniority
33
Seniority and strategic thinking
33
Leading by example
34
Scale your effectiveness.
36
Imposter syndrome
36
Effective Teams
37
Building Trust
37
Understanding the business model
37
Increase your impact
38
Mentoring
40
Mentoring others
40
Organization-wide mentoring
41
Mentee's role
41
Time and Work/Life Balance
43
Time management
43
Conclusion
52

4

Prologue

Today I'll share some of the software engineering "soft skills" I've
learned from my first 10 years on Google Chrome, where I am a Senior
Staff Engineering Manager. On my 10th anniversary, I wanted to reflect
on some of lessons that have stayed with me. I hope these prove useful
to you during your career.

Becoming a good engineer is about collecting experience. Each project,
even small ones, is a chance to add new techniques and tools to your
toolbox. Where this delivers even more value is when you can solve
problems by pairing techniques learned on one project with tools
learned working on another. It all adds up.

I'll preface this by saying I am unimportant, unwise and unoriginal.
Your mileage may vary :)

With special thanks to Leena Sohoni, Joshua Cruz, Kara Erickson, Jeff
Posnick, Houssein Djirdeh and Sriram Krishnan for their kind feedback
and contributions to this book.

© 2022 Addy Osmani. All rights reserved.

5

About the Author
￼

Addy Osmani is a Senior Staff
Engineering Manager at Google
working on Chrome.

His career has focused on speed and
developer tooling. He is the author of
many open-source projects and has
also written books like Image
Optimization, and Learning JavaScript
Design Patterns.

You can find Addy on Twitter (https://twitter.com/addyosmani) and

LinkedIn (https://www.linkedin.com/in/osmani/).

6

[image: Image]

7

[image: Image]

Learning New Things￼

T
he following pointers should help most junior or mid-career
developers move forward, deal with changing technology, and
build complex systems while following the standard processes
in the software engineering paradigm and discovering new best
practices. Apply first principles when you can. Learning to break down
problems into smaller pieces is one of the most important skills in life.

Mastery
Technical mastery implies a high ratio of value shipped to hours worked.

This means you can discern tasks that add value and help your team
focus their energy in that direction. It also means you know how to
avoid work that doesn't provide the team/company value - the best
engineers can even steer whole teams away from work that isn't that
useful. Work on what matters most.

I often get asked, "How do I know if I'm making the best use of my
time?". There will almost always be tasks you can fill your time with to
"feel" busy. The real trick here is making sure you are working on the
right things. If you want to move mountains, focus on tasks that move
the needle, even if that movement is small.

Some questions you can ask yourself:

[image: bullet]What are my goals? Are the tasks I'm focused on lining up with
those goals?
[image: bullet]Could there be something I could do differently or better?

Even asking yourself such questions can be extraordinarily powerful.

8

[image: Line Line]

Think critically and formulate well-reasoned
arguments
Critical thinking is the ability to use cognitive skills to think
independently in order to make thoughtful decisions. Invest in this skill
to improve your clarity of thought.

As engineers, we can sometimes rush to solve a problem right away so
it feels like we're making progress or looks like we're being responsive
to stakeholders. This can introduce risks if we aren't fully considering
causes and consequences. Put another way, critical thinking is thinking
on purpose and forming your own conclusions. This goal-directed
thinking can help you focus on root-cause issues that avoid future
problems that arise from not keeping in mind causes and
consequences.

In broad strokes, some of the questions I like to ask based on critical
thinking are:

[image: bullet]How do we know we're solving the right problem?
[image: bullet]How do we know we're solving the problem in the right way? (i.e.
balancing rigor and efficiency, given our understanding of the
problem and constraints)
[image: bullet]If we don't know the sources of our problem, how can we
determine the root cause?
[image: bullet]How can we break the key question down into smaller questions
that we can analyze further?
[image: bullet]Once we have one or more hypotheses, how do we structure work
to evaluate them?
[image: bullet]What shortcuts might we take if we're under constraints (time
pressure) without unduly compromising our analytics rigor around
the question?
[image: bullet]Does the evidence sufficiently support the conclusions?
[image: bullet]How do we know when we are done? When is the solution "good
enough"?

9

[image: bullet]How do I communicate the solution clearly and logically to all
stakeholders?

I've found these questions often help. Sometimes we'll address the
symptom of a problem, only to discover there are other symptoms that
pop up. At other times, we might quickly ship a solution that creates
more problems later down the road. With a lens on critical thinking, we
might challenge assumptions, look closer at the risk/benefit, seek out
contradictory evidence, evaluate credibility and look for more data to
build confidence we are doing the right thing.

For example, a common mistake I've seen engineers make is assuming
correlation implies causation (i.e. just because two things correlate
does not necessarily mean that one causes the other). A critical thinker
might push back on assumptions such as this, asking why we believe
them to be true.

Critical thinkers:

[image: bullet]Raise mindful questions, formulating them clearly and precisely
[image: bullet]Collect and assess relevant information, validating how they might
answer the question
[image: bullet]Arrive at well-reasoned conclusions and solutions, testing them
against relevant criteria and standards
[image: bullet]Think open mindedly within alternative systems of thought,
recognizing and assessing, as need be, their assumptions,
implications, and practical consequences
[image: bullet]Communicate effectively with others in figuring out solutions to
complex problems

Note: Critical thinking has both aspects of being a "soft skill" and a
"hard skill", so is included in this write-up.

10

Building a strong base
Master the fundamentals and apply them repeatedly to acquire new
skills.

The long-term value of learning the fundamentals is that they are
transferable. The short-term is that they help you make better decisions
and can make code more efficient.

Transferable skills

Transferable skills are those you can take with you from project to
project. Let's talk about them in relation to the fundamentals.

The fundamentals are the foundation of any software engineering
career. There are two layers to them - macro and micro. The macro
layer is the core of software engineering and the micro layer is the
implementation (e.g. the tech stack, libraries, frameworks, etc.).

At a macro level, you learn programming concepts that are largely
transferable regardless of language. The syntax may differ, but the core
ideas are still the same. This can include things like: data-structures
(arrays, objects, modules, hashes), algorithms (searching, sorting),
architecture (design patterns, state management) and even
performance optimizations (e.g. eager vs lazy evaluation, memoization,
caching, lazy-loading etc). These are concepts you'll use so frequently
that knowing them backwards can have a lot of value.

At a micro level, you learn the implementation of those concepts. This
can include things like: the language you use (JavaScript, Python, Ruby,
etc), the frameworks you use (e.g. React, Angular, Vue etc), the
backend you use (e.g. Django, Rails, etc), and the tech stack you use
(e.g. Google App Engine, Google Cloud Platform, etc). These involve
details that can be valuable to gain expertise in to be effective, but are
not always transferable.

11

By learning the fundamentals, you gain the skillset and tools to then
ignore the fundamentals and grow.

That said, pragmatically, no one has time to learn everything at the
beginning of their careers. There comes a point when you shouldn't
over-index on the fundamentals and learn what is needed to actually
build applications for the real world. This is where the "learn by
doing" approach comes in.

Efficiency

Understanding the fundamentals well can help you write more efficient
code. This includes concepts such as time complexity (the time it takes
to run your code), memory usage, and the trade-offs between
performance and maintainability. These ideas allow you to make trade-
offs that are helpful when building any reasonably large application.
Speed is often critical for modern applications and can often impact
end-user experience in a noticeable way.

Better decision-making
Having a good understanding of macro and micro fundamentals can
help you make better decisions.

You can use the knowledge you've gained to make better decisions
about which technologies to use and which ones to avoid based on the
goals and constraints of any project. This can help you avoid the pitfalls
of choosing the wrong technology or the wrong tool for the job.

“You haven't mastered a tool until you understand when it
should not be used." - @kelseyhightower

Software engineering involves thinking about many different layers -
the core languages, the implementation, the infrastructure, the tools,
and the people. Only having a surface-level appreciation for these
layers can absolutely let you build faster. But really knowing the

12

fundamentals (including O(n) time complexity) can help you go that
much farther, especially when the landscape of languages and
frameworks changes over time.

Related reading:

[image: bullet]The value of fundamentals in Software Engineering (https://bit.ly/
softskills-value)
[image: bullet]Why learning the fundamentals matters (https://bit.ly/softskills-
funmatter)
[image: bullet]Learn the fundamentals of a good developer mindset (https://bit.ly/
softskills-mindset)

Focus on the User and the rest will follow
Start with the user experience and work backwards to the technology you
need.

Steve Jobs once famously said, "you've got to start with the customer
experience and work backward to the technology. You can’t start with
the technology then try to figure out where to sell it.”

This quote has stuck with me, because as engineers, it's far too easy to
start from a place of wanting to use specific solutions - whether due to
popularity, developer experience or just personal preference - and try
to find a way to rationalize using them. Instead, we should focus on
who we're building for, what problems they have, and how the current
options available are falling short.

13

Great user experiences come from combining both points of view -
both the customer and technology. Show people what you think they
want and pay attention to what they say. There is of course, immense
nuance to this problem space - what engineering choices will allow you
to deliver a great experience on mobile hardware? What choices will
impact engineering velocity? or scale? or hiring?. Ultimately, we benefit
from having a relentless focus on the customer first and then navigating
what allows us to address their needs within the constraints we have to
work with.

The best software is built by engineers who have empathy for their users.

Business success depends on customer satisfaction which often
translates to user experience in the case of software. Understand how
the end-users experience the product or service. Make sure your
solutions do not hamper their ability to do their jobs efficiently. If you
are in a position that allows you to interact with end-users directly,
attempt to understand their needs and pain points better.

[image: Image]

14

Upgrading your skills
Choose what's right for your use case and not the flavor of the month.

It's OK to use "boring” technology (what’s tried & tested) vs. the hype
train. Languages, frameworks and libraries often evolve. Choose what
helps deliver a great final product. When starting off a new project,
begin with "boring" tech (but well understood) and then intentionally
decide out of it to select the best tool for a problem.

When picking new skills to learn or use, don't be afraid to choose
something that's boring and not in the news. FOMO may not be
productive when it comes to technology whether it be languages,
frameworks, and libraries and tools. While it's important to know what
to use, your main goal is to deliver an excellent final product. Please
don't chase the new and shiny technologies unless you think they add
value to your solutions. At the same time, don't shun something
because it is not being talked about enough.

Take advantage of new projects to learn new tech.

At the same time, personal and hackathon projects can be a great
opportunity to learn new tech. Many of us have fewer opportunities to
start something completely brand new, as opposed to working on an
existing codebase where many decisions have been made. Such
projects can be a low-risk way to research new tech, evaluate its
strengths and weaknesses (at a small scale) and build up some first-
hand knowledge that could be valuable to you in the future.

Be curious and never stop learning

Write about what you learn. It pushes you to understand topics better.
Sometimes the gaps in your knowledge only become clear when you try
explaining things to others. It's OK if no one reads what you write. You get
a lot out of just doing it for you.

15

Learning should be a continuous process - people who claim to know
everything about a particular technology are often not experts. Real
experts are proficient with the technology but realize there is always
scope for learning and improvement. Curiosity drives learning - so if
you are curious about a new framework, google it, read the docs, try
the tutorials, read the source! Learning need not happen in a
classroom. It can happen anywhere, anytime. Take half an hour each
day to read a chapter from a textbook, listen to a technology podcast,
read development blogs or learn a new programming language.

It's powerful for leaders to admit when they don't know something.

Having this confidence lowers the expectation that Senior Engineers
have to know everything. You absolutely don't need to have all the
answers, but being able to admit you're human and are committed to
figuring out how to solve problems with your team is the important
part.

Leaders also admit when they make mistakes.

It's important to teach your team how to handle mistakes with humility
and the desire to learn and improve. The real world isn't perfect and it's
totally okay to show your team it isn't perfect to prepare them for it.

Be a caretaker, rather than an owner.

In the early stages of open-source projects, it's common to think like an
owner. You often directly own proving out value, working on features,
answering issues and advocacy. This can be great for getting something
adoption, but may not be the best way to scale a project later down the
line when staffing changes or your own time gets limited.

After the initial crunch, another way to think of evolving your role is
towards being a caretaker, rather than an owner. A caretaker might
focus on scaling themselves out. This can be done by sharing as much
knowledge as is possible with other maintainers, contributors and the

16

community (via design docs, code comments, and other documented
best practices). It also helps to grow the pool of reviewers with enough
context to make the right decisions when you're no longer as involved.

This is often what projects need to be sustainable many years down the
road.

Depth and breadth of skills
Consider if being a jack of all trades and a master of one is right for you.

One of the greatest skills you can master is learning how to learn. This
should be a priority over say, just going deep on particular
programming language or framework. It helps to stay curious. Once
you have experience with this, you may question if you should aim to
be a specialist or a jack of all trades.

I personally like the idea of T-Shaped engineers (https://bit.ly/softskills-
tshaped). These are engineers who are a deep expert in one or a small
number of skills (the vertical bar of the T), but who have a basic
understanding of many other skills needed to build and run a product
(the horizontal bar). Some teams like to rotate team members through
a range of different specializations to build more T-Shaped team
members.

I've found that in mid-large sized teams, it's been effective to have folks
who possess specialized skills in one area and the skills, versatility, and
aptitude for collaboration to fill in for other people if necessary.

17

To experience is to learn
When learning a new language, focus on building something tangible
with it that gives you first-hand experience.

If you are learning a new language, you need not memorize all its
syntax or documentation to become a good developer. It's more
important to know how to solve problems. Earn experience by writing
a lot of relevant code or learning from existing code. The results should
help you write efficient code in that language.

As mentioned here (https://bit.ly/softskills-notcode), "The main value in

software is not the code produced, but the knowledge accumulated by

the people who produced it". However, please don't experiment in

production when experimenting with new technology.

18

19

[image: Image]

￼Technical Complexity

Generic vs Specific code
Write code specifically for the problem at hand, but try to spot places
where you can afford to make it a little generic.

Often, we attempt to code things as generic as possible, and end up
making what is effectively code soup that doesn't help accomplish the
problem. Instead, building specifically for this problem, but trying to
spot places it can be made just a little bit more generic, has altogether
eliminated times I know I would've had to refactor again later if I hadn't
been thinking of it.

There are several principles commonly discussed that talk about design
complexity. From the extreme programming world, you have:

[image: bullet]YAGNI or You aren't gonna need it, which states that programmers
should not add functionality until it is necessary (https://bit.ly/
softskills-yagni)
[image: bullet]Do the simplest thing that could possibly work - to make rapid
progress rather than plan for the future (https://bit.ly/softskills-
simplest)

Both these principles aim to prevent over-engineering (https://bit.ly/
softskills-overeng). However, these principles could be abused to create
multiple simple solutions which do not integrate well.

At the other end of the spectrum, you have the Abstraction principle
(https://bit.ly/softskills-abstraction) that aims to reduce duplicate
structures in the code whenever practical through abstraction and
generalization. I prefer to take the middle ground between extreme
abstraction and extreme simplicity by making code just a little generic.
The AHA (Avoid hasty abstractions) principle promotes a similar idea
(https://bit.ly/softskills-aha).

20

[image: Line Line]

Deep modules
Write code that solves complex problems for other developers but exposes
functionality through a lucid interface.

If you are an API designer or developer - your responsibility is to
provide an interface to simplify complex functionality for other
developers. The purpose is defeated if the interface is too difficult to
understand and imposes a cost on the programmer using it. This idea is
reflected in the concept of Deep Modules - "The best modules are those
with the greatest benefit and the least cost. The benefit provided by a
module is its functionality, and the cost of a module is its interface.”
(https://bit.ly/softskills-deepmodules).

While the simplicity of an interface is desirable, complex problems
sometimes require complex code to solve them (this if not a universal
rule, but is often true). This complexity is better off embedded in code.
When complex functionality is abstracted, the value provided to the
end-user or interface user is higher.

An API with multiple visible functions and classes encompassing some
functionality is more complex and challenging to search when
compared to another with the same functionality implemented using
fewer public functions/classes. New functions and classes add to the
cost of the interface for maintenance programmers and library users.

Learning on a maintenance project
When working on legacy code in older systems, understand the difference
between code that should stay and code that should go.

Any senior engineer should make an effort to understand the difference
between code that should stay and code that should go.

21

Large, long-term production systems are going to have some bad code
or code that doesn't have a good reason to remain anymore. It's healthy
to appreciate why something is there (good reason? bad reason?).
Remove the bad code and keep the good code.

I've worked at many companies where folks assume what is legacy code
is untouchable or is designed the way it is for a good reason, lost to the
sands of time. This can lead to fear of change where you just keep on
adding abstractions to a weak foundation. The software industry has
reached a stage where many projects deal with the maintenance and
migration of old or legacy systems. Don't get frustrated if you find
yourself in one such team. There is much domain-specific knowledge
that you can gain by looking at old code. While there may be good
reasons for older code/validations existing in production, it's healthy
not to assume every single line is still relevant.

Some software engineers are wary of touching code working in
production for fear of introducing a bug. So they include conditions
and repeat some code for newer use cases. Such workarounds may save
time at that instant, but they become a maintenance nightmare over
time. Don't assume that the existing code is blessed or infallible. There
may be some aspect of scalability or efficiency previously overlooked
that you could address.

Learning on a green-field project
Experiment, innovate, fail fast and get better at solving problems.

Your learning journey is entirely different when you are tasked with
building a system from scratch. As you start prototyping or
implementing features iteratively, you learn what works and what
doesn't. Agile methodology and the fail-fast principle help you validate
your ideas earlier with fewer resources (https://bit.ly/softskills-failfast).
They enable you to divide and conquer complex problems.

22

Definition of done
Defining what is "done" is time-saving because it helps you estimate the
effort required, plan for development, and avoid unnecessary revisions
later.

Another Agile principle that comes in handy when dealing with
complexity is agreeing on the definition of done (https://bit.ly/softskills-
done). In addition to meeting user requirements and acceptance
criteria, this could include other conditions such as code reviews,
testing, documentation, etc.

Phased roll-outs
A single large release may be divided into a series of lower-risk well-
understood rollouts.

Rollout plans are as important as the architecture and the code when
planning releases for large-scale production systems. Phased releases
with iterative development help you better manage risks due to
significantly large changes. You can also create release strategies with
the development and testing strategy to have an end-to-end plan for a
complex release.

Systematic debugging
When debugging, you should try to resolve the issues systematically and
rigorously to address all the test conditions.

Always read the error messages (and the stack trace). There's likely
valuable information in there that will help you isolate the problem so
you can resolve it. A surprising number of engineers ignore the insight
error messages can give offer before looking for debugging help.

23

Assume your machine is telling you what's wrong and may be correct,
rather than assuming that making small edits and constantly re-running
the code will fix the problem faster.

If you write a solution that throws an exception and aren't reading the

exception carefully, you may be wasting time. Often the error or

exception message is a big hint what's actually wrong.

24

25

[image: Image]

￼Communication

Importance of design docs
Design documentation should not be an afterthought but an integral
part of the software engineering process.

A design document is a ubiquitous tool that can help you gain
consensus from your peers or other teams who need to interface with
your part of the system. Feedback from others enables you to identify
gaps and refine your design. Design docs also serve as a valuable aid for
engineers who would join the team in the future. It would help them
understand the problem space and the trade-offs and alternatives
considered when designing the solution. Design docs provide a space to
capture all participants involved in the design and their contributions
as part of the document history. This helps others understand who
drove specific decisions and whom to contact for further elaboration.

Documentation process
Coordinate reviews for the design doc and compare the design as it
evolves with the original doc to verify that all the relevant constraints are
being addressed.

While one person can document the design, the actual design process
occurs during a series of whiteboard meetings, random in-person
discussions, slack threads, or email/phone discussions. Only after you
put it down on paper can you identify contradictory commitments and
see if the different parts you had discussed fit together. After creating
the initial draft, coordinating a review ensures that all parties
concerned are on board. However, it may happen that the
implemented design does not match what is documented because
something changed along the way.

26

[image: Line Line]

Communication
Be humble, communicate clearly, and respect others. It costs nothing to
be kind, but the impact is priceless. Some may say good communication
costs energy and thoughtfulness. There should be more energy for
compassion.

Communication is a critical part of the soft skills or people skills
required to become an effective, productive, and efficient software
engineer. Miscommunication can lead to incorrect functionality,
incompatible code, or offensive team dynamic. Communication can
help people understand requirements better and prevent issues from
being escalated. The world may imagine software engineers to be
people who spend their day writing code. However, to ensure that our
products are helpful to others, we have to synchronize our efforts with
others in the team and business and user expectations. This makes
collaboration and communication the critical pillars of our jobs.

Junior developers mostly communicate with other team members, test
engineers, and team leaders to share ideas and discuss alternatives for
problem-solving. As we grow in our careers, the quantity of
communication required to do our jobs effectively goes up. The
number of emails, meetings, and public talks increases. We have to
communicate with business leaders, managers, stakeholders, and team
members. The more specialized your work, the greater the risk that
others will not easily comprehend you.

Customized communication
Use language, concepts, and levels of detail relevant to your audience.

Whatever our level of understanding of a problem or a situation, when
we discuss it with others, we have to tailor our words so that they can
quickly grasp what is relevant to them:
[image: bullet]When talking to a business person, talk about the business impact
of what you are doing. Avoid using overly technical jargon.

27

[image: bullet]When talking to engineering management, communicate the
technical impact or challenges.
[image: bullet]When talking with a decision-maker, you describe available options
and their implications and risks, not the details of how the options
work.
[image: bullet]When providing a status update, be aware of what else has
transpired and how your update is relevant to the project goals.

The same principle applies when writing emails and presenting to a
larger audience. Write what is relevant to the person or people
receiving the message. You may have to defend your ideas when
presenting. Phrase questions and responses in a thoughtful manner.
Knee jerk responses are usually detrimental to communication.

Being kind and considerate
Being nice is a superpower - wield it.

Being calm, kind, and helpful can take you further than cutting
someone off. Be nice to people within your team as it will help make
the team stronger and successful. Be friendly to those outside your
team as well. Treat all the functions in your organization (HR, finance,
or marketing) with equal respect. You may not help them directly, but
you can always understand their work and empathize with them.
Congratulate or appreciate others when they have done well or
received accolades. Kindness is contagious (https://bit.ly/softskills-
contag). People you have been nice to are more likely to respond to any
requests for assistance in the future.

Be liberal in telling folks they're doing a great job.

While it's important to give feedback when improvements are needed,
it's also critical to give folks positive feedback if things are going well.
This helps your team know that they're making a difference and are
valued.

28

The power of NO
Saying no is better than overcommitting.

Most of us are not great at saying "no" where more work is concerned.
It is either because they don't realize that 'no' is an option, or we enjoy
the challenge. However, overcommitting is a liability as it can lead to
delays. Letting the other person know what is already on your plate
and providing a reasonable estimate of how long it would take is a sign
of respect. It gives the other person a chance to consider their options -
ask someone else or extend their timeline. Management will not ask
you to deliver something in record time if they know that it will
significantly impact the quality of the product. If you are a senior
manager, empower your team to say no to bad ideas (https://bit.ly/
softskills-empower).

“A senior developer (or any productive person) is good at saying
no. People will ask for more of your time than you can spare.
You can gently but firmly say no, direct people elsewhere
(delegate), or ask people to discuss with your manager whether
more of your time can be allocated to help them." (https://
news.ycombinator.com/item?id=18131722)

You can't please everyone - be extremely mindful when saying "yes" vs.
“no”.

The counterpart to leaders saying "no" to everything is saying "yes" to
everything and failing to set clear boundaries. Taking on more scope
than can actually be executed reasonably well with your current
resources can lead to heartache for you, your team and eventually your
customers. This is particularly important for leaders to absorb as others
will look to you to set the norms on when they should say "yes" or
gently push back.

29

Acceptance and respect
Admit when you don't know something and be open to asking for help,
even from juniors.

It’s okay to admit when you don’t know something. One of the most
important skills in software is being able to find answers and learn from
them.

As a senior leader, learn to accept that juniors around you may be more
aware of a project's technical nuances. It is okay to admit when you
don't know something and let the junior engineers explain it. They will
respect you more for your honesty and interest in learning, and you
will get a better picture of what is going on and add value to it. As a
junior engineer, you should explain technical concepts to seniors either
openly or behind closed doors, depending on their comfort level.

Information sharing
Use meetings and Q&A sessions to ask the right questions, exchange
knowledge and inform the team.

When running a meeting, don't be the only person talking. Meetings
are an opportunity for others to share ideas and provide honest
feedback - so listen and make space for others to contribute.

Junior engineers may shy away from asking too many questions. If you
are a senior, you can prompt them to ask the right questions by
bringing up the context. When fielding questions, let the person asking
know that you are glad they brought it up.

Flexibility
Defend your opinions stridently but also review them every time you
have new evidence that contradicts them.

Listening to other opinions is a key part of communication. It's essential
because there may be more than one solution to a problem. Rather

30

than being adamant about your views, listen and evaluate other
options. Maybe they will bring forward an aspect that you had earlier
overlooked. Paul Saffo's principle of "Strong opinions weakly held" tells
us to defend our opinions stridently but also review them every time
we have new evidence that contradicts them (https://bit.ly/softskills-
strongop). It is a scientific evidence-based method that does not
consider the person who came up with an idea or opinion.

Maintaining a record
A friendly email after an informal meeting helps reaffirm the key points
or commitments made during the discussion.

A downside of exclusively verbal communication is that it can be
forgotten or misremembered. Keeping a record of everything that
transpired and getting a sign-off on relevant discussions eliminates this
risk. If you or another person has agreed to help with a task, then
confirm the deadline via email to ensure that everyone, including your
supervisor, is on the same page. Keeping a record of such unplanned
work would also be helpful during an appraisal discussion.

Good faith
Know when to keep quiet and observe the dynamics at play.

There may be situations where you don't understand some decisions,
or they do not make sense for technical and business reasons. This may
happen in multi-team discussions. Participate in good faith and assume
that people will not risk being publicly malicious. Possibly you do not
have the complete picture, or they have different priorities. Ask
questions and state your opinions without getting angry or frustrated
about the final decision.

31

32

[image: Image]

￼Seniority

W
e aspire to grow in our career, either in our role or
capabilities. While some are interested in senior technical
positions, others wish to go for leadership or management
roles. In either case, there are some key characteristics that people
higher up in the seniority order exhibit. Throughout your journey, you
may have mentors to guide your growth. Here's my approach to
developing the qualities that can prepare you for a senior role.

Seniority and strategic thinking
Don't fail to make decisions or act given uncertainty.

Very often you will find that it's better to make any decision rather than
no decision at all. It at least allows others to know what direction you're
leaning towards. Sometimes as leaders we don't spend enough time
reflecting on what decisions our teams are expecting us to make, but
are not, because we're not 100% certain we have all the facts. We can
and should try to build as complete a picture of the details needed to
make confident decisions as we can, but this isn't always possible (e.g.
in a time crunch). This can lead to long periods of waiting/uncertainty
for teams where it can help to actively better yourself on how to make
decisions even given limited information.

Leaders are people who have broadened their horizons to think
strategically and lay out the roadmap for others.

Your ability to think and plan strategically and apply your thinking to
larger scopes should ideally grow with experience. As an individual
contributor, you may focus on assigned tasks or the features you are
working on. The impact of your work extends beyond specific tasks and
projects as you climb the ladder. When weighing options, you learn to
look at the larger picture in terms of benefits and constraints. The
scope of application of soft skills also increases. For example, if earlier

33

[image: Line Line]

you were making decisions for a team or addressing other engineers in
your team, your choices and communication impact multiple teams as
you grow.

Leading by example
Teach your team to fish. Don't always solve problems for them, but gently
guide them to develop the skills to solve themselves.

Engineering leaders empower. As you become more senior, it helps to
give up your toys, coach, delegate & enable your team to succeed. It's
how you scale effectiveness. This can be done by asking good questions
more than (just) giving answers.

You lead by example when assessing challenging problems and ask
relevant questions when someone offers a solution.

Seniors in the technical track are responsible for coordination,
negotiation, and consensus-building within and outside their teams.
They contribute to improving the overall team output and not just their
own. As a senior engineer, you may occasionally code to acquire new
skills or understand the ground reality, but that is not a part of your job
description. Instead, you are someone who ensures that there aren't
any missing pieces in the architecture diagram or loopholes in the
code. You should be able to explain your decisions with evidence or
reasons for how they would provide technical or business value.

A senior engineer should be good at architecting software systems and
human systems or teams. You can lead a diverse group of engineers,
delegate tasks to them, mentor them to care about code quality/
performance/simplicity. You can give feedback when required and
defend them where necessary. At the same time, you should be able to
market yourself, your work, and your ability to solve challenging
problems to gain visibility in the organization. Overall, you should
manage your relationships with people within your team and the
management.

34

35

[image: Image]

Scale your effectiveness.

The world’s best engineering feats are accomplished by a team of
engineers, not individuals. So, if you are trying to accomplish more, or
show you're ready to become more “senior” in your company, multiply
your effectiveness through collaboration and mentorship. Demonstrate
how this adds value not only to yourself, but to other members of your
team.

I felt like I was on the path to being a senior engineer at Google when I
realized that to scale myself, I had to shift my mindset from "me" to
"we". By collaborating with others, sharing what I learned, and focusing
on lifting the skills and the expertise of people around me, we started
to get so much more done.

When you start out as an individual contributor, you may not have a
dedicated “team” you lead, but you can find like minded people to
collaborate with (maybe aligned with your goals) and work together to
accomplish a lot more than you could alone. As you get more senior,
you evolve this thinking towards building out teams and continuous
growth of your effectiveness.

Imposter syndrome
Accepting that it is okay to make mistakes, not know answers, or seek
guidance can help overcome imposter syndrome.

All of us have felt inadequate for a particular role or job at some point
or other. Imposter syndrome is genuine and very common. It can affect
even those who are evidently successful. You might feel like an
imposter even as others look up to you for advice. You may never be
cured of the syndrome, but it will push you to be curious and learn new
things.

36

￼Effective Teams

Building Trust
Trust can unite team members to work towards a common goal while
bureaucracy will divide them.

When engineers come together for open-minded and unbiased
brainstorming, it paves the way for new ideas and different
perspectives that drive innovation. This leads to highly efficient and
productive teams. However, effective collaboration among team
members is only possible if the communication and relationships
amongst team members are healthy. Here are some pointers for
building, maintaining, and becoming a part of effective teams.

Building trust is the most critical component of team building. Trust
amongst team members across the hierarchy is necessary to get things
done fast and for teams to be effective. Team members may use
different software engineering processes such as reviews and tests for
reviewing project health. However, these processes become tedious
and bureaucratic without trust. For example, you will probably nitpick
less during a code review if you trust an engineer with some code.

Understanding the business model
Understand the business impact of the change.

When you receive a new set of requirements, understand the
motivation behind them. Don't skim over the 'purpose' or 'business
goals' section of the requirement documents. Ask questions to
understand the business model and its relation to these requirements.
An existing codebase or talking to subject-matter-experts (SMEs) can
provide insights about the domain and the architecture. Refer to the
documentation or map features and use cases to system processes and
data flows.

37

[image: Line Line]

“A lot of software engineers love to solve problems with a
technical challenge. It can be more rewarding to understand the
business side of things and be able to come up with cost effective
solutions. Remember that your users/customers are also people
trying to do their job, and get through the day or week, just like
you are. Try not to make their lives harder than they already
are." (https://bit.ly/softskills-tc)

Increase your impact
Perceptiveness and astuteness about the business-software equation
increases the impact of your work.

Getting a 360-degree view of the business and the product helps you
contribute positively to the team and your projects. If you understand
how sales or marketing think, you are better equipped to make the
right decisions and do high-impact work. As your impact on a team's
success increases, your job satisfaction and pay will improve. Your
seniors will recognize your ability as a self-starter who can work
independently without supervision and drive overall efficiency by
doing what is suitable for the team, project, and business.

38

39

[image: Image]

￼Mentoring

Mentoring others
Be the guardrail by giving timely information so that your mentees do
not end up in a completely incorrect place but instead gain mastery by
doing things themselves.

You may find yourself in a mentor or mentee role at different times in
your career. Mentoring need not be a formal process. You can look for
opportunities to mentor others or allow yourself to be mentored even
informally. Mentoring others gives you a chance to learn people skills
yourself. Following are some key points to remember while mentoring.

Mentoring is about guiding people to discover answers themselves
rather than giving them ready-made solutions. Allow your mentees to
experiment when solving their problems. They are in the best position
to assess risks and benefits. However, please give them the tools
required to find answers. If it's a technical problem, suggest ideas and
options to try out, but let them do the actual legwork. Let them share
what they think and listen closely, ask questions, and engage in a
dialog.

If someone fails to figure out solutions by themselves, show them how
you would approach the problem and why you chose a particular
pattern to solve it. Teach them how to analyze results or debug issues.
Share your thought process as you diagnose the problem, try out
solutions, implement them and debug them. Share your problem-
solving techniques and not just the answer.

40

[image: Line Line]

Organization-wide mentoring
Ensuring that mentorship is a part of a senior engineer's role also helps
retain crucial domain knowledge when someone moves to another team,
position, or organization.

Suppose you are sincere about mentoring someone, and it is also a part
of your job description. In that case, you have to make time in your
schedule for mentoring activities. This will allow you to do it properly
and make a difference in your mentees' lives. Some organizations may
also have a defined process for the mentor/mentee discussions based
on the career progression ladder and requirements for each step.

Mentee's role
Mentors can offer you advice, but you are the only one who can take the
initiative and act on any advice to manage your career and growth.

Suppose you are a junior engineer who wishes to grow in an
organization. In that case, there is only one piece of advice for you.
Find strong mentors who can help you navigate the growth ladder.
You will come across coaches, mentors, or colleagues you look up to
throughout your career.

They can offer you advice on how to develop your skills but you are the
one who can act on it. When assimilating advice, beware of blanket
statements regarding technology. Different situations need different
principles, and what worked for one project may not work for another.

41

42

[image: Image]

￼Time and Work/Life Balance

I
f you are someone who has gained mastery over technical abilities,
human factors, and domain knowledge, your skills as a software
engineer will invariably be in demand. People in your team and
organization will consult you. In addition to your engineering
commitments, you will become a victim of collaboration overload
(https://bit.ly/softskills-overhead). Ad-hoc requests can eat into your
time and stop you from doing what you are passionate about.

Time management
Optimize your calendar for Deep Work

Block time on your calendar for focused deep work. I’ve done this for
years and found it highly effective for writing design or strategy docs or
just working on a hard technical problem. Deep work is distraction-
free, high concentration work that creates a lot of value in a little time.
Cal Newport’s Deep Work covers this topic well.

Attention residue is an idea Cal talks about being why working deeply
for extended periods is so beneficial. Every time you’re switching from
one task to another, a residue of your attention remains stuck thinking
about the previous task. This makes it hard to work with the necessary
focus on what's really important.

Deep work maximizes the amount of productivity you squeeze out of a
limited time by focusing on a single task. No distractions, no Twitter, no
chat or email. You reserve deep work for tasks that are cognitive heavy.
I highly recommend trying it out.

I’ve also found that changing my location can sometimes help with
deep work. We can sometimes fall into the trap of associating a specific
place (like a desk, room or building) with a particular kind of task and
adding a little variety can help reinvigorate us.

43

[image: Line Line]

Avoid fracturing your working hours

When an hour of work gets broken up into chunks of just a few minutes
due to distractions, you become stressed. Identify the causes of
distractions (whether it's you or others) and fix it. Otherwise your day
won't be as productive.

Working in excess isn’t part of a good work ethic.

You can never work harder than everyone in the world. Many
companies hold up overworked employees as the "standard", falsely
concluding this is the same as having a good work ethic. Success comes
from many factors and not just overworking.

Constantly trying to outdo your standards is unrealistic.

I have been guilty of this a lot. If you want to develop calm and avoid a
crazy work environment, you must get comfortable with enough. As a
manager or lead, your team might take your lead on how to approach
this. Being OK with enough can set a good example.

Time is finite. Instead of trying to seek more time, eliminate unnecessary
tasks.

Lots of guidance talks about rearranging work better. The real problem
is trying to accomplish too much to begin with. Ruthlessly eliminate
work that's unnecessary and time wasting vs. trying to manage limited
time.

You don't have to know every last thing going on.

Many of us are afraid of missing out on every new story or update. This
is one reason people get obsessed about checking Twitter, Reddit,
Instagram etc every hour. I've certainly been through this. In reality,
most of this information is just not that important. Instead, try

44

switching to summary views of this news or set limits on how often you
check it.

There are further thoughts on this topic in "It doesn't have to be crazy
at work" by Jason Fried (https://amzn.to/3yqwf1K).

It's best to proactively save yourself from exhaustion by learning to say
no, knowing when to stop, and planning your time to include breaks
between work.

Time management and maintaining a good work-life balance are crucial
for engineers at all levels. Regularly working overtime can lead to
burnout and stress. Stress can cause other physical and mental
health complications (https://bit.ly/softskills-complications). It may be
tempting to resolve an issue before you call it a day, but it could
become a habit over time.

Encourage breaks, holidays, and vacations both for yourself and your
team.

Your health and family are vital. If you realize this as a senior engineer
and set an excellent example for others in a team, it will foster overall
wellbeing and happiness. On the other hand, exhaustion and burnout
can lead to toxicity in the workplace.

Update estimates as your understanding of problems improves

There will almost always be a customer or stakeholder for your work
that will want to know when a project or task can be delivered and if
this cost is worthwhile. This is totally reasonable. Sometimes they want
to match a deadline or there are dependencies elsewhere that need to
support your engineering work requiring planning.

Software deadlines are notoriously difficult to predict accurately.
Deadlines that are based on estimates should only be given when
projects are at a particular stage. When time passes, estimates should

45

get updated as we learn more about the team's ability to solve the
problem (the "informed" estimate). The first estimate (the "sizing") is
often the least reliable, however it is a starting point that can get refined
over time. This initial estimate is often very conservative - should the
product requirements, UX or dependencies be unclear, a larger
conservative estimate is often helpful for that first "size". I often have
the best success here when such estimates are approached
collaboratively with PMs so we are all on the same page about refining
them.

The trouble with software estimates is when the first rough estimate
gets cemented as the plan of record rather than a first draft. When
teams on the critical path adopt it but view adjustments to the
estimates as a hiccup by engineering (vs. step 1/n of an informed
estimate) this can be an issue. Once a project has the greenlight, figure
out the details better - this may mean an estimate of three months
becomes two (or four) based on a deeper understanding of what will
address the requirements.

You almost always want the estimates driving your schedule vs. having
the schedule drive the estimates where possible. In my teams, while we
do sometimes have unmovable deadlines (e.g. a conference), if the
estimates overshoot these dates that's (often) fine - changing messaging
(e.g. "preview"), framing ("coming in the near future") or punting to a
future are always options we can discuss with leadership. I of course
acknowledge this is not always trivial. When schedules do try to be
pulled in, you can break work up into must-have vs. nice-to-have (and
move these to a future sprint) then review if the must-haves meet your
deadline.

Should schedules still be too tight, there are other questions you can
ask, such as "Can we add additional engineers to this project?" and "is
there a large reduction of scope that would still make shipping on time
compelling?”.

46

Cancelling projects is sometimes the right (if uncomfortable) call.
I hate this one, but cancelling a project can sometimes be the healthiest
long-term decision for your team and organization. This is especially
true if it is cancelled before it has had a chance to launch, gain traction
then ultimately has to be deprecated because staffing on it can no
longer be sustained. In case folks are wondering, yes I read Killed By
Google (https://bit.ly/softskills-kbg). Aim to minimize the circumstances
leaning up to projects getting cancelled as much as you can. I recently
cancelled a multi-year project and it was rough.

When can this happen? You can make decisions about investing in a
new project that are the right ones for a point in time. At that point in
time, the stars may well have aligned (market-fit, organizational buy-in,
staffing commitments) for it to completely make sense. A year down the
line, things can change - the market, leadership, importance of the
project. It's critical to regularly check on whether the assumptions you
made when a project started continue to remain true through its
lifetime.

The more you can sustain confidence the assumptions are still true, the
better a shot you have at the project being able to successfully launch
and continue to be supported. Cancellations are hard for a number of
reasons, not least that there are real people with real emotions who
invested in building what they had hoped would launch. As a leader,
navigating folks back out of a cancelled project onto others that
successfully launch is complex, but important for getting folks back to a
place of psychological safety, trust and happiness. On the customer
side, be mindful of user trust and how your long-term decisions can
impact this.

On technical debt: An ounce of prevention is worth a pound of cure

Titus Winters defines technical debt as "the difference between the
code and systems we have today vs what we wish we had" with certain
kinds of debt having a higher impact than others. Some debt can be

47

due to mistakes that weren't caught early (oversight), others due to
what was learned after-the-fact (hindsight) and some are due to the
landscape of technical systems changing (context).

I have found that consistently prioritizing tackling technical debt is
sometimes hard as you can't always quantify the bugs that didn't
manifest or outages that didn't happen because you "paid debt down
enough". Sustaining team interest in this kind of work and rewarding it
during performance reviews is also really important. The cost of the
"cure" however can be so much higher once problems really start to
pile up over time. Similar to pollution, over the course of multiple
years, prevention of technical debt is a cheaper strategy than mitigation
at a later point.

What can you do to prevent debt building up? Technical leads should
regularly devote time in sprints to clean-ups and paying debt down in
addition to building out new features. Reviewers should be cognizant of
pushes for short-term velocity that may actually lead to problems
further down the line. Managers and directors should be mindful of
approving new projects that overlap with existing ones, unless you're
certain the trade-offs are worthwhile(e.g. addressing debt in existing
system just isn't worth it vs. building something new). Monitoring of
project health is really important on top of all of this.

Without breaks and a good work/life balance, you or your team can
burnout.

Burnout is a form of exhaustion due to workplace stress that hasn't
been successfully managed. I've seen many engineers hit burnout
during the pandemic due to work stress, but it has always been present
in tech. These days, I ask my reports, "how are your stress levels doing?
what can I do to help?" in each 1:1.

My experience with burnout is that it happens slowly and ends in
apathy. You slowly start to feel low on energy, unmotivated, and
exhausted all the while trying to cope with work stress as best you can.

48

You question if there's something wrong with you, but fail to realize
your body is working overtime to compensate for the lack of energy
you have. You keep pushing yourself harder and harder, but eventually
it feels like there's not much left to give.

I hit burnout about 5 years ago, however am happy to say I turned it
around. What led to it? It was an avalanche of things. I had been putting
work first for years, working longer and longer hours and not saying
"no" enough. I never took enough breaks or vacations. I was averaging 5
hours of sleep a night. When I was home, I was so low on energy that I
wasn't "being present" nearly as much as I should have for my family.
The "fix" was doing the opposite of those things: take breaks, get more
sleep, squeeze more value out of the hours I do work, delegate better,
and have a clear "stopping time" for work.

As managers, to avoid our reports burning out, I think it's important to
try encouraging our teams to use their vacation time, take breaks and
periodically check folks are actually doing okay where stress is
concerned.

Executing in large organizations can feel slow. There are ways to navigate
this.

I've had many conversations with engineers that boil down to "why is
shipping X moon-shot in (big org) so hard?". There's a great analogy by
Alex Komoroske comparing large organizations to slime molds (https://
bit.ly/softskills-slmo). That is to say, executing even simple things can
start to feel way way slower than you might expect, due to coordination
headwinds. Organizations have complex systems, structures and
dynamics and headwinds rise when the number of people who must
coordinate on a project increases.

There are many forces at play here, including underestimation of the
difficulty of other's tasks (e.g. if they're building a dependency). You
can't ignore these problems as it can make the dysfunction spread. One
way to work through such headwinds is to decouple things as much as

49

possible so they can land on an OK timeline and eventually converge
towards shipping X.

Rather than tackling all of X from the get-go, you can avoid solely
shooting for the moon-shot (large risk efforts) and instead define roof-
shots (safe steps to unlock value) that move you closer to your goals. I
strongly recommend reading Alex's deck if this problem sounds
familiar.

Focus on problems vs. projects

Let's imagine your users have an unsolved need (e.g. a problem). When
you're an engineer attached to a particular project, it's normal to ask
how your specific project is going to solve this problem (a local
maxima). In a large organization with projects of similar shapes, it's
very possible to see multiple engineers trying to independently think
this way ("how does my project solve this problem?").

When you own a portfolio of projects however, this may not quite be
clear-cut. What if users may use many of your projects together?
Wouldn't it be weird if they each solved the problem in a slightly
different way unaware of each other's approach? Instead, you want to
ask "what's the right end-to-end solution to this problem?" and walk
back to what project or changes to a series of projects will holistically
address this need best.

It may require getting folks working on the multiple related projects to
collaborate more deeply. This can however result in a better, less
confusing story for your users at the end of the day.

50

51

[image: Image]

￼Conclusion

“Surround yourself by excellence and work with people who are
the best as what they do" - Brian Staufenbiel

Invest in friendships and relationships with folks you can learn from.
Be open to their guidance, mentorship, their successes, and their
failures. Never be afraid to ask for help or insight. In a lot of cases, it's
just a question away.￼

At every stage, remember that mastery over technology, business
domain, and human resources at a given organization has to be
cultivated over time. An organization cannot hire masters from another
and expect them to be productive from day one. If you are a good
engineer, you will contribute to your organization's growth. In return,
new avenues will be available to you, allowing you to acquire new skills
and grow yourself.

52

[image: Line Line]
[image: Image]

cover.jpeg
Software
Engineering

Addy Osmani

OPS/cover.xhtml
1

[image: Rectangle Rectangle]

[image: Rectangle Rectangle]

[image: Image]

OPS/js/book.js
function Body_onLoad() {
}

OPS/images/mentoring_2x.jpg
Conclusion

OPS/images/Last_Photo.png

OPS/images/drop-cap-2.png

OPS/images/complexity_copy_4_2x.jpg
Learning
New Things

OPS/images/drop-cap-1.png

OPS/fonts/PublicoText-Roman.otf

OPS/images/bullet_circle-blk.png

OPS/images/A4_Copy_11_2x.png
Software
Engineering

Addy Osmani

ﬁu

L”...L

OPS/images/complexity_copy_20_2x.jpg
Seniority

OPS/images/complexity_copy_23_2x.jpg
Communication

* A

OPS/toc.xhtml

 		Prologue

 		About the Author

 		
 Learning New Things

 		Mastery

 		Think critically and formulate well-reasoned arguments

 		Building a strong base

 		Transferable skills

 		Efficiency

 		Better decision-making

 		Focus on the User and the rest will follow

 		Upgrading your skills

 		Depth and breadth of skills

 		To experience is to learn

 		
 Technical Complexity

 		Generic vs Specific code

 		Deep modules

 		Learning on a maintenance project

 		Learning on a green-field project

 		Definition of done

 		Phased roll-outs

 		Systematic debugging

 		
 Communication

 		Importance of design docs

 		Documentation process

 		Communication

 		Customized communication

 		Being kind and considerate

 		Be liberal in telling folks they're doing a great job.

 		The power of NO

 		Acceptance and respect

 		Information sharing

 		Flexibility

 		Maintaining a record

 		Good faith

 		
 Seniority

 		Seniority and strategic thinking

 		Leading by example

 		Scale your effectiveness.

 		Imposter syndrome

 		
 Effective Teams

 		Building Trust

 		Understanding the business model

 		Increase your impact

 		
 Mentoring

 		Mentoring others

 		Organization-wide mentoring

 		Mentee's role

 		
 Time and Work/Life Balance

 		Time management

 		Conclusion

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		Cover Page

		Page 1

OPS/images/complexity_copy_24_2x.jpg
Complexity

OPS/images/Photo_2.png

OPS/images/IMG_3237__1_.jpeg

OPS/images/image.png

OPS/images/drop-cap.png

OPS/fonts/PublicoText-Italic.otf

OPS/images/image-1.png

OPS/fonts/PublicoText-Bold.otf

OPS/images/complexity_copy_2_2x.jpg
Mentoring

OPS/fonts/PublicoText-Semibold.otf

kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

 var bc = document.getElementById('book-columns').style;
 bc.width = (window.innerWidth * 2) + 'px !important';
 bc.height = window.innerHeight + 'px !important';
 bc.marginTop = '0px !important';
 bc.webkitColumnWidth = window.innerWidth + 'px !important';
 bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+ window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */

function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}

OPS/images/complexity_copy_21_2x.jpg
Effectiveness

OPS/fonts/PublicoText-SemiboldItalic.otf

OPS/images/complexity_copy_16_2x.jpg
Time

OPS/fonts/PublicoHeadline-Black.otf

