

Ruby Is For Fun

 Self-Study Course, From Absolute Beginner to Advanced

 Roman Pushkin

 This book is for sale at http://leanpub.com/rubyisforfun

 This version was published on 2022-05-26

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2018 - 2022 Roman Pushkin

 Table of Contents

 	
 Front Matter

 	In Lieu Of an Introduction

 	Ruby vs. Ybur

 	Ruby Is For Fun

 	What will we study?

 	Web Programming Or Something Else?

 	How Much Do Programmers Earn?

 	Your Advantage

 	
 Part I. First Steps

 	Runtime Environment

 	Setting Up Windows (MacOS, Linux) For Your First Program

 	Hello, I’m Your REPL

 	Running a Program From a File

 	Hello, I’m Your File Manager

 	File System Essentials

 	File System Navigation

 	Shell Survival Guide

 	Text Editors

 	Your First Program

 	Variables in Ruby

 	String Addition and Multiplication

 	
 Part II. Essentials

 	Data Types

 	Everything Is An Object (Proof)

 	Type Casting (type conversion)

 	Fractional Numbers

 	String Interpolation

 	Bang!

 	Blocks

 	Blocks With Parameters

 	Methods Of Integer Class

 	Testing Variables And Branching

 	Combining Conditions

 	Some Useful Methods of Ruby Language

 	Random Numbers

 	Guess The Number Game

 	
 Part III. Having Fun

 	Ternary Operator

 	Loading Indicator

 	Methods

 	Judgement Day Emulator

 	Instance and Local Variables

 	Programming Slot Machine

 	Arrays

 	Few Words About “Each”

 	Initializing Array

 	Accessing Array

 	Missing Detail

 	Battle of Robots

 	Arrays of Arrays (two-dimensional arrays)

 	Gems

 	Accessing Array of Arrays

 	Multi-dimensional Arrays

 	Closer Look into Array class

 	empty? method

 	Methods length, size, count

 	include? method

 	Adding Elements to Arrays

 	Selecting Elements by Criteria

 	Rejecting Elements by Criteria

 	Take Method

 	Is There Any Match? (any?)

 	All Elements Should Meet Criteria

 	Few Words About Array Methods

 	Symbols

 	Hash

 	Other types as Hash values

 	JSON-structure of a real-world application

 	English-Spanish dictionary

 	Comparison of hashes and arrays

 	Most often used methods of Hash class

 	Setting a default value in Hash

 	Passing parameters to methods

 	HashSet

 	Iteration over hash elements

 	“dig” method

 	Key presence

 	
 Part IV. Fun with Object-Oriented Programming

 	Classes and objects

 	State

 	State, one more example

 	Duck typing and polymorphism

 	Inheritance

 	Modules

 	Subtyping vs Inheritance

 	Class methods

 	The truth about Object-Oriented programming

 	Debugging a program

 	Debugging by using output to console

 	Debugging by using console debugger

 	Debugging with IDE

 	Practice: save the world with Ruby

 	Docker, crash course

 	Ruby Version Manager (RVM)

 	Testing Ruby programs

 	Rspec

 	Final words

 	Notes

 Guide

 	
 Begin Reading

Front Matter

In Lieu Of an Introduction

In the 21st century, programming has become one of the most important sciences in any economy. Processes which used to take place without the aid of computers have been partly or completely optimized. Businesses and private individuals have realized how useful electronic machines are, and the age of a flourishing IT industry has begun.

Certain specific trends have formed within all this variety of technologies. The most convenient tools for carrying out particular tasks have been determined. Programming languages have undergone significant changes. It is not as easy for the ordinary reader to understand all these languages and technologies as it might appear at first glance.

It became obvious at a certain point that “programmer” is one of the professions of the 21st century. But how do you become a programmer? In which direction should you apply your efforts? What needs to be studied, and what does not? What is the most efficient use of your time in mastering any technology?

Before answering these questions, the most important question of all must be answered. Why is it necessary to become a programmer? What’s the sense of it?

Some will want to become a programmer to develop micro-programs for intercontinental ballistic missiles and the space industry. Some will want to become a programmer to create their own games. Some will want to learn programming in electronic tables to calculate taxes more efficiently.

But the purpose of this book is more mundane. The author assumes that to the question “Why do I need to become a programmer?” you will give the answer “To earn money as a programmer.” Such an answer is usually given by people who have already tried some profession and want to use their time more efficiently to earn good money.

They could also be young people forced to keep up with the times and to learn technologies, and the quickest way of getting a result from such knowledge, as quickly as possible. Furthermore, this means a result not only in the form of the knowledge of how to write this or that program, but a result in terms of money.

Knowledge of any field in programming assumes a knowledge of the basics of the language, along with elementary theory (which is different for each field), basic concepts and definitions, and also a knowledge of tools other than the basic ones (such as an operating system, utilities and auxiliary programs).

There is a vast number of fields. They include game development, scientific research of various kinds, data processing and analysis, web programming, programming for mobile devices, and so on. It is not possible to be a specialist in all these at the same time.

So the person starting, or wishing to start, on programming faces a choice. Where to apply? What to study?

If you are a scientist at a research institute, your choice will most likely fall on the language “python” or “C++”, since a large number of libraries for data processing and analysis exists for these languages.

If, for example, you work as a watchman and are quite content with your work, you could study some exotic programming language that’s not high in demand, simply to avoid being bored.

If you live in a society in which ever-increasing accounts are paid every month, where you need to think not only of today, but of tomorrow, your choice will be different. You will need to study something in high demand very quickly, to find work as soon as possible.

The language “Ruby”, used in web programming, is something between “finding work quickly”, “studying something simple and interesting” and “will come in useful in the future”. Ruby not only enables you to compile boring programs while working in an office, but can also be useful at home, in everyday life. (One of my recent programs was about teaching how to play the guitar).

Furthermore, the philosophy of the language itself assumes that the study and use of programs will not be boring. For example, one of the principles of the language is the Principle of Least Surprise, which is explained as follows: “Whatever you do, you will most likely succeed”. That is inspiring, you must agree!

Other programming languages also exist. I am not saying they are bad, not at all. Each language is good for a certain purpose. But let us remember our own task and make the comparison with some other languages.

Ruby vs. Ybur

The language “Ybur” is Ruby in reverse. It is an exotic programming language which no-one knows except me. I’ve only just thought it up and I don’t know what it does. Let us compare Ybur and Ruby using the three parameters described above.

Finding work quickly

Ruby is a very popular language, it is easy to find work where it is used.
Ybur? No-one’s ever heard of it, finding work using it is impossible.

There is no need to compare the other parameters. In other words, if what is important to you is not programming in itself (though that’s no bad thing either), but the possibility of earning money in the foreseeable future, Ruby is not a bad choice. It is quite a popular language. Of course, other popular programming languages exist too. We might say that JavaScript is the most popular. But let us compare JavaScript and Ruby.

Learning something simple and interesting

Ruby incorporates the Principle of Least Surprise, and that is not at all bad.
JavaScript was not initially created in accordance with this principle. It is more complicated than Ruby because it is completely asynchronous (you’ll have to take my word for that for the time being).

We can show that JavaScript is not as simple as it looks at first glance. Let us consider a Ruby program for sorting numbers:

 Example: Simple program to sort four numbers in Ruby
[11, 3, 2, 1].sort()

The above program has to sort the numbers 11, 3, 2 and 1 into rising order (it is not important for now if you don’t understand this syntax, we’ll deal with that subject later). The result of the Ruby program’s work is: 1, 2, 3, 11. No surprise there! But let us write the same program in JavaScript:

 Example: Incorrect program to sort four numbers in JavaScript
[11, 3, 2, 1].sort();

In this case, the syntax is very similar, and differs only in the semicolon at the end. But what will the result be? Even experienced JavaScript programmers cannot always give the correct answer. The program’s results are quite unexpected: 1, 11, 2, 3. Why this is so is a question of history. But to sort numbers in JavaScript, you have to write:

 Example: Correct program to sort four numbers in JavaScript
[11, 3, 2, 1].sort((a, b) => a - b);

Once you understand it, it isn’t difficult. But the question is something else. Do you want to waste time on such fine points in the initial stage? JavaScript is much in demand, and every Ruby programmer must know it at a minimal level. But I must say I would want a very great deal of money to be a full-time JavaScript developer.

Could come in handy in the future

JavaScript is developing very dynamically. Knowledge gained ten years ago is not always up-to-date (in this case I am speaking of popular frameworks - sets of tools). In Ruby’s case, the Rails framework has existed for more than ten years. Knowledge gained ten years ago is still applicable.

Incidentally, it is worth making a separate comment about the applicability of knowledge. Knowledge of shell-scripting languages is still applicable. Little has changed in more than 30 years. Knowledge of the basics of computer science is still applicable in interviews and at work (this knowledge has hardly aged at all). So it is definitely something you want to learn at some point of time.

But no-one can make precise predictions about the applicability of a particular programming language in the future. However, one may look at the statistics of recent years. At the time this book was being written, Microsoft bought GitHub, written in Ruby, for 7.5 billion dollars. In other words, the language is in fine form today and widely used. Updates are being issued, the speed and syntax are being improved. And the number of available libraries makes a rapid solution of virtually any problem possible (within the framework of the field called web programming).

Ruby Is For Fun

In our opinion, programming language should not only solve certain business problems, but should also be easy enough to use every day without problems.

For example, Java is a fine tool for solving business problems. But it has to be treated with respect. The language is statically-typed (we’ll come back to this topic). The type of data on which different operations are carried out must be specified. This takes time, and is fully justified in the business field, where it is better to spend several times as long on development, rather than having to pay for mistakes later.

In the case of Ruby, the program can be written quickly, in a simple way. It is not all that reliable (which can be a problem sometimes), but many companies, particularly startups, have come to the conclusion that it is reliable enough, and the relatively slow speed of program execution is not a problem either. After all, in today’s world we often have to do something quickly to get quick investments, to attract the first customers, take advantage of momentum while competitors are still trying to find their way.

From the author’s personal point of view, Ruby is a good tool for doing something of my own - some project of mine, a program which can be shared with others, attract attention or earn money.

In other words, Ruby is an efficient and interesting language, not only for work but for its own sake too.

What will we study?

As stated earlier, there are many trends in software development. Each trend is unique and requires its own know-how. The author believes that there are currently at least two “tried and tested” trends in programming which give the maximum result in the minimum time. “Results” here means both cash compensation and knowing how to do something with your own hands.

The first is mobile development – programs for mobile phones (Android, iPhone), tablets (iPad) and other devices.

The second is web programming (or web development).

However, mobile development itself often means optimizing the code for mobile devices in all sorts of ways. The programming language and SDK (software development kit) is very often bound up with a certain style of development. And this style is very different from the classic object-oriented programming, it is more procedural. With procedural programming, you can’t always make full use of the language’s capabilities, though this is not always important, particularly if your aim is to earn a salary.

A second aspect of program development for mobile devices is that there are two main mobile platforms at the present time. One belongs to Apple Corporation, the other to Google. How these platforms will develop in the future depends entirely on the policy of these companies.

In the case of web programming in Ruby, it all looks somewhat different. The language itself is being developed and supported by the programmers themselves. The web framework Rails – about which more later – is also supported exclusively by the community. This enables programmers from all over the world to create a convenient tool just as they want, without having to look over their shoulder at the policy of any company.

Furthermore, programming in Ruby is rarely used on mobile devices, therefore in practice, they hardly ever have to be “specially” optimized. But the main difference between Ruby and the mobile development languages is that Ruby is a dynamic language – not in the sense that it is developing dynamically (though it is), but that it includes what is called dynamic typing of data as mentioned earlier.

The main advantage of dynamic typing compared with static is that there are fewer rules and less strictness, which gives a higher rate of development of apps by the programmer (admittedly at the cost of slower performance of the written programs, and of “sufficient” reliability. But performance rate does not particularly interest us, since Ruby is not used for developing mobile apps, although it is more often than not a key link on the server and facilitates the functioning of mobile apps for iOS, Android, etc.).

No doubt other programming trends not checked by the authors of this book do exist. For example, the development of computer games. A lifetime would probably not be enough to “check” all the trends, so we will leave this task to more inquisitive minds, and restrict ourselves to what is actually in demand in the market, permits “rapid input” and is more or less interesting rather than boring.

Web Programming Or Something Else?

The book “Ruby is for fun” is divided into two parts. In Part One (which you are reading now), we consider the basis of the Ruby language and its use from the so-called command line. Part Two (upcoming) will include web programming and the Rails framework.

“Wait!” the observant reader will say. “Surely we’ve just been talking about web programming? Yet it’s going to be in Part Two as well?”

Quite true. The point is that Ruby is quite a powerful tool in itself. Students of the online Ruby school have found work even without knowledge of web programming. The basics of the language and the ability to find and use the required libraries already make possible the creation of quite useful apps which can be used for data processing (for example, so-called “web-scraping”) to create script configurations and to control an operating system (which will definitely come in handy for any system administrator), for working with files of different formats etc.

The ability to use a language for jobs of various kinds not connected with web programming gives an indisputable advantage before you start web programming. Web programming itself involves the knowledge of certain generally accepted concepts. And we’ll now be able to solve these problems using a tool we are already learning how to handle.

How Much Do Programmers Earn?

This is a very important question for those who know nothing about programming. But before answering it, I want to go back.

Since Ruby is mainly a language for web programming, it is Ruby on which programmers base remote work. The idea of working remotely on one project is particularly prevalent in web programming.

This is understandable. To create software for aircraft, for example, it is more useful to be in a science center working hand in hand with colleagues there. But in the case of web projects, it is often unimportant where the developer is actually located. The team “37 signals”, the developers of which are in various places around the world and even in different time zones, has also contributed to the remote development concept. It was in “37 signals” that the first version of Rails, probably the most popular framework for web development, appeared.

It has been proved over the last ten years that remote development is possible. You don’t always need to keep a team of programmers all in the same office. This is a huge plus for Ruby programmers: it means that they are not tied to any specific location, and can work for a company in the USA from a small town in Greece or Spain, for example. And that way they will receive a salary far in excess of what they could get locally.

If you look at the statistics of remote working, Ruby holds second place for the number of vacancies available. First place goes to JavaScript, but only because a basic knowledge of JavaScript is essential, and is required along with other languages: Java, PHP, Ruby etc. But “pure JavaScript” (Node.js) for full-stack programming is only in third place.

It is worth noting that the number of jobs in a certain language is not the most important indicator, and it can be of no importance at all in making the right choice for the rest of your life. We are only speaking of what we know now. It’s very hard to predict several years ahead in the IT industry. But undoubtedly, the good news is that you don’t need thousands of jobs, you only need to find one. Nor is it all that important how much time you spend looking for a job – a week, two weeks or two months, you’ll certainly find one.

Here we come to statistics collected by Ruby School students. How much do Ruby programmers earn? Before answering, we will stipulate that we are only talking about remote working. The remote salary market is more stable. It was balanced out by programmers from different countries, and a certain value was arrived at for it. There is no sense in comparing salaries “on the spot”: a Ruby programmer can (perhaps even must) work remotely, in most cases this is more profitable. It is also assumed that programmers have a basic knowledge of English, so that they can communicate with clients from other countries.

Salary categories can be divided into three parts. They may differ depending on type of work (remote or in an office) and on geographical location (immaterial if you are working remotely). At the present time the hourly rate for a programmer with one year’s experience is from 15 to 30 US dollars an hour. From one to three years, roughly from 30 to 50. From three years upward, roughly from 50 dollars an hour. On reaching the 50-dollar level, it all becomes very individual. By the way, the average number of hours a month is 160.

From our own experience, it is quite possible, with no special talents, to master Ruby programming in one year and find your first remote-working job. Many Ruby School students have done so, and you can find confirmation of these words on our website.

Your Advantage

Before we start creating our first program, it is important to remind ourselves what is not related to programming. Everyone has different life experience. Some may have come to programming from music, some from finance. Any musician will find it vastly simpler to write a program for teaching people to read music. It will be simpler for a financier to write a program for a commercial balance sheet. What does your advantage consist of?

As you study Ruby, the question of creating your own program or series of programs based on your ideas will keep cropping up. This is necessary for the following reasons.

Firstly, any program usually concerns some business problem. Programmers are paid money to optimize business processes, simplify real life and save the time that people spend on all sorts of actions. For example, imagine a queue in some state institution in 1986. Many people have gathered in the waiting room and are waiting their turn. And now imagine that there is a programmer who has written an “electronic queue” program. Anyone can sign up to be seen, and come precisely at the appointed time. He or she could use the time that would have been wasted in the queue, e.g. teaching a math lesson to school-kids.

The economic benefit is obvious. Time that would have been spent in the queue can now be put to good use. And all because a useful website has been created. It is the same with your knowledge. Knowledge of any subject field is a valuable asset in itself. Try to see your advantage, think in what way you can improve the world. It’s a good thing to have several ideas written down on paper. As you work with this book, you can come back to it and ask yourself: Could I do this with Ruby?

Secondly, by using your advantage in a particular field, you can create a program simply to demonstrate your knowledge. Even the simplest program written by a professional musician will delight programmers of great experience, which musicians are not.

Don’t throw your programs away, even the most naïve of them can be improved later. They will also come in handy when you are looking for work. It is far better to have some code sample available than not to have one. Your programs may seem insignificant, but in getting a job it is not one isolated program that matters, but the combination of everything you have demonstrated: a knowledge of programming, programs you have written, your resume, domain knowledge, an active GitHub account and an active blog about programming.

Thirdly, if you are not working on your project, your success will depend on chance, It is hard to predict in just what group you will end up or what software quality standards there will be in your company. People are naturally hopeful about the future, but experience shows that in real life, everything is somewhat different, and success often depends on chance.

It’s a pity to find yourself in a company with bureaucratic complexities or working in a group of people with low technical qualifications. Furthermore, the newbie programmer may not even recognize these signs, and consequently can suffer depression and disappointment in his or her chosen profession. But in fact programming should give you satisfaction. And your own project is your landmark, an indicator of your level of improvement and insurance against bad luck.

In any difficult situation in your new work, you can say to yourself: “Yes, maybe I’m not very productive in this job, but here is my project and here is a demonstration of my technical qualifications. So the problem is most likely not in me but in something else.” Furthermore, this argument can always be used for a dialog with your manager, and the project itself can be added to your resume. Your project depends only on you, and there is a better-than-zero probability that one day your own project will start bringing in money for you.

 Exercise

 Keep an ideas notebook. Write in it absolutely all the ideas that come into your head. You may return to them a week, a month or a year later.

Part I. First Steps

Runtime Environment

Runtime environment is an important concept. The concept of “environment” itself will be introduced later, but it’s not the same thing. Runtime environment is where and “by whom” your programs will be launched in Ruby. Let’s say a qualified chemist conducts an experiment in a test tube, a big glass jar and even his or her own bath. It can be used by any “interpreter” (program-launching program) in Windows, Mac and Linux.

When the author first started with a computer, there was only one runtime environment, because there was no choice. When the computer was switched on, a cursor and the letters “OK” came on, meaning a program could be loaded. Now computers have become more intelligent, and a newbie also has to understand how to launch a program, where to enter the program text, “with what” to launch the written program and which runtime environment is best.

In fact. it is not particularly important to us which actual program the system is launched in. These days a program written in any of the popular programming languages can be launched in three OS: Windows, MacOS and Linux. Usually no changes are required in the program itself. If there are, they are minimal.

Statistics on the use of operating systems shows that the most popular one today is Windows. So we will begin with Windows, although it is not the best choice. The reason we decided to do this is to get us as quickly as possible into the run of things, so that any starting programmer can write a required program as quickly as possible. After all, setting up the runtime environment is not usually a very simple matter for beginners, and its apparent complexity may scare off a student at the first stage.

In spite of the fact that we shall begin by launching our programs in the Windows OS, we advise strongly against using the Windows for launching programs in Ruby, However, if you like, this OS can be used for writing programs. In any case, the authors recommend installing Linux as soon as possible (the Linux Mint Cinnamon edition, as the simplest installation medium), and using it. If you use Mac, there is no need to install Linux.

Setting Up Windows (MacOS, Linux) For Your First Program

Terminal (also known as “console”, “shell”, “command line”) is a friend of any Ruby hacker. To run programs we’re going to build together, we need some sort of central console, a place from where these programs will be executed. Terminal is the name of this central console.

To be precise, Terminal isn’t hundred percent correct definition, but it’s often used among programmers. They say “run in terminal”, but if you dive deeper, we run all programs by a special kind of software called “shell”. In other words, we send our instructions to the shell, and terminal is just a visual wrapper around this shell, where you can configure fonts, colors, copy and paste from your screen and so on.

Looking ahead, it’s worth mentioning that there are numerous kinds of shells with slightly different flavors. The most popular is bash (name is an acronym for Bourne-again shell, a pun on the name of the Bourne shell that it replaces). However, authors of this book recommend using zsh with Oh My Zsh flavor (no need to install it right now). Zsh is slightly different from the standard one, but it’s much more convenient and gives you more flexibility.

But all the above is valid for MacOS and Linux. The standard shell for Windows is “cmd.exe”. If you click “Start”, then “Run”, and type cmd.exe:

 [image: Run cmd.exe in Windows]
 Run cmd.exe in Windows

You’ll see the black screen and command prompt:

 [image: Windows shell]
 Windows shell

“Prompt” ends with > symbol, meaning the shell is expecting your input. For the future note that every shell has its own environment and runtime settings. Some programs and commands can mess up these settings, and if you found yourself struggling with weird shell behavior, consider restarting the shell. Even experienced programmers can take advantage of this advice. You can exit the shell by typing exit or by clicking the close button.

On MacOS and Linux terminal is available by default among other programs, and you can run it by clicking on unappealing rectangular black icon, usually with > sign. For these operating systems shell prompt often ends with $ symbol. It’s not always true, but keep in mind that if you see dollar sign somewhere in documentation or book, and command goes right after this sign, you don’t need to type the dollar sign. For example:

$ ls

For the code block above type ls only (dir if you’re on Windows). This command will show the list of files in current directory.

Regardless of operating system you’re using, type ruby command in your terminal and press “Enter”. In case of MacOS and Linux you will not see any error, Ruby will start and will be silently awaiting for your input. On Windows you most probably see “Bad command or file name” error message. It just means that Ruby is not installed by default on Windows, and we need to install it first.

Let’s take a step back. Now and in the future if something is not right, google it. For example, google “How to run Ruby program on Windows” if you have difficulties running your Ruby program. Good question is half the battle. And to be honest, you can only learn to program if you can ask good questions: just think consistently and follow a logical pattern. If you can’t conquer the problem by yourself, ask your question on StackOverflow, but keep in mind it is the place where you can ask a very “precise questions” about something.

For running Ruby programs in Windows you will need to run Ruby Installer and follow instructions. After that ruby command should be available in your terminal. Let’s run ruby -v to see the version of installed Ruby (here and below commands should work on both Windows and Macs):

$ ruby -v
ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-darwin16]

If command above doesn’t work, try restarting your terminal. Let’s run ruby again and write your first program. When you type ruby (without -v) in the terminal, it will be silently awaiting for your input. Just type puts 1+1 and hit Ctrl+D (sometimes you need to do it twice):

$ ruby
puts 1+1 (hit Ctrl+D here)
2
$

So what do we see on the screen above? Command prompt $, then we type ruby. Ruby is silently running and awaiting for our input, we type puts 1+1, after which we hold Ctrl key and hit D on our keyboard (it serves as “End Of Input” signal) and we have our program executed! 2 on the screen is the result.

Let’s dive a little bit deeper into what had happened above. When you typed ruby your shell executed Ruby interpreter - a special program to read and run your own, human-language programs. So ruby is just a program to run your programs.

Combination Ctrl+D (also denoted as ^D below) will be useful in your further software engineering career, and it just means “end of my output”, “I’m done here”, “now it’s your turn, smart computer”. Your terminal send a byte with the code 4 (you don’t need to remember that) and Ruby understands there won’t be any keystrokes anymore and now it’s a time to execute what a user has just typed.

Command puts 1+1 is your first program! Congratulations on that! Unfortunately we didn’t save it on the disk, because we typed it from our keyboard and it disappeared right after it was executed. But it’s not a big deal, your first program was only 8 bytes, and you can always type it again, if you want to.

But what exactly does puts 1+1 do? Before we answer this question, here is exercise for you. Try to run just 1+1, without puts. What happened? We don’t see anything on the screen. Actually, calculation has completed successfully, but result wasn’t put back. It’s possible when you give a long-running task to a computer, such as a set of complex calculations, the result will never be printed because you missed typing in puts.

In other words, puts just shows result on the screen. It’s a combination of words “put” and “string”. There are other, but similar commands in other computer languages to put results on the screen. For example in BASIC you need to type print, in C programmers often use printf (you can also do printf in Ruby!).

But why do we keep puts at the very beginning? In fact, we need to sum up two numbers first, and only after that we need to print result on the screen. Programmers say “method (or function) accepts parameter”. So, in other words, want to “put string”, and this string is going to be 1+1. This is our parameter. Can you see how we just split this line into two parts?

Ruby offers alternative syntax for this line, which is little bit more illustrative:

 Ruby program to sum up two numbers and passing result of operation to ‘puts’ function as parameter:
puts(1+1)

Like in math language we calculate numbers in parentheses first, and then do the rest. The same rule applies to computer languages.

There are few basic math operators that you can use in Ruby:

 	
+ to add numbers. For example: 1 + 1

 	
- to subtract numbers. For example: 5 - 2

 	
/ to divide one number by another. For example: 120 / 12

 	
* to multiply. For example: 2 * 5

 Exercise

 Without looking to solution below, try to write a program that calculates the number of milliseconds in one day. How would you approach this problem? How many hours in one day? How many minutes in one hour? How many seconds in one minute? How many milliseconds in one second?

Here is the answer to exercise above:

$ ruby
puts 60 * 60 * 24 * 1000
(hit Ctrl+D here)

This is a purely math problem: multiply the number of seconds in one minute by the number of minutes in one hour. Then multiple it by 24 hours in a day. And after that by 1000 in order to get milliseconds instead of just seconds. Pretty straightforward, isn’t it?

Now let’s write a Ruby program to calculate this expression:

[image: 5^5 * 4^4 * 3^3 * 2^2 * 1^1]

For the power function in Ruby you have to use **. For example, 5 ** 3 is 5 * 5 * 5 and it equals 125. So the Ruby program is as follows:

 Ruby program to calculate math expression mentioned above:
puts 5**5 * 4**4 * 3**3 * 2**2 * 1**1

It’s hard to believe, but the result of this operation is exactly the same as in our previous example: the amount of milliseconds in a day! Both programs will produce 86400000. There is no any explanation to this, just a fun fact. As exercise, try to run the following program and guess what is going to happen?

 Try to guess what will be printed on the screen?
puts 60 * 60 * 24 * 1000 == 5**5 * 4**4 * 3**3 * 2**2 * 1**1

Hello, I’m Your REPL

With the case of 1 + 1 program from previous chapter, interpreter performs two actions: read (R) and evaluate (E). We had no “print” action (puts in our case), so there was no any result on the screen. In other words, to see results we need to perform three actions:

 	Read (R)

 	Evaluate (E)

 	Print (P)

It would be also nice if we could avoid running ruby command from terminal every time, so we can execute programs in constant loop (L). It turns out this functionality is already there! REPL acronym stands for Read Evaluate Print Loop.

It’s very similar to Ruby interpreter, but accepts Enter key as the end of your program. Instead of exiting on Ctrl+D (end of input), it just starts reading the input again. REPL is pretty well-known definition, and not tied to the Ruby language infrastructure. Other languages have their REPLs too. Ruby’s REPL called irb. You can type this command from your shell:

$ irb
2.5.1 :001 >

Weird numbers at the beginning of the line is just the Ruby version (2.5.1). The same output is for ruby -v command. 001 indicates the first string. In the future you’ll see how you can type multi-line mini-programs to REPL. Since REPL acronym already contains “Print” word in it, you don’t have to type puts. Whatever you do, result will be printed on your screen.

 Exercise

 Calculate the number of seconds in a day, inside of a REPL without using puts.

Principle of a least surprise says that to exit REPL you should type exit. Let’s do it… And it works!

We would like to point out that authors rarely use default irb as a REPL. There is a better alternative called Pry. It has the same functionality, but offers more flexibility and configuration (to be discussed later in this book).

Running a Program From a File

Running a program from a file isn’t too much more difficult that running it from a terminal. You just pass argument to a Ruby interpreter with a file name:

$ ruby app.rb

In the example above interpreter will read a program from a file app.rb, and execute it the same way as it would be executed if you typed your program to Ruby and pressed Ctrl+D.

But the question is, where and how one should save this program, where to type it, which code editor you should use? Let’s answer the first “where” question, because answer implies that student is familiar with file system. But there could be some traps and pitfalls.

If you use Windows, consider installing Linux Mint Cinnamon edition1 as soon as you can. If you’re on Mac, you don’t need to do anything special.

On Windows we will need to create a folder (or “directory”) on disk C: and name it “projects”. On Mac and Linux we’ll need to create this directory inside of home directory. After that we’ll need to switch to this directory, create a file there, and run this file.

In other words, at this point of time you need to know how to do four things:

 	Create directory

 	Change directory (switch to directory)

 	Create a file in directory and put some text content to this file

 	Run this file (we know how to do that already: ruby app.rb)

Here we could give you some Linux/MacOS commands and quit explaining Windows, but market has different opinion. Statistics show that at least half of our readers are using Windows. We hope you’ll follow our advice and install Linux (again, no need to install Linux if you’re on Mac), but we’ll give you brief details of each operating system, including Windows. Just keep in mind that it’s absolutely impossible to be a good Ruby hacker on Windows.

Skill of navigating the file system is crucial for any programmer. Like a librarian should know the location of every book in the library, programmer should know how to navigate the file system, how to search files, create, copy, and delete files. You should have a picture of the file system you’re working with in your head.

But in practice, it’s been found that most of the students don’t have a good understanding, and the right skill to navigate and work with a file system. We could give you a list of essential commands and ask to remember the list, but the more humane way is to actually explain, give options, details, and let you know about the tools that can help you on your way. So let’s spend some time on learning a file system, and get familiar with a file manager.

Hello, I’m Your File Manager

If you craft programs for more than 20 years, you know that there are hardly many tools from the past which are relevant today. It is one of many reasons we’re using Ruby now: the knowledge gained ten and more years ago is still relevant today, and hasn’t devalued over the time. However, besides Ruby there are some other tools that still work and quite useful.

One of these tools is a file manager. There are many flavors of file managers, the most popular one for Windows is Far Manager:

 [image: Far Manager running on Windows]
 Far Manager running on Windows

Like it was mentioned before, working with a file system is crucial for any programmer, you should be confident with creating files, directories, copying, editing, removing files from your computer. File manager helps you a lot.

Most programming books do not cover this topic, giving you brief overview of essential shell commands. These authors assume you already know how to deal with files, and there is no emphasis on how to work with a file system efficiently, easy and fast. But we highly recommend installing and using file managers in your everyday work. File managers are far easier than shell commands, and it’s worth putting some time into it. At the same time learn file system the hard way, through shell commands. Sometimes we just need to get things done and move on, instead of spending time poking around with this or another shell command.

Because of that you don’t need to remember the list of shell commands given below. Eventually you will remember all of them. Moreover, these commands are for Linux/MacOS only. But some key combinations are for Windows. Good news is that there is unspoken rule, unwritten convention between authors of file managers: all of them have kind of the same commands and hot keys.

A careful reader will say “Wait a minute! We want to get rid of Windows, but at the same time about to learn some Far Manager commands?”

Well, it’s true, but with few caveats.

File manager is kind of ubiquitous tool. There are many flavors of file managers. Norton Commander is one of the first file managers, released in the age of DOS (Disk Operating System, outdated operating system from Microsoft released in 1981). Midnight Commander is another file manager for Linux/MacOS, and it’s quite popular today:

 [image: Midnight Commander running on Linux]
 Midnight Commander running on Linux

There are some other flavors of file managers. However, Far Manager is so useful tool, so programmers have ported this manager to Linux and MacOS. You can find setup instructions by following the link above, but we’ll cover it here for MacOS (link for Windows users is available at the beginning at this chapter):

 	Install HomeBrew if it’s not installed.

 	Run the following command in your terminal (can take up to 15 minutes): brew install yurikoles/yurikoles/far2l

 	Run Far Manager from your terminal with far2l command. Keep in mind that after running Far Manager it will “block” your terminal window, you won’t be able to type anything until you close Far. The workaround for this is to run another terminal window, or open new terminal tab with ⌘+T combination.

 [image: Far Manager running on MacOS]
 Far Manager running on MacOS

You can try installing Far Manager on Linux by yourself, following instructions - which can be tricky for absolute beginners, but doable. You can also try Midnight Commander. Installation instructions are as follows:

$ sudo apt-get update
$ sudo apt-get install mc

Type mc to run Midnight Commander.

 Exercise

 If you’re on Windows, install Far Manager now, and plan switching to Linux Mint Cinnamon in the course of the next few weeks (don’t forget to backup your data before installing Linux!). If you’re on Mac or Linux, install Far Manager (recommended), Midnight Commander, or other file manager you like (you can google them by “best file manager for MacOS”).

Don’t be discouraged if this chapter was a little bit rough for you. Keep in mind that whatever you do, you’ll be able to run your Ruby programs in the cloud. For example, services like Repl.it offer hassle-free programming environment right in your browser (they also offer some free plans at the time of writing). It’s not a way to go if you’re looking to be a great software engineer, but it’s definitely a great backup plan! If nothing works on your computer, go the cloud and try setting things up locally later!

File System Essentials

Software engineers say that file system looks like a tree. Every branch is directory, each directory may have one or more sub-directories (other branches) or files (leaves). Directory can be empty. The top, main directory often called root directory (don’t confuse it with home directory, which is the root place for all the files for the current user).

And here is where miscommunication begins. If file system is tree-like, why is the main directory called root and not the trunk? In fact, branches always grow off the trunk. Also, when we imagine the tree, we assume that tree grows up. However, in all file managers branches (directories) grow down. You need to press Down key to move your cursor one position down the directory tree. Maybe it’s better to say that the top directory is not the root, but trunk?

 [image: Tree structure. Children's art from one of Silicon Valley kindergartens. Curious programmer will ask "where is the root here?" The point is that the root node is located at the very top, which is unusual for the tree. Or do we talk about branches that grow up? There is some uncertainty, but don't let that cool you off.]
 Tree structure. Children’s art from one of Silicon Valley kindergartens. Curious programmer will ask “where is the root here?” The point is that the root node is located at the very top, which is unusual for the tree. Or do we talk about branches that grow up? There is some uncertainty, but don’t let that cool you off.

Regardless of how you call it, trees do have less branches at the top, and more at the bottom, which is not the case for the file system. In a file system all files and directories are usually sorted in alphabetical and ascending order. Probably there is no any other good analogy, and now we assume that file system is a tree-like, and it is sort of true.

By the way, we highly recommend to find out how to sort files in your file manager. One of the tricks here is to sort by modification date in descending order. With this sort order you’ll see recently modified files at the top. And a programmer usually works with the most recent files.

Sometimes only knowing the names of recently modified files in your work directory can give you a sense of what is going on with your project (and it’s one of the reasons why every beginner needs a file manager). Believe us, when you’ll try this sort mode, you will never look back, it’s so useful!

 [image: Sorting files by modification date in descending order in Finder (MacOS)]
 Sorting files by modification date in descending order in Finder (MacOS)

File System Navigation

File system navigation is just switching between directories to see what’s inside, to get the list of files, their names and other attributes. In Far Manager you can use Up, Down keys and Enter to switch into directory (we often say “to change directory”). Use Tab to switch from left to right panel and vice versa.

In bash (zsh or other type of shell) there are commands you need to type from your keyboard in terminal to change directories and get the list of files. It’s much easier to do in file managers, but you will definitely remember these shell commands over the time:

$ cd my_dir # switch to directory my_dir (or "change directory")
$ cd .. # go one level up
$ ls # list of files

Note: pound sign # (or hash) indicates the comment. Everything after this sign will be ignored by your shell.

cd command is pretty straightforward and easy to remember (Change Directory). But ls (list) is a bit tricky. It turns out that there’s something else in the file system: hidden files! On Linux and MacOS file names of hidden files start with . (dot), so they are often referred as dot-files. To show all the files, including hidden you need to type ls -a (-a here is parameter to ls command and means “all”). But the most useful command is ls -lah:

 	
l stands for “long format” or “long listing”. This long listing has file attributes, file owner information, size in bytes and modification date.

 	
a tells that we want to show all files.

 	
h is the flag to show meta information in human-readable format. For example, instead of “1000000000 bytes” we’ll see “1GB”.

Note that Far Manager also has the setting to show/hide hidden files, you can reach it by going to Options (F9), Panel Settings, Show Hidden and System Files.

By the way, h flag is quite useful and in addition to ls, is often used in other commands. For example, df -h stands for “disk filesystem in human readable format” and will display statistics about free space on your hard drives and mounted volumes (like USB stick):

 [image: System information in terminal]
 System information in terminal

Hit Ctrl+L in Far Manager to get the same useful system information about free and used disk space, memory, and so on. To hide this panel click Ctrl+L again:

 [image: Right panel with system information in Far Manager]
 Right panel with system information in Far Manager

Quite often you can switch on and off (toggle) different pieces of functionality by pressing the same key. For example, hit F3 to view a file in Far Manager and open built-in file viewer. To exit “view file” mode press F3 again. The same trick works in Midnight Commander.

We’ve gotten familiar with few shell commands (you don’t need to remember all of them, but may want to write down in your notepad or add a bookmark), but in file manager it’s all achievable with hotkeys. As you can see, hotkeys are much easier to remember, and result is more clear. Beginners not only able to see the contents of a file system without a need to remember ls command and its parameters, but also can navigate file system easily with arrow keys.

Despite all the experience with shell commands, author of this book often jumps back to the file manager when necessary. This tool is also quite useful on new projects with directory structure you’re not familiar with.

 Exercise

 Walk around file system on your computer with file manager and look at directories and files you have. Use F3 key to toggle the file view. Use Tab to switch between left and right panel.

Some useful file manager hotkeys (also see the bottom bar on screenshot above):

 	
F3 - toggle view file mode

 	
F4 - edit file

 	
F5 - copy file or directory from current panel to another

 	
F6 - move file or directory from current panel to another

 	
F7 - create directory

 	
F8 - remove file or directory

 	
F9 - options

 	
Tab - switch from one panel to another

 	
Ctrl+L - toggle system information panel

As you can see, basic file operations are achievable with F-keys. If you’re planning to buy a new laptop, make sure your new laptop has physical F1, F3, F4… keys (for example, some newer Macs have touchbars instead of F-keys).

Shell Survival Guide

The first step for the beginners would be getting familiar with file system basics by using file manager. We could give you comprehensive shell commands crash course, but how many folks would lie on the ground sobbing after that? That’s not our goal. You don’t need to have a computer science degree before you write your first program. Our goal is to create programs with fun. But before we do that, we’ll give you a list of essential commands you don’t need to remember (make a bookmark and you’ll probably get to this page later, may be even in a year or two).

Create directory (or “make directory”) with a name one (F7 in Far Manager):

$ mkdir one

Make a set of nested directories: directory one will contain directory two, and directory two will contain directory three (still F7 in Far Manager, flag -p stands for “path”):

$ mkdir -p one/two/three

Print file contents in your terminal (file.txt is a file name):

$ cat file.txt

Trick: there is alternative to cat called bat – “A cat with wings”, improvement over the cat. You need to install bat, and it gives you color formatting, line numbers, and some other improvements.

Imagine that file.txt is very large and you don’t want to have the entire file contents on the screen, but only first 10 lines. You can do it with head:

$ head -10 file.txt

Show last 10 lines of file.txt:

$ tail -10 file.txt

If there is a huge log file, and some program is constantly writing to this file, you may want to see the recent additions to the file, without restarting tail command every time. You can do it with -f (follow) flag:

$ tail -f file.txt

Press standard combination of Ctrl+C to quit from the command above.

Use mv (move) command to rename files (F6 in Far Manager). Technically, renaming and moving a file is the same thing for a computer. The point is that file system has file allocation table and actual file contents. Allocation table contains only meta information about the file, like name, modification date, and the pointer to the actual physical location of file data.

So when you rename a file, in fact you update only file name in this table, without moving the file data. So renaming (or “moving”) takes only few milliseconds if this operation is performed on the same disk (even for very large files). However, if you move (or “rename”) the file from one disk to another, operating system will:

 	Update file allocation table on both disks

 	
Copy the actual contents of a file

 	Unlink (remove) the file from origin location.

That’s why it can take up to several minutes or even hours when file is large.

$ mv file1.txt file2.txt # rename one file to another
$ mv file.txt .. # move file one level up
$ mv file.txt ../.. # move file two levels up
$ mv file.txt ~ # move file to home directory
$ mv file.txt /Volumes/MyUSB # move file to USB flash drive (MacOS)
$ mv file.txt /mnt/MyUSB # move file to USB flash drive (Linux)

Note that MyUSB above is the name of your flash drive and can be different on your computer.

Copy file:

$ cp file1.txt file2.txt

Copy file to directory:

$ cp file1.txt my_directory

 Exercise 1

 Open up your terminal. List all files (ls -lah). Create directory with the name my_directory. List all files again, make sure directory exists now. Pick any file from current directory and copy this file to directory you just created. Use file manager to ensure you did the right job.

Copy file one level up:

$ cp file1.txt ..

Copy file two levels up:

$ cp file1.txt ../..

Here comes the command even some experienced programmers aren’t familiar with: copy multiple files to directory:

$ cp {file1.txt,file2.txt} my_directory

To copy multiple files in Far Manager you will need to select them first. It can be done with Insert (Ins) key. However, some laptop keyboards do not have this key. In this case use combination of “Shift+Up” or “Shift+Down” to select files on the panel. Selected files will be highlighted in yellow. When files have been selected, press F5 to open copy dialog.

If you had already installed Oh My Zsh instead of default “Bash” shell, you can click Tab any time you want to avoid typing the full file name. For example, type cp {f and press Tab to see the list of available files you can include in your copy command. Same trick works for cp, mv and some other shell commands.

Find all files in current directory by name (command below will find all files with rb extension):

$ find . -name '*.rb'

Find all files in current directory that have bla as a part of the name:

$ find . -name '*bla*'

Find files without directories with rb extension:

$ find . -name '*.rb' -type f

 Keep this in mind

 Often people do mistake and provide two hyphens -- instead of one - to find command. For example, parameter with two hyphens like --name or --type f is incorrect. You must use one hyphen with find. However, some other Linux commands accept two hyphens. Don’t get confused!

As you can see, there are many ways of finding files in current directory. Current directory is indicated by dot right after find command (separated by space). Directory of one level up is indicated by two dots. Directory of two levels up is indicated by ../.. (two dots, slash, two dots). Here is the short list of directory shortcuts with examples of find command:

 	
. - current directory. Example (find all files with log extension):

 $ find . -name '*.log'

 	
.. - directory of one level up. Example (find all files with log extension in directory of one level up):

 $ find .. -name '*.log'

 	
../.. - directory of two levels up. Example:

 $ find ../.. -name '*.log'

 	
~ - home directory (directory of current user). Example:

 $ find ~ -name '*.log'

 	
/ - root (top level) directory. Example:

 $ find / -name '*.log'

 Exercise 2

 Try to find all log files in your root directory.

Far Manager has built-in dialog (which is quite friendly) for searching files. You can search files by using Alt+F7 combination. By default search file mask is *.* (all files). You can also specify a substring you want to be present in these files.

Here is how you can search for “something” substring in all Ruby files in current directory:

$ find . -name '*.rb' -type f | xargs grep something

The first part should be already familiar to you. The part after pipe operator | accepts lines and executes the grep command for each line passing incoming line as parameter at the end of this command, for example grep something file1.rb. Don’t worry if this syntax looks too complex for you at the moment. Eventually you will remember this command or another command. Searching through the files in current directory is one of essential things every programmer does many times a day.

How would you create empty file right in your terminal? There is useful touch command:

$ touch file.txt

The command above will update date and time of a file if it already exists.

Use “cat” when you want to create a file and put some data in it:

$ cat > file.txt

Then type in your data, for example “foo bar”, and hit Ctrl+D combination on your keyboard (if it doesn’t work, try to Ctrl+D twice). “Ctrl+D” stands for “end of input” in POSIX systems, and your terminal should understand it.

 Exercise 3

 Create a text file and put your name to this file. Use ls -lah command to make sure file has been already created. Use cat file.txt to see the contents of the file.

 Be Careful

 cat > file.txt will overwrite contents of the file without any warnings.

Add data to the end of file, the following command will not overwrite existing file. If file is not present, it will be created:

$ cat >> file.txt

Few notes about file system. You know that root directory is referred to as /, and home directory as ~. Home directory is the directory of current user. You can find out the name of current user by typing whoami (“Who Am I?”) command:

$ whoami
ninja

Interesting fact that there is whereami command in Ruby debugger Pry (will be described later), it shows the place where are you currently at while debugging a program.

Print working directory (current directory):

$ pwd
/home/ninja

Show home directory path:

$ echo ~
/home/ninja

Tilde ~ can be used as a part of path:

$ mkdir ~/tmp # Create tmp directory inside of your home directory
$ cp file.txt ~/tmp # Copy file.txt to newly created directory

By the way, create ~/tmp directory now for your temporary files. Existing directory located at /tmp is intended for system files and gets wiped out on computer restart.

Remove file. Be careful, this command will not ask for confirmation:

$ rm file.txt

Remove entire directory:

$ rm -r my_directory

It’s worth mentioning, that -r (recursive flag) is also used for some other shell commands. It tells that we want to perform operation recursively with this or another directory.

 Don’t Do This

 There are some bad jokes on programming websites, mentioning rm -rf / command. This single command will remove everything on your computer and will make your operating system unusable in seconds. Moreover, flag -f stands for “force”. So you won’t be asked for any confirmations.

Copy command mentioned above has alternative: scp (SSH, “secured shell” copy). cp command works for local files, but with scp one can copy a file from one computer to another. For example, this command can be useful when there is a log file on the server and you want to download this log file for error investigation.

We’re done with essential shell commands and Linux ninja training. As you can see, there are numerous basic file operations you will need to remember eventually, but as a first step we highly recommend using file manager, and switching back to your terminal time to time.

Text Editors

There are plenty of text editors out there for all operating systems: MacOS, Linux, Windows, but we’ll be discussing only code editors. What’s the difference between text editors and code editors? Well, often text editors do not save the file in plain format. For example, Microsoft Word saves the file along with meta information like formatting, font settings, images, and so on. But our code should be “plain”.

In other words, what we type on keyboard should be saved to file. You are already familiar with minimalistic code editor:

$ cat > app.rb
puts "Hello"

Type anything from your keyboard and press Ctrl+D (sometimes you need to press Ctrl+D twice). Everything you typed will be saved to app.rb. Note that contents of app.rb will be replaced in this case, and if you need to add data to the end of file, you need to use >> instead of just >.

Now you can see what was written to this file the following way:

$ cat app.rb
puts "Hello"

You can also look at hexadecimal output, followed by raw data:

$ cat app.rb | hexdump -C
00000000 70 75 74 73 20 22 48 65 6c 6c 6f 22 0a |puts "Hello".|
0000000d

Similar output can be achieved via Far Manager: select the file, press F3, and then toggle hex view with F4:

 [image: Raw contents of app.rb (Far Manager view)]
 Raw contents of app.rb (Far Manager view)

But dealing with raw cat command is hard. Once you pressed Enter, there is no way to go back and make changes. You can’t use left and right arrow keys to navigate your program. And nobody is using cat command for writing programs (except maybe for the purpose of showing your excellence on interview).

There are many convenient code editors that were designed to edit code and help a programmer. If editor is simple, it can be used for both editing text and code. Nano is one of the easiest code/text editors and installed on almost any operating system (except Windows):

$ nano app.rb

 [image: Nano editor, works right in your terminal]
 Nano editor, works right in your terminal

Footer has hints for available commands. For example, you can quit Nano by pressing Ctrl+X. There are much more advanced code editors like Vim and Emacs. Unfortunately, more advanced editors require more time to capture their functionality. You can find many “holy wars” on Internet about picking the right code editor. However, picking the right editor itself won’t help you acquiring computer language knowledge and programming skills. So it’s not very important which code editor you’ll be using.

Code editors like cat, nano, vim, emacs are all console editors. It means you run the command from your terminal and you don’t need to quit the terminal. It’s just a text on your screen. They’re quite useful when you work with remote machines. For example, you’ve logged in to the server and want to edit or view some files. You can do that without quitting the terminal.

But on your own machine you’re free to run any programs. And there are some code editors with graphic elements (like icons, different font styles, colors, and so on). Often these editors offer much more useful features (like live error checking, debugging, bookmarks) and make the life of a programmer much easier:

 	
VsCode, Visual Studio Code (don’t get confused with “Visual Studio”)

 	
RubyMine (requires subscription)

 	Atom

 	
Sublime Text (fixed price)

RubyMine is not just a code editor, but Interactive Development Environment (IDE). Comprehensive tool for writing code with many features. Beginners can pick any of these editors. RubyMine offers great support on first steps, offering hints and tips. Other editors can be configured to offer this kind of support as well. However, we won’t be covering this topic in our book.

At the very beginning it’s worth using built-in code/text editor in your file manager. For example, you can create new file in Far Manager with Shift+F4 combination. At later steps feel free to use any code editor you like.

Also, you should be able to run your code editors from console:

$ code . # Will open VsCode for current directory
$ code ~/tmp # Will open VsCode for tmp directory

But sometimes you need to integrate editor with your shell. In VsCode it’s achievable with:

 	Cmd+P combination (or Ctrl+P on Linux/Windows). It will open up navigation bar.

 	Type > in navigation bar to switch from file navigation to settings navigation.

 	Type shell and select “Install code in path” menu item.

 [image: Integrating VsCode with shell]
 Integrating VsCode with shell

Atom editor can be configured the similar way, and can be executed from shell with atom command:

$ atom .

 Exercise

 Install text editor (VsCode if you don’t have any preference). Try to create few files, like 1.txt, 2.txt, 3.txt and so on. In every file put the name of a person you know. Check your results with file manager. Delete files by using text editor UI.

Your First Program

In fact, your first program was 1+1. But this time let’s create a file with the name app.rb in your code editor with the following content:

 Your first program
puts "I would hug you, but I’m just a text"

Save the file and run Ruby interpreter with parameter app.rb:

$ ruby app.rb
I would hug you, but I’m just a text

You can also type ruby app.rb in your file manager, but when you press Enter, result will disappear! The subtlety is that program runs, “works off”, and quits. Control gets returned back to terminal or file manager. That’s why we do not see result on the screen when you run a program from file manager. But we can toggle the output screen (hide panels) by clicking Ctrl+O.

Congratulations! You’ve written something meaningful and saved your program to disk. Let’s improve it a little bit:

 Print a text and wait for Enter key
puts "I would hug you, but I’m just a text"
gets

In the program above we put a string on the screen and awaiting for the user input. Not just for any input, but for the whole string. Instruction gets stands for “get string”, and string is not a character, it’s a sequence of characters. That’s why we can type any letters and must press Enter. Or we can press Enter without typing any letters, in this case gets will return empty string (we’ll discuss return values later).

Run the program above and see what happens. If you run the program from file manager, result won’t “disappear”, because Ruby will be waiting for your input.

Now, let’s write a super simple program to learn a foreign language. Let’s take three random Spanish words: la pelota (ball), la puerta (door), la paz (peace). Imagine that you need to learn these words. How would you do that using a computer? One of the ways is to emulate a teacher. The computer will be the teacher and ask questions, and we will respond by spelling out the translation:

 Foreign language teacher program
1 puts "How to translate la pelota?"
2 gets
3 puts "How to translate la puerta?"
4 gets
5 puts "How to translate la paz?"
6 gets

Try to run this program and… it works! Not very convenient, but it is something. There are no any answers, but we have questions. And result is great, only by using puts and gets we’ve just built something useful! If you’re playing guitar, the following program is demonstration of how you can use your Ruby knowledge to teach yourself notes on a first string on fretboard:

 Guitar teacher program
1 puts "Say a note on a 0 fret?" # The right answer is E
2 gets
3 puts "Say a note on a 1st fret?" # The right answer is F
4 gets
5 puts "Say a note on a 2nd fret?" # The right answer is F#
6 gets
7 puts "Say a note on a 3rd fret?" # G
8 gets
9 # ...

And so on up to 12th fret (E F F# G G# A A# B C C# D D# E).

Few notes about the listing above. As you may have already noticed, there are comments on some lines. Comments start with pound sign # (or “hash”). You can leave as many comments as you want, including comments on the new line. Comments will not affect behavior of your program.

 Exercise 1

 Finish the program above if you understand music theory. If you don’t, create a program to learn 10 foreign words. Try to add some comments to your program so you can understand it better.

Another note is about encoding. Since our program has only characters from A to Z, there is no need to specify any encoding. However, if you want to use Chinese, Russian, etc. characters, you have two options:

 	If you’re on Windows, first line of your program should be # encoding: cp866 (“cp866” is the name of encoding). Also, the file should be saved using this encoding.

 	You don’t need to do anything if you’re on MacOS or Linux

In other words, you may face encoding problems on Windows. There will be other minor issues over the course of this book if you’re using Windows. There is a slim to zero chance to be a solid and productive Ruby programmer with this operating system (if you’re not using workarounds like virtual machines).

It doesn’t mean that Windows operating system sucks, not at all. The only reason is that some gem authors (gem is a small Ruby module, to be covered later in this book) do not test their code on Windows. Don’t blame them, because historically Ruby community and infrastructure evolved around free and open source tools, and Linux was the number one platform for Ruby. MacOS was the second, because it supports POSIX (Portable Operating System Interface), and all existing tools were somewhat compatible. Nobody was thinking about Windows, and to be honest Microsoft didn’t pay too much attention to open source when it all started.

So we highly recommend switching to a free operating system like Linux Mint Cinnamon or MacOS.

 Exercise 2

 If you’re running Windows, make an attempt to download and install VirtualBox (free) or VMWare Workstation (requires a license). With this software you’ll be able to run Linux inside of your Windows box. You will need to install Linux Mint Cinnamon 64-bit. Try to open up the terminal, install Midnight Commander, and write your first program in Linux. Do not expect immediate success, it might take a couple of tries the first time. If it doesn’t work, feel free to come back to this topic later. Important step here is to identify if your computer hardware supports virtualization. If not, you’ll probably need to install Linux instead of Windows (recommended) or upgrade your computer.

Variables in Ruby

A lot of stuff is going on. We hope you’re not feeling overwhelmed with information about the right way to run your Ruby program. Let’s jump to something fun.

Variables. Variable is a place inside of your computer’s memory where we can store a value. It’s like a cell in a honeycomb. You may be wondering, why do we need to store a value? Well, because we can read it later, or we can modify it later, it’s convenient.

But we are not obligated to modify the values of our variables. Sometimes we can introduce some variables to improve readability of our program. Often such variables named as constants, because we don’t modify them! That’s why in modern JavaScript programming language we have two keywords: let to declare variable, and const to introduce a constant, something you can’t change in the future. But it’s much easier in Ruby.

Let’s try to define (declare, create, make) a simple variable:

1 puts "Your age?"
2 age = gets
3 puts "Your age is"
4 puts age

Program above will ask for the age. When age was provided, it will print out the age back to the screen:

Your age?
20
Your age is
20

The number answered in the program was stored in a variable with the name age. We could name it any way we want, for example a. But in this case line 4 will look like puts a. When it comes to naming variables, there are some important naming conventions out there, you can find them by typing “naming conventions for variables in Ruby” in your favorite search engine (we hope you’re using DuckDuckGo).

But Ruby and JavaScript you’ll see three common naming conventions:

 	Snake case. Underscore "_" between words. Examples:

 client_age
 user_password
 user_password_expiration_date

 Snake case is used in Ruby and often in databases for tables and column names.

 	Camel case. Word starts with lowercase letter, words are separated by the following uppercase letter. For example:

 clientAge
 userPassword
 userPasswordExpirationDate

 Camel case is often used in JavaScript and statically typed languages (Golang, Java, etc.)

 	Kebab case. Words are separated by hyphen. For example:

 client-age
 user-password
 user-password-expiration-date

 Kebab case is often used in HTML. For example:

 <input type="text" name="login" data-error-highlight-color="red">

We need to remember only the first naming convention at the moment, because it’s used in Ruby: if variable has multiple words, use underscore. It should be noted that ideally variable should be named by using one word only. Two or more words is usually indicator of too broad context, but it’s out of topic for this book. Programmers agree that sometimes naming variables isn’t something easy:

 There are only two hard things in Computer Science: cache invalidation and naming things.

 – Phil Karlton

If you came up with variable name which is too long, don’t try to artificially lower the character count (for example, by renaming client_password_expiration_date to cped). At this stage, leave it as it is, and get back to your code later to see if you can do any refactoring (code improvement).

In addition to naming conventions, there are some variable naming rules that come from Ruby language itself: variables should start with letter and must contain only alphanumeric characters or underscore.

String Addition and Multiplication

Let’s look at the program from previous chapter. Can we do better?

1 puts "Your age?"
2 age = gets
3 puts "Your age is"
4 puts age

We can replace line 3 and 4 with a single line. For example:

1 puts "Your age?"
2 age = gets
3 puts "Your age is" + age

Result:

Your age?
30
Your age is30

Something is missing, isn’t it? That’s right, the space is missing between words “is” and “30”. As you can see from example above, we can join two strings. From a purely math point of view adding up two strings is nonsense, but strings do concatenate (join) in computer memory. Run the following code in REPL or as a program:

"My name is " + "Roman" + " and my age is " + "30"

Result:

My name is Roman and my age is 30

Now try to add these two numbers, both represented as a string, try to guess what would be the answer?

"100" + "500"

Spoiler: answer is “100500”. In other words, if number is represented as a string (comes in quotes), Ruby will treat this number as a string. But if we just type 100 + 500 (without quotes), produced result will be 600.

It turns out that you can also multiply string by a number:

"10" * 5
 => "1010101010"

Result is "10" repeated 5 times. If we leave space after 10, result will be represented in a more illustrative way:

"10 " * 5
 => "10 10 10 10 10 "

As it was mentioned before, "10 " is just a string, and we can use any string we want:

"I'm cool! " * 10
 => "I'm cool! I'm cool! I'm cool! I'm cool! I'm cool! I'm cool! I'm co\
ol! I'm cool! I'm cool! I'm cool! "

But in practice, developers often multiply a single character by 80 (legacy text screen width). We can multiply strings like "*", "=", or "-" by 80 to logically separate results from input. For example:

puts "Your age?"
age = gets
puts "=" * 80
puts "Your age is " + age

Result:

Your age?
30
==
Your age is 30

Part II. Essentials

Data Types

In previous chapters we had figured out how to join two strings with +. Also, we know that we can multiply string by a number. While experimenting we found that there are at least two types of data: strings and numbers (integers). And the number itself, but in quotes, is a string. Let’s see at how Ruby understands what is a number and what is a string:

$ irb
> "blabla".class
 => String
> "123".class
 => String
> 123.class
 => Integer

Documentation says that everything is an object in Ruby. So the result of any operation is object. Every object “implements method” called class. Expression “implements method” means that some programmer, developer of Ruby language, made a tiny sub-program (or sub-routine) that we can run if we know its name. To call this small program of any object we should type dot and the name of this program.

In our case above the name of this sub-program (or “method”, “function”) is class. By the way, don’t get confused. There are two things: 1) method class we call above by specifying dot at the beginning 2) class keyword, used to define a class of objects – we’ll cover it later in this book. If real-life objects could have methods, we would see something like this:

Apple.slice
Apple.amount_of_seeds
Apple.amount_of_worms
River.water_temperature
River.amount_of_fish

And so on. So that’s how every object in Ruby has method class:

Object.class

In our experiment at the beginning of this chapter, 123 (without quotes) and "blabla" are objects. Type of 123 is Integer. And type of "blabla" is String. Type of any object can be obtained by calling .class

Of course, every object has documentation with the list of supported methods. We encourage you to lookup documentation every time you have questions, and every time you work with this or another type. Documentation examples for different object types:

 	Object

 	String

 	Integer

Documentation is quite easy to find if you search for “ruby object docs” or “ruby string docs”. Documentation covers everything we can do with an object, and it’s a “gold mine” of information, you shouldn’t ignore it, it should be your best friend. Programmer who doesn’t like or lazy about looking up documentation will hardly ever succeed.

Useful links:

 	Documentation example for Object.class

 	
Documentation example about multiplying string by a number – don’t miss out interesting example of multiplying string by a zero (result is empty string).

There are also many other types of objects in Ruby, most important of them will be covered in the next chapters.

 Exercise

 Open up your REPL and find out the data type for "". What’s the data type for 0 (zero)? What’s the data type for -1? What is the data type for approximate Pi-number: 3.14?

 Exercise

 We know that .class method returns some sort of result for any object. REPL reads, evaluates and prints this result. But if everything is an object, it means that result is an object too. But does this object has a type? It should. What type of result method .class will return? Try to find this out by putting .class right after 123.class this way: 123.class.class. First part of this expression will return result. And the second part will return type of this result.

Everything Is An Object (Proof)

We know that 123.class returns Integer, and "blabla".class returns String. But any object also has is_a? method, which returns true or false, depending on parameter you’re passing to this method:

$ irb
> 123.is_a?(Integer)
 => true

In example above we’re calling is_a? method for 123 object and passing parameter Integer. Method returns true. In other words, 123 is a type of Integer. The similar way we can test if 123 is String:

$ irb
> 123.is_a?(String)
 => false

Answer is false, 123 is not String, but "123" (in quotes) is String:

$ irb
> "123".is_a?(String)
 => true
> "blabla".is_a?(String)
 => true

By calling is_a? we’re kinda asking question in plain English “Is this a… ?”, “Is this object a string?”

We’ve confirmed that 123 is Integer, and "blabla" is String. Now let’s make sure integers and strings are objects:

$ irb
> 123.is_a?(Object)
 => true
> "blabla".is_a?(Object)
 => true

Great, numbers and strings are objects in Ruby! In other words, 123 is Integer and Object at the same time. And "blabla" is String and Object at the same time. In other words, there can be multiple objects, and objects can implement multiple types.

We’ll discuss later in this book what object really is. We don’t need to remember is_a? method at the moment, how to call this method, and what it returns (in computer literature it is called “method signature”, sometimes API - Application Program Interface). But it’s worth remembering .class, so you can any time check the type of any object (or the type of result of some operation).

Type Casting (type conversion)

Let’s write a program to calculate your age in months. We’ll ask for the age in years, and our program will do calculation by multiplying this number by 12. Based on our knowledge from previous chapters we should have something like this:

 (Warning: incorrect program to calculate age in months)
1 puts "Your age?"
2 age = gets
3 age_months = age * 12
4 puts "Your age is " + age_months

What’s happening here? We defined age_months variable, which represents the age in years multiplied by 12. It should work, but something is not right. Can you spot the mistake? Here is the result of running this program:

Your age?
30
Your age is 30
30
30
30
30
30
30
30
30
30
30
30

Uh-oh! There definitely must be some mistake. It turns out that we multiply String by a number (Integer). Try to run this program again and type blabla:

Your age?
blabla
Your age is blabla
blabla
blabla
blabla
blabla
blabla
blabla
blabla
blabla
blabla
blabla
blabla

The type of age variable is String. And when we multiply String by Integer, the result is the very long string (short string of “blabla” repeated 12 times). To fix this program we should multiply Integer by Integer. We already did it before, when had calculated the number of milliseconds in a day, everything was correct. This time we just need to convert (or “cast”) type String into Integer.

How we can do that? Quick documentation search for gets function (or “method”, do you remember that words “function” and “method” are synonyms?) shows that this function returns results with a type of String. And it’s understandable, because gets is “get string”. What we need now is “get integer” function. And if we believe in Ruby’s principle of a least surprise, it should be geti, let’s check that:

$ irb
geti
NameError (undefined local variable or method `geti' for main:Object
Did you mean? gets)

Oops! It didn’t work. But it was a nice try. There is no such method geti, but something tells it will be implemented one day. Let’s think what else we can do to fix our program?

There is one way to convert string into a number in JavaScript language (and every Ruby programmer should think about JavaScript a little bit). The trick is to multiply string by 1 (node below is JavaScript interpreter, it works if Node.js is installed on your computer):

$ node
> "123" * 1
123

Can we do the same trick in Ruby? Let’s try in REPL:

> "123" * 1
 => "123"
> ("123" * 1).class
 => String

No luck, it’s still String. But there should be other ways. Open up “String” class documentation to see the whole bunch of methods starting with to. There is to_i among these methods, which means “to Integer”, and it’s exactly what we need. to_i is not something obvious, but in this case Ruby developers wanted to stay lean, and we have to_i instead of to_integer.

So, to convert a string into number we should use to_i function:

> "123".to_i
 => 123
> "123".to_i.class
 => Integer

By the way, there is similar method with the name to_s - “to string”, with this method you can convert Integer (and other types) into String.

Let’s try to rewrite our program to calculate age in months:

 Almost correct program to calculate age in months
1 puts "Your age?"
2 age = gets
3 age_months = age.to_i * 12
4 puts "Your age is " + age_months

Run it one more time and… Error again!

app.rb:4:in `+': no implicit conversion of Integer into String (TypeErr\
or)

As you can see, Ruby shows that error is happening in file app.rb on the line 4. Error says that we can’t sum up two different types: String and Integer. Let’s go ahead and fix it, using type casting for the second time:

 Correct program to calculate age in months
1 puts "Your age?"
2 age = gets
3 age_months = age.to_i * 12
4 puts "Your age is " + age_months.to_s

Try to run:

$ ruby app.rb
Your age?
30
Your age is 360

Finally it works! We did a great job and used type casting two times, on lines 3 and 4. There are some other ways to write this program, and often it’s just up to a programmer to decide which approach is better. For example, we can do type casting on line 2, without touching line 3 (still keeping type casting on line 4):

1 puts "Your age?"
2 age = gets.to_i
3 age_months = age * 12
4 puts "Your age is " + age_months.to_s

Or we can redefine variable age by adding one more line:

1 puts "Your age?"
2 age = gets
3 age = age.to_i
4 age_months = age * 12
5 puts "Your age is " + age_months.to_s

Or we can do the same trick, but without age_months variable. Try do it yourself.

Fractional Numbers

Consider some popular type castings that we’re already familiar with. One or another object may have one or more of the following methods:

 	
.to_i - convert something to Integer (for example, convert string to a number)

 	
.to_s - convert something to String (for example, number to string)

 	
.to_f - convert something to fraction (for example, convert string to fraction)

Run REPL to see what the fraction is:

$ irb
> 3.14.class
 => Float

But… wait! It’s “Float”, not fraction! Why is that? In computer literature term floating point is derived from the fact that there is no fixed number of digits before and after the decimal point. For example, it can be 3.14 (1+2 digits) or 23.14069 (2+5 digits). That is, the decimal point can “float” to left and right. So fraction with “floating point” is represented by the class called “Float”.

Also, we have right to represent any integer as a float:

$ irb
> 123.class
 => Integer
> 123.0.class
 => Float

But why do we have Float type? For the same reason we have fractions, to do “accurate enough” math calculations. For precise calculations we must use type BigDecimal.

Let’s jump into differences between Float and BigDecimal real quick, so you understand it from the very beginning.

From Float documentation:

 Float objects represent inexact real numbers using the native architecture’s double-precision floating point representation

From BigDecimal documentation:

 BigDecimal provides similar support for very large or very accurate floating point numbers… Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect…

What? “Correct answers people expect”? Isn’t that something computers were built for? Why there is a need to emphasize that? The answer is easy.

Float documentation says “inexact real numbers” and “native architecture”. It means that all operations are performed natively on your computer’s CPU (Central Processor Unit, the main chip), which has capacity of 32 or 64 bits. These operations can be performed very quick, but 64 bits is just 8 bytes like “abcdefgh”, and that’s it!

Imagine we want to land Curiosity on Mars and we need to perform some calculations with Pi constant to certain level of precision, like 3.141592653589793238462643383279502884197169399375105820974944592307816406286… But this value will not fit into 64 bits, it’s well over 8 bytes! So it can’t be calculated “natively” on CPU. If you try it, the value will be rounded to 3.141592653589793, and Curiosity spacecraft can land somewhere else.

But if you really need this type of precision, you still can do Curiosity calculations with Ruby, but you should use BigDecimal. In this case values will be stored in RAM (Random Access Memory) and calculations will be much slower, because this time your CPU will need to read and write from RAM, instead of just using one of its internal registers.

In other words, when you need “correct answers people expect”, use BigDecimal. If you’re okay with “inexact real numbers using the native architecture”, use Float. We don’t need to be very precise in our book, so we’ll use Float. Let’s write a program to calculate 30% tax for our salary:

 Program to calculate 30% tax
1 puts "Your salary?"
2 salary = gets.to_i
3 tax_rate = 0.3
4 puts "Tax:"
5 puts salary * tax_rate

Try to run this program and see how it works.

String Interpolation

Readability of a program can be significantly improved by taking advantage of string interpolation:

 String interpolation example
1 puts "Your age?"
2 age = gets.to_i
3 age_months = age * 12
4 puts "Your age is #{age_months}"

There is no need for type casting on line 4. Every Object in Ruby can be converted to a string (to_s method is responsible for that). That’s why there is a common syntax for every type, and it’s called “interpolation”.

The trick is the expression gets evaluated inside of curly braces. We have very simple expression inside of curly braces, just age_months, but it can be any Ruby code (for example, 2 + 2). And at the end final result gets converted to a string. Look at another example:

1 puts "Your age?"
2 age = gets.to_i
3 puts "Your age is #{age * 12}"

Only 3 lines of code! There is no need for extra variable, because we can evaluate expression right inside of curly braces, result will be the same.

At first glance, there is little improvement. Even old JavaScript syntax allows to use + for strings and numbers:

 String concatenation in old JavaScript
$ node
> "Your age is " + 30 * 12
'Your age is 360'

But newer JavaScript (ES6+) also has string interpolation syntax. There was need for that, but many programmers found that it simplifies a program, and adds mode readability:

 String interpolation in newer JavaScript (ES6)
$ node
> `Your age is ${30 * 12}`
'Your age is 360'
>

Keep in mind that for interpolation in JavaScript you’ll need backticks, and in Ruby double quotes.

Interpolation is quite useful when you deal with multiple variables. For example:

 1 puts "Your name?"
 2 name = gets
 3
 4 puts "Your age?"
 5 age = gets.to_i
 6
 7 puts "Your city?"
 8 city = gets
 9
10 puts "=" * 80
11 puts "You are #{name}, your age in months is #{age * 12}, and you are f\
12 rom #{city}"

Note: example above has 12 lines, but the last line was too long for Leanpub book, and was wrapped automatically. In your editor you can remove \ sign and continue on line 11.

Result:

Your name?
Roman
Your age?
30
Your city?
San Francisco
==
You are Roman
, your age in months is 360, and you are from San Francisco

Almost works, there are some quirks though. We used string interpolation on the last line, and were able to output all the information with only one line. However, something is not right. Do you see new line right after “Roman”? What is happening here?

The thing is gets function returns a string with special character \n. This character is not visible on the screen, but when your terminal sees that, it moves the caret to the next (new) line. This special character is called “new line character”. It’s only one byte in standard character table (ASCII) with position number 10.

Let’s prove that gets returns a string with new line character at the end. Run this in your REPL:

$ irb
> x = gets
Hi
 => "Hi\n"
> x.class
 => String
> x.size
 => 3

We’ve assigned a value to variable x, and this value comes from gets (you need to type “Hi”). As we already know, REPL prints the result of operation, so we see Hi\n. So it says there is a new line character at the end of this string. Then we check the type of this object with .class, and it’s String. After that we use .size to find out the length of this string, and it shows 3 (and it makes sense because we touched our keyboard exactly three times: one time for letter “H”, second time for letter “i”, and then we pressed “Enter”). So the code for “Enter” key is still there.

When we did interpolation in our program above, new line character was there as well. That’s why our output was misaligned. Let’s fix our program:

 1 puts "Your name?"
 2 name = gets.chomp
 3
 4 puts "Your age?"
 5 age = gets.to_i
 6
 7 puts "Your city?"
 8 city = gets.chomp
 9
10 puts "=" * 80
11 puts "You are #{name}, your age in months is #{age * 12}, and you are f\
12 rom #{city}"

Result:

$ ruby app.rb
Your name?
Roman
Your age?
30
Your city?
San Francisco
==
You are Roman, your age in months is 360, and you are from San Francisco

It works! We used chomp method for String class to remove new line characters from the end.

It’s important to remember that interpolation only works with double quotes. Single quotes like ' can be used in Ruby as well, but interpolation is not supported intentionally for single quotes. Moreover, some tools for code analysis (like Rubocop) will complain about double quotes without interpolation inside. The rule of thumb here is to use single quotes when you don’t need interpolation, and to use double quotes when you actually need string interpolation.

 Exercise 1

 Find and read documentation for chomp and size methods for String class.

 Exercise 2

 Write a program to calculate your average daily salary. User should be able to type annual income, and program should calculate daily salary. Modify the program so it also calculates monthly salary.

Bang!

Another interesting challenge we should tackle is “bang”, “exclamation mark”, or just ! at the end of some method. Let’s look at Ruby program below (if you’re using non-English characters on Windows, you may have some difficulties with “downcase”):

1 x = 'I AM COOL'
2 x = x.downcase
3 puts x

Note that text is “I AM COOL”, not “I’M COOL” - you can do that too, but keep it in double quotes (because this phrase contains apostrophe).

Result:

$ ruby app.rb
i am cool

We defined variable with value “I AM COOL”, all capital letters. On the second line we redefined the variable and assigned new value to it, the result of x.downcase operation. Since initially x is String, we have the right to call any method for String class. And we’re calling “downcase” method for class String. This method translates upper case letters to lower case, and we see this result on the screen.

But the most interesting part is on line 2: x = x.downcase. There is alternative syntax for that in Ruby, and instead of reassigning variable, we can just type x.downcase!. It looks similar, but with alternative syntax Ruby will understand that it needs to perform operation on the object itself. In other words, line 2 has two parts:

 	x.downcase

 	
x = result of operation (or y = result of operation, we can use any other variable here)

And with x.downcase! it’s only one part: do downcase operation on this object x.

But not every method supports such functionality, in every single case you will need to lookup documentation. Also, bang-methods in Ruby are considered dangerous, because these methods always change the state of the object. But why it’s dangerous? - curious reader will ask - We are just changing the value of this particular object, and that’s it! But it’s not that simple.

Look at the following program. No tricks here, just try to guess what will be printed on the screen:

1 a = 'HI'
2 b = a
3 a = 'xxx'
4 puts b

We have two variables: a and b. We assign the value of a to variable b on line 2. In other words, b equals to HI now. On line 3 we replace the value of variable a with xxx (because we can, there is no too much sense for that now, but you’ll understand later why we did that). What will be printed on the screen? Nothing out of the ordinary, just HI.

Now let’s modify this program a little bit, everything is the same, except line 3:

1 a = 'HI'
2 b = a
3 a.downcase!
4 puts b

Note that we didn’t touch variable b. But we did “dangerous operation” with a. What will be printed on the screen? There is a trick here. It turns out that dangerous operation will affect variable b and change its value. Try it yourself and you’ll see hi on the screen (instead of HI in previous example).

Explanation is about how Ruby works internally. There is no need for a beginner to know all the details, but it’s worth mentioning that every variable keeps an address (reference, pointer) to the actual data. This address is a pointer to location in computer memory, and the value of this pointer is something like 123456789. But the actual data is not address, it can be found by using this address.

It’s similar to apartments house with multiple doorbells. New variable is similar to a doorbell that leads to this or another apartment. Doorbell is not apartment itself, but it’s associated with it. When we assign variable b = a we just say that doorbell b now leads to the same apartment as doorbell a. These doorbells don’t know about each other. But when we do dangerous operation, we change the state of the apartment, its internals. So both doorbells remain the same, they will even keep the same numbers on them, but now they will lead to apartment with modified state.

There is no any magic in bang-methods. In the next chapters we will shed some light on how to create your own classes and objects, and you’ll be able to make your own bang-methods. Some popular web frameworks (like Rails) have their own dangerous methods, for example save! (it saves an object to a database). And exclamation mark implies that this method is dangerous:

 	It changes the state of the object, so all references now will point to modified object.

 	If something goes wrong, this method will generate exception (we’ll cover this topic later in this book).

 Exercise

 Find out if there are any other bang methods for String class.

Blocks

Ruby has its own definition of code block. Usually when we look at a program, we can visually separate blocks or chunks of code. For example, first 3 lines are responsible for user input, next 5 lines for output, and so on. Even though we can call these lines blocks of code from purely visual point of view, there are code blocks in Ruby, and they have special meaning.

Code block in Ruby is a part of a program that we pass somewhere (to function), so it will get executed under some circumstances. One wonders, why do we need to pass it while we can execute the block right away? Actually passing a code block to a function makes sense in the following cases:

 	This code needs to be executed certain amount of times. For example, we want to show the message “Boston Red Sox Are World Champions!” 10 times. Instead of just using puts ten times, we can take advantage of Ruby code blocks and pass the block to some function (we’ll discover how to do it later in this chapter). In this case program can be written in one line instead of ten.

 	Depending on some conditions code can be executed or not. And sometimes decision isn’t up to a programmer, there could be some circumstances. In other words, if you see a code block, it doesn’t mean that it will be executed for sure.

Syntax for code blocks in Ruby can be done in two ways:

 	If block is large and it takes multiple lines, you should use keywords do and end.

 	If it’s only one line, you can use curly braces: { and }

If you use this or another syntax, result will be the same. Curly braces work great for simple expressions. And between do and end we can keep as many lines as we want. Keep in mind that usually it’s not recommended to have huge code blocks.

Let’s try to use code blocks and see what happens:

$ irb
> 10.times { puts 'Boston Red Sox Are World Champions!' }
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
Boston Red Sox Are World Champions!
...

Let’s take a closer look. What is 10? Which class we’re dealing with? Yes, we’re already familiar with this class, it is Integer. Lookup documentation for Integer class and scroll down to “times” method. We can see that method “accepts” block. Actually, you can pass a block to any method, even to the method that doesn’t accept any block, because it’s up to the method to execute this block or not. Method “times” always executes the block.

So what do we have now? We have object 10, and this object “knows” about its state, internally there is a number 10 somewhere. There is method “times” implemented by Ruby language developer, and this method executes this block 10 times.

Remember that you can pass a block to any method, then it’s just up to the method what to do with the block. And if you want to know what is going to happen, you should lookup documentation. For example, the following code is perfectly valid:

gets { puts 'OK' }

There won’t be any error, but this program makes no sense! Method “gets” doesn’t know what to do with a block, and it will be ignored.

Here is how you can pass multi-line block to “times” method:

10.times do
 puts "Boston Red Sox Are World Champions!"
 puts "(and New York Yankees too)"
end

Run this program on your computer and see what happens. And here is outline of what is happening above:

 	There is object 10 of class Integer

 	We’re calling method “times” on this object

 	We’re passing the code block to method “times”. This code block has 2 lines.

Author’s story: when I was about 8, my father showed me the first program written with BASIC language:

10 PRINT "Roman ";
20 GOTO 10

10 and 20 are line numbers, and there is infinite loop. Program prints the name and does this again, and again. Because there is no line feed, entire screen fills with exactly the same string, and visually all of it shifts to the left. You can do the same trick with Ruby:

loop do
 print "Roman "
end

Program above has infinite loop. print method is similar to puts, but the only difference is that there is no line feed (no new line).

Blocks With Parameters

Object that executes your block can pass a parameter. It depends on implementation, some objects do pass parameters to your blocks, others don’t. It’s up to a programmer if you want to use this parameter or want to ignore it. So far, we’ve been always ignoring this information, but technically parameter was always there. Let’s see how we can use it.

In case below we have object of 24 with type Integer. Let’s write a program called “Piggy Bank”, this piggy bank will accept 500 dollars every month, and will save this money. What we want to know is how much money it has after 24 months.

 Piggy Bank program, version 1
1 sum = 0
2
3 24.times do |n|
4 sum = sum + 500
5 puts "Month #{n}, piggy bank has #{sum} dollars"
6 end

Result:

Month 0, piggy bank has 500 dollars
Month 1, piggy bank has 1000 dollars
Month 2, piggy bank has 1500 dollars
Month 3, piggy bank has 2000 dollars
...
Month 22, piggy bank has 11500 dollars
Month 23, piggy bank has 12000 dollars

Well, result was little bit unpredictable. For some reason the count starts from zero: “Month 0”. Actually, it was expected, and the only confusing part is the variable naming. Usually “n” means “natural number”, and natural numbers can be used for counting2 (one apple, two apples, three apples, …). But in our case n can be 0, and it can confuse some programmers.

Usually one uses n, m, etc. for natural numbers. And if we’re talking about index, it starts with zero, and the more appropriate name for variable will be i, j, and so on. It’s not a mistake if you named variable incorrectly (and definition of correctness is only up to you), but the code has two readers: computer and human. And human is not only you, but also somebody else: your colleagues, friends, random people online who came across your published code, and also the future you. That’s why you need to write the most predictable code you can. Moreover, Ruby is about least surprise, and community expects the same from other Ruby developers.

With this in mind we can rewrite the program:

 Piggy Bank program, version 2
1 sum = 0
2
3 24.times do |i|
4 sum = sum + 500
5 puts "Month #{i}, piggy bank has #{sum} dollars"
6 end

But renaming variable is not enough, months still start from 0:

Month 0, piggy bank has 500 dollars
...

We don’t count apples starting from zero, and practically speaking there is no too much sense in counting months starting from zero. So let’s take advantage of string interpolation and replace expression i with i + 1:

 Piggy Bank program, version 3
1 sum = 0
2
3 24.times do |i|
4 sum = sum + 500
5 puts "Month #{i + 1}, piggy bank has #{sum} dollars"
6 end

Now it works as expected:

Month 1, piggy bank has 500 dollars
...
Month 24, piggy bank has 12000 dollars

For the sake of experiment imagine you have not just a piggy bank, but “Magic Piggy Bank, model 10”! It will generate the revenue of 10% every month for any money you put in:

 Magic Piggy Bank program
1 sum = 0
2
3 24.times do |i|
4 sum = sum + 500 + sum * 0.1
5 puts "Month #{i + 1}, magic piggy bank has #{sum}"
6 end

So the improvement is only to add “+ sum * 0.1” on line 4, and here is result:

Month 1, magic piggy bank has 500.0
Month 2, magic piggy bank has 1050.0
Month 3, magic piggy bank has 1655.0
Month 4, magic piggy bank has 2320.5
...
Month 23, magic piggy bank has 39771.512162761865
Month 24, magic piggy bank has 44248.66337903805

In other words, Magic Piggy Bank will generate $44248 instead of just saved $12000.

 Exercise 1

 You’re planning to buy a house for $500.000 and your employer credit union is offering zero percent interest rate for 30 years. To pay off this house you need to pay $16.666 every year (it can be calculated by dividing $500K by 30). Write a program which will show the amount left to pay for each year.

 Exercise 2

 Modify the program from exercise 1 to meet the following criteria. Your interest rate is 4% a year for remaining amount. For every year calculate how much interest in dollars you need to pay for using bank’s money.

Methods Of Integer Class

There is no too much methods for Integer class, and it’s worth looking at documentation to get a better understanding of what’s there available for a programmer. However, we’ll take a close look to some of them.

even? and odd?

even? or odd? – two methods of Integer class, method names “come” with question mark at the end.

We can check any Integer if it’s even or odd using two methods above. Since question mark at the end of the method comes up for the first time in this book, let’s see why it’s there.

Question mark just indicates that method returns type Boolean. Well, technically there is no any Boolean in Ruby, we’ve just introduced it for the purpose of this book. There are two actual types you will see: TrueClass and FalseClass. In other words, there is true and false keywords in Ruby language, and you can use these keywords (see examples below).

Something unambiguous in real life can be represented by true or false, usually these methods start with prefix “is_”. For example:

girlfriend.is_pregnant?

There is no any other options possible when you’re using boolean, it’s either true or false. Question mark is optional in Ruby language, but expected by community. It’s highly recommended to have “?” and the end of methods that return boolean value.

Let’s look at example:

$ irb
> 1.even?
false
> 1.odd?
true
> 2.even?
true
> 2.odd?
false
> 10 % 2 == 0 # our own implementation of "even?" method
true

The last line from our REPL dialog has two parts:

 	
10 % 2 - divide by two, and returns remainder (which will be 0 or 1)

 	
== 0 - comparison with zero, returns true or false

upto and downto

upto and downto methods of Integer class accept parameter and call provided block for certain amount of times. We’re already familiar with times method, which starts counting from zero. You can do the same with upto. For example:

> 3.times { |i| puts "I'm robot #{i}" }
I'm robot 0
I'm robot 1
I'm robot 2
...
> 0.upto(2) { |i| puts "I'm robot #{i}" }
I'm robot 0
I'm robot 1
I'm robot 2

The output is the same, but upto is more flexible, because it accepts parameter (2 in program above). With this parameter we can specify “from” and “to” values, like:

> 1000.upto(1002) { |i| puts "I'm robot #{i}" }
I'm robot 1000
I'm robot 1001
I'm robot 1002

downto is similar, but it counts backwards:

puts "Launching missiles..."
5.downto(1) { |i| puts "#{i} seconds left" }
puts "Boom!"

Result:

Launching missiles...
5 seconds left
4 seconds left
3 seconds left
2 seconds left
1 seconds left
Boom!

Well, of course you can do block with do...end and result will be the same:

puts "Launching missles..."
5.downto(0) do |i|
 puts "#{i} seconds left"
end
puts "Boom!"

 Exercise 1

 Put all numbers to the screen starting from 50 to 100.

 Exercise 2

 Put all numbers to the screen starting from 50 to 100 with parity next to the number. If number is even, print “true”, if it’s odd, print “false”.

Testing Variables And Branching

One of the foundations of any programming language is variable comparison (or variable testing). Depending on comparison result we can execute this or another part of a program. Example scenario: if age of the user is less than 18, ask for additional information or block access for this user.

There is a special vocabulary around this functionality, let’s take a closer look:

 	
Branching. It is implied that a program may have multiple branches, chunks of code, which can be executed if certain condition is met.

 	
Branch , block, code block – usually few lines of code which can get executed (or not) under certain conditions.

 	
Comparison, testing, test, “if statement”, condition – comparison itself, just checking if variable/value equals, or not equals, greater, less than, truthy, falsy, and so on. Experienced programmers often use word test, which basically means “testing the variable for certain value”. In Linux (MacOS, or POSIX-compatible) operating systems, one can get documentation about testing variables in shell (not Ruby):

 $ man test
 ...
 test - check file types and compare values

Later in this book we’ll cover very basic unit testing and create our own tests. Those will be also tests, but different kind of tests. Usually unit tests have multiple lines of code, and variable testing is something really easy, one-two lines of code.

Let’s see how variable comparison works:

1 puts 'Your age?'
2 age = gets.to_i
3 if age > 18
4 puts 'Access granted'
5 end

Result:

$ ruby app.rb
Your age?
20
Access granted

$ ruby app.rb
Your age?
10

We used “if” statement to compare variable age and value 18. If expression age > 18 is true, then our block gets executed. This block on line 4 has only one line, but we can add more if we want. If expression age > 18 is false, then block inside won’t get executed.

Usually we use two space indentation for all blocks. It won’t affect the behavior of a program, but will make it more readable. Also, tools for code analysis, like Rubocop, will give you a warning if you won’t follow this rule.

Now we’re getting closer to the data type we’ve discussed in previous chapters. Let’s see what it is with REPL:

$ irb
> true.class
 => TrueClass
> false.class
 => FalseClass
> true.is_a?(Boolean)
[ERROR]

Yes, we know that there is no single type for “true” and “false” in Ruby. There are TrueClass and FalseClass, but these classes have the same functionality, only the behavior is completely opposite. In C language “true” and “false” are represented as “int” (integer).

There are few ways to compare variables or values, here is the list of comparison operators:

 	
> - more than

 	
< - less than

 	
== - equals

 	
!= - not equals

 	
>= - more or equals

 	
<= - less or equals

 	
<=> - (only in Ruby) spaceship operator. Yes, it looks like space ship! We won’t be covering it, but it can be useful when you implement sorting. For example, you want to sort an array of animals by amount of ears each animal has.

 	
=== - (only JavaScript) strictly equals

 	
!== - (only JavaScript) strictly not equals

JavaScript is quite interesting, isn’t it? There are two types of comparisons: strict (===) and the more commonly used (==, also known as “type-converting comparison”). With less strict comparison we can compare two different types like strings and numbers, ducks and ostriches (they’re all birds), and so on:

$ node
> '5' == 5
true

But with strict comparison in JavaScript we can compare only objects of the same type:

$ node
> '5' === 5
false

Luckily, Ruby has only one type of comparison, and if you compare objects of different types, result will be always false:

$ irb
> '5' == 5
 => false

By the way, there was one intentional mistake in our program at the beginning on this chapter, can you spot it? We had age > 18 condition, when actually we need age >= 18, because we want to include users of age of 18 and want allow them to visit our imaginary website.

If condition is simple, we can use so-called one-liner. It’s the syntax that has two parts, but written as one line:

exit if age < 18

The code above looks like plain English sentence: “exit if age less than 18”, which makes our program even more readable. But in this case we just exit the program without any messages. If we want to add condition, our branch will take 2 lines (line 2 and line 3):

1 if age < 18
2 puts 'Access denied'
3 exit
4 end

Sometimes one-liners make sense and make your program more readable. Moreover, some of them look like plain English sentences, what could be easier?

 Exercise

 Fill out four tables below, try to figure out what would be the result (true or false) for each condition? Check your answers by executing expressions in REPL.

 Table 1:

 	Expression:
 	1 > 1
 	1 < 1
 	1 >= 2
 	1 == 1
 	1 != 1

 	Your answer:
 	
 	
 	
 	
 	

 Table 2:

 	Expression:
 	1 > 2
 	1 < 2
 	1 <= 2
 	1 == 2
 	1 != 2

 	Your answer:
 	
 	
 	
 	
 	

 Table 3:

 	Expression:
 	true > false
 	false > true
 	true == true

 	Your answer:
 	
 	
 	

 Table 4:

 	Expression:
 	false == false
 	false != true

 	Your answer:
 	
 	

Combining Conditions

We can combine conditions that go right after “if“-statement. Sometimes we need to perform multiple checks:

if ...
 puts ...
end

There are two ways of combining conditions: “AND” and “OR”. Each way can be represented by characters && (double ampersand) and || (double pipe). Example in REPL:

$ irb
> 1 == 1 && 2 == 2
 => true
> 1 == 5 && 2 == 2
 => false
> 1 == 5 || 2 == 2
 => true

Note that you can also use and keyword instead of && and or instead of ||, try it yourself with example above! However, tools like Rubocop do not recommend doing that: “The minimal added readability is just not worth the high probability of introducing subtle bugs”.

First example above is quite clear, we just check if “one equals one and two equals two”, result should be “true”.

Next condition is more interesting, first part checks if “one equals give”, which gives us “false”, and the second part checks if “two equals two”, which is “true”. The final condition sounds like “Is false and true gives true?”. It’s like asking two of your friends, first lies, and another is telling truth, will at the end you’ll give 100% truth? No, you won’t. In fact, the second condition will be never executed if first condition is false. Ruby interpreter will just save your resources, because you use &&.

Third condition is almost the same, there are two parts: “false” and “true”, but we’re using || (“or”) to combine these conditions. So here we’re interested in one OR another result. It’s like about buying something expensive for your own birthday, and you’re asking your friends for advice. If only one of them says “yes”, you gonna buy this new guitar you always wanted.

Let’s look at the real program:

puts 'Your age?'
age = gets.to_i
puts 'Do you agree to our terms and conditions (y/n)'
answer = gets.chomp.downcase
if age >= 18 && answer == 'y'
 puts 'Access granted'
end

Result:

$ ruby app.rb
Your age?
21
Do you agree to our terms and conditions (y/n)
n

$ ruby app.rb
Your age?
21
Do you agree to our terms and conditions (y/n)
y
Access granted

So one should type the age and agree to terms and conditions to visit our imaginary website. Then program checks if age is 18 or above, and if the user agrees to terms and conditions. If all these conditions have been met, user is granted access to the website. Note that “18 or above” was specified with >=. We could also do it another way:

if (age > 18 || age == 18) && answer == 'y'

 Exercise 1

 Try to figure out what would be the result (true or false) for each condition below? Check your answers by executing expressions in REPL.

Expression: 0 == 0 && 2 + 2 == 4

Your answer:

Expression: 1 == 2 && 2 == 1

Your answer:

Expression: 1 == 2 || 2 == 1

Your answer:

 Exercise 2

 Write a program that will ask for login and password. If login is “admin” and password is “12345”, it should print “Granted access to online banking”.

 Exercise 3

 You’re writing a program to sell a land on the Moon. Any land of less than 50 square meters costs $1000. Land from 50, but less than 100 square meters will cost $1500. And 100 square meters or above is $25 for one square meter. Write a program that asks width and length of the land user wants to buy, calculates the area, and shows the price of the land.

Some Useful Methods of Ruby Language

Do you remember this program from previous chapter:

puts 'Launching missiles...'
5.downto(0) do |i|
 puts "#{i} seconds left"
end
puts 'Boom!'

It just counts from five to zero and shows “Boom!” message. When user runs this program, he or she gets results instantly, because there is no any delay. It should count seconds, but all programs run as fast as it is possible, unless otherwise specified. Ruby doesn’t know that we count seconds, because “seconds left” is just a string. We can type any string we want. So we need to explicitly specify the real delay. Let’s do it now:

puts 'Launching missiles...'
5.downto(0) do |i|
 puts "#{i} seconds left"
 sleep 1
end
puts 'Boom!'

Method “sleep” takes one parameter - the number of seconds it should “sleep”. You can also specify fractional numbers. For example, 0.5 is half of a second (500 milliseconds).

Programmers usually don’t use “sleep” in real programs too often, because programs should execute as fast as it’s possible, right? But often we can use it while testing our software. For example, we can create the following test: “type login, password, click on the button, wait 10 seconds to see if everything’s okay”. But this approach is also questionable, and some programmers don’t like it, they say if test requires “sleep”, then it means something is fundamentally wrong. But from author’s experience it’s not always possible to get rid of “sleep”, sometimes it’s required.

Interesting detail is that there is no “sleep” in JavaScript, because this language is asynchronous by its nature. “Sleep” call (in all languages) is blocking call. In other words, it blocks the flow of the program for certain number of seconds. But this is exactly what JavaScript designers were trying to avoid, they didn’t want to introduce any blocking calls, in other words everything in JavaScript is asynchronous. It doesn’t mean you can add delay, you just do it the different, non-blocking way. Sleep in JavaScript is little bit more complicated comparing to Ruby.

If JavaScript program should work without any blocking calls, then it means it’s true for absolutely everything, not just for “sleep”. Imagine that we need to read (or copy) a huge file into memory from disk. But we can’t block, and reading a huge file takes time. What would you do and how would you solve that? Engineers of JavaScript introduced so called “callbacks”, something that gets executed at the end of operation. You don’t need to remember that, but we’ve decided it’s worth explaining how it works, because 99% of Ruby programmers will need to write JavaScript code one day.

Here is the simplified version of our Ruby program above:

 Correct (and simplified) Ruby program to launch missile
puts 'Launching missile, get ready...'
sleep 1
puts 'Warning, 1 second has passed, launching now...'
puts 'Boom!'

Look at how incorrect (but exactly the same) program in JavaScript can be implemented by unexperienced programmer:

 Incorrect JavaScript program to launch missile
console.log('Launching missile, get ready...');

setTimeout(function() {
 console.log('Warning, 1 second has passed, launching now...');
}, 1000);

console.log('Boom!');

Output of incorrect program:

Launching missile, get ready...
Boom!
Warning, 1 second has passed, launching now...

In other words, we’re getting a warning about missile launch after the missile has exploded already. But that’s not right! And that’s why we need to think asynchronously in JavaScript. Actually, it’s easier than it looks from the first sight, and for successful launch we need to move last line to setTimeout block:

 Correct JavaScript program to launch missile
console.log('Launching missile, get ready...');

setTimeout(function() {
 console.log('Warning, 1 second has passed, launching now...');
 console.log('Boom!');
}, 1000);

But imagine we need to wait one more time, like this:

 Correct (and simplified) Ruby program to launch missile, version 2
puts 'Launching missile, get ready...'
sleep 1
puts 'Warning, 1 second has passed, launching now...'
sleep 1 # This line was added
puts 'Boom!'

Correct JavaScript program will look like:

 Correct JavaScript program to launch missile, version 2
console.log('Launching missile, get ready...');

setTimeout(function() {
 console.log('Warning, 1 second has passed, launching now...');

 setTimeout(function() {
 console.log('Boom!');
 }, 1000);

}, 1000);

Our JavaScript code is becoming more nested while we keep adding more asynchronous operations, and our Ruby program remains “flat”. It is one of the fundamental differences between synchronous (Ruby) and asynchronous (JavaScript) languages, and one of the reasons why you need to understand synchronous language before you write any code with asynchronous.

When we add more blocking calls to JavaScript, we have more callbacks, code becomes more nested, less readable, and programmers call it “callback hell”. There was attempt to solve “callback hell” in newer version of JavaScript called ES6 (ECMA Script version 6) with new await keyword. Program remains flat, but programmer still needs to understand underlying asynchronous concepts. JavaScript was invented long time ago and it’s improving over the time, but sometimes it isn’t something one can easily grok in 5 minutes. You’ll definitely need more patience with JavaScript than you need it with Ruby.

However, learning minimal JavaScript isn’t a big issue for any Ruby programmer. It’s quite easy to tackle fundamentals by your own or over the time for two reasons: 1) Ruby gives good foundation for understanding other languages 2) Want it or not, all web developers will deal with JavaScript code time to time, just make sure you read documentation and don’t delay your minimal JavaScript education.

Random Numbers

There are lots of scientific works about random numbers generation. Think about this: computer is something precise, how it may have truly random numbers? Most personal computers from the last century were generating pseudo-random numbers, and after computer restart these numbers were the same. So the “Sea Battle” game was always predictable, and author of this book learned how to win this game pretty easily, because you already know those “random” location of ships.

Explanation for this behavior is pretty straightforward, computers should rely on random data, and there were no any ways to get this random data from. But in modern operating systems random numbers generator takes into account lots of parameters: delays between pressed keys, mouse movements, network events, and so on. All this information collected from the real world serves as foundation for random number algorithms.

But what if this information is not enough? What if we just turned on our computer, made a couple of mouse movements and want to get the sequence of billions of random numbers? The vector of random numbers is defined by random information from real world, but how many vectors we may have?

It looks like a lot, but in real world things are little bit different. Here is the real life story. One online poker website published code for shuffling cards. They wanted to be transparent with their players about how their software works, and algorithm looked like this:

for i := 1 to 52 do begin
 r := random(52) + 1;
 swap := card[r];
 card[r] := card[i];
 card[i] := swap;
end;

It looks pretty straightforward, but this tiny program has four bugs. First bug is that r variable will never equal to 0, and it’s used as index (we’ll cover indexes later in this book). So one card is always at the same position while shuffling. Second bug is that shuffle isn’t uniform (see Fisher-Yates shuffle for details). Ruby Array object has built-in uniform method for shuffling.

But the main bug is that random() call uses 32-bit seed value. It means that there is capacity for “only” 2 in the power of 32 unique combinations (~4 billion). And since underlying implementation of random() is using the number of milliseconds from the midnight, it gives only 86.4 predictable combinations. This number looks big, but the real number of possible combinations in real life is factorial of 52 (many many times more than that). So after synchronization and first five cards it was possible to predict the rest of the sequence.

Example above just shows vulnerability of algorithm implemented on the real website. So if you’re working on something important and you need to deal with random numbers, you should always look for reliable and proven ways to deal with randomness. The ideal solution for any computer would be special device that generates such numbers, but for our purposes we should be good with built-in Ruby methods. These methods are using operating system under the hood, and “reliable enough”. Here is how you can generate random numbers in Ruby:

$ irb
> rand(1..5)
4
> rand(1..5)
1

We already know how to pass parameters to any function in Ruby, there are two ways:

 	with parentheses, like: puts('hello')

 	or without parentheses, like: puts 'hello'

Code above is passing “tricky” parameter “1..5” called Range (type of object). With this syntax we specify “from” and “to” values. In other words, we’re telling Ruby “generate random number from 1 to 5”. But the trick is that we don’t pass two parameters, but only one. If you pass two, you’ll get the error:

$ irb
> rand(1, 5)
ArgumentError: wrong number of arguments (given 2, expected 0..1)

But what exactly is 1..5? Let’s check it in REPL as we did it before for other objects:

$ irb
> (1..5).class
=> Range

Now we know what it is. It’s just a class in Ruby responsible for the range, and the name if this class is Range. This class is quite useful, and documentation has lots of interesting examples. But let’s make sure it’s not a kind of magic, and we can initialize this class like any other variable:

$ irb
> x = 1..5
=> 1..5
> rand(x)
=> 4

We initialized variable x, assigned value, and we can pass one parameter to rand function. Now we have proof that rand accepts one parameter. Now let’s combine rand and sleep:

$ irb
> sleep rand(1..5)

One-line program above will delay for the random number of seconds, from 1 to 5. As you can see, this tiny program sleep rand(1..5) has three parts:

 	sleep

 	rand

 	1..5

And can be written the with or without parentheses. All lines below are identical:

$ irb
> sleep rand(1..5)
> sleep rand 1..5
> sleep(rand(1..5))

Last line illustrates what was said before, and what programmer wants from Ruby:

 	Execute 1..5 first, get the value, because we need it for the rand call

 	Execute rand with result of 1..5

 	Execute sleep with result of rand (random number from specified range)

It’s up to a programmer to use parentheses or not. But to avoid mess it’s recommended to use Rubocop, so your style won’t be too much different from other team members.

It’s also worth mentioning that you can calculate random fractional numbers with rand:

$ irb
> rand(0.03..0.09)
=> 0.03920647825951599
> rand(0.03..0.09)
=> 0.06772359081051581

 Exercise 1

 Look at documentation about Range class.

 Exercise 2

 Write a program that will print random number from 500 to 510

 Exercise 3

 Write a program that will print random fractional number from 0 to 1. For example, 0.54321 or 0.123456.

 Exercise 4

 Write a program that will print random fractional number from 2 to 4.

Guess The Number Game

Guess the Number is a fun game that challenges user to find a number based on greater than or less than feedback. Let’s do it simple first, and then we’ll improve our solution.

 Guess the number game, version 1
 1 number = rand(1..10)
 2 print 'Hi! I picked the number from 1 to 10, try to guess: '
 3
 4 loop do
 5 input = gets.to_i
 6
 7 if input == number
 8 puts 'You guessed it!'
 9 exit
10 end
11
12 if input != number
13 print 'Nope, try again: '
14 end
15 end

At this point you should have enough knowledge to understand the program above. Try to read the program and understand how exactly it works. Congratulations if you understand everything, it’s a huge progress! Here is the sample output:

Hi! I picked the number from 1 to 10, try to guess: 6
Nope, try again: 3
Nope, try again: 8
Nope, try again: 9
You guessed it!

First line is where we pick the random number and save the value to number variable. On line 4 we define infinite loop with loop do...end syntax. We define variable input inside of loop block. Input represents the user input.

User input is the type of Integer, so we have the right to compare this input to picked number. There won’t be any error if you compare two different types, but result of such comparison will be always “false”. Despite the fact that we run infinite loop, we can exit from a program with exit keyword. We do it on line 9 which gets executed only when condition input == number is met.

At this point of time we don’t know how to define our own methods (or functions), so we use exit keyword to quit the program. But with more Ruby knowledge you can improve program and add more features, like asking a user if she or he wants to play again.

Second if-block (defined on lines 12-14) has “if user input is not equal to picked number” test. Keep in mind that we use print instead of puts because print doesn’t move cursor on the next line (if you don’t understand it, run this program and compare two versions - with print and puts).

But this simple program can be refactored (improved):

 Guess the number game, version 2
 1 number = rand(1..10)
 2 print 'Hi! I picked the number from 1 to 10, try to guess: '
 3
 4 loop do
 5 input = gets.to_i
 6
 7 if input == number
 8 puts 'You guessed it!'
 9 exit
10 else
11 print 'Nope, try again: '
12 end
13 end

We combined two independent if-blocks into one if-else block. Indeed, why do we need two blocks when we combine it into one when we have only two possible flows: number guessed and number not guessed.

 Exercise

 Modify the program above so it picks the number from 1 to 1_000_000 (one million, you can use underscore for numbers in Ruby to improve readability of your program). But guessing this huge number can be a difficult task. So add a hint every time guess is incorrect: if picked number is greater than user input, show “picked number is greater than what you have typed” message; if picked number is less than user input, show “picked number is less than what you have typed”. Math says that you’ll need not more than 20 attempts to guess any number this way. Check it yourself!

Part III. Having Fun

Ternary Operator

Ternary operator is quite useful feature of any language, and it’s implemented in Ruby the same way as it is implemented in C, Java, Python, JavaScript and so on. Some programmers use this operator for a long time, but don’t familiar with its name. But we recommend to remember its name, because it’s always nice to use correct naming and show your knowledge when speaking to a colleague:

 Dear colleague, why don’t we just replace this beautiful branching with ternary operator?

Despite the scary name, syntax is pretty straightforward:

something_is_truthy ? do_this() : else_this()

For example:

is_it_raining? ? stay_home() : go_party()

Which is 100% the same as the following code, but with “if…else”:

if is_it_raining?
 stay_home()
else
 go_party()
end

Note that you can always omit empty parentheses in Ruby in favor of code readability. Parentheses just indicate that we’re calling a method with no arguments (parameters). But Ruby is smart enough to understand what we mean:

if is_it_raining?
 stay_home
else
 go_party
end

Or just:

is_it_raining? ? stay_home : go_party

Note double question mark in one-line above. We did in intentionally, and we just assume that there is a method with question mark defined somewhere, like this (we’ll cover methods definition later in this book):

def is_it_raining?
 # ... do something, like call to external weather service ...
end

Method is_it_raining? always returns “true” or “false”, in other words Boolean type (we invented this type in previous chapters). And Ruby’s naming conventions say that if method returns Boolean, we should define this method with question mark at the end, so it looks like question in plain English: “Is it raining?”.

But if result depends on some variable, one-liner ternary operator may look like (note one question mark only, the mandatory question mark for ternary operator):

x ? stay_home() : go_party()

Or just:

x ? stay_home : go_party

As you can see from examples above, ternary operator has more compact syntax and can save us couple of lines on the screen – your program will look less lengthy, and (hopefully) more readable to you and your fellow colleagues. But the disadvantage of ternary operator is that it only looks neat when you need to perform one instruction. It’s better to use “if…else” when you need to do something complex.

Result of operation can be also saved to variable. In the example below we save result of ternary expression to result variable:

x = is_it_raining?
result = x ? stay_home : go_party

result will now keep the return value of stay_home or go_party method. In example above result could be the number of drinks one drunk3: “if I stay home, I will watch Netflix and will drink from 0 to 1 beer; but if I go party I will drink from 1 to 2 beers”. So result will keep just the number in our example, and x variable will hold “true” or “false” indicating if it is raining outside.

Two lines above can be rewritten with “if…else” clause:

x = is_it_raining?
result = if x
 stay_home
else
 go_party
end

 Exercise

 Rewrite the following examples with ternary operator:

 Example 1:

if friends_are_also_coming?
 go_party
else
 stay_home
end

 Example 2:

if friends_are_also_coming? && !is_it_raining
 go_party
else
 stay_home
end

Loading Indicator

Loading indicator (or “progress bar”) is one of the easiest visual ways to let a user know about the process happening in background. For example, downloading a file or formatting your hard drive takes time. But for the sake of better user experience programmers and UI designers have invented loading indicator.

Let’s practice and write a program to show a message about formatting hard drive (don’t worry, there won’t be any real formatting, only visual part):

1 print 'Formatting hard drive'
2 100_000.times do
3 print '.'
4 sleep rand(0.05..0.5)
5 end

Look at the program above and try to guess how it works. There is random delay from 0.05 to 0.5 seconds, and visual effect because of this looks realistic. As it was mentioned before, print doesn’t print “new line” character \n at the end (but puts does), so dots on the screen are printed one after another. Try it yourself!

And now is the riddle, what do you think the following one-line program will print to the screen?

print "one\rtwo"

(note that we’re using double quotes). The right answer is “two”. But why? print just prints symbol by symbol, and for the very short period of time, probably nanoseconds, there will be “one” printed on the screen. Then it finds special character \r, which stands for “carriage return”, and it moves cursor back to the beginning of the line. Now when cursor is at the beginning of the line “one” word will be replaced by “two”.

 Exercise

 Implement loading indicator by using symbols /, -, \, |. Make it animated: show these symbols one by one on the same place (at the beginning of the line). Use delay so your animated loading indicator doesn’t spin too fast.

Methods

Methods (or functions) are usually small chunks of code that you can reuse. Until this moment we haven’t reused the code that we had written (expect for code inside of blocks, like in loop do...end). But with methods we can improve and optimize our programs by splitting it into multiple logical blocks.

Methods shouldn’t necessarily make our program shorter. The main idea is to define logical parts and make a program more readable for a human. Sometimes this process is called “refactoring” (there are many refactoring techniques, and this particular technique is called “extract method”). The result this refactoring is logical blocks of code extraction into one or more methods, so this code can be reused later in a program again.

But we can introduce methods for our own convenience. Do you remember we were using the following code to convert user input to a number?

age = gets.to_i

Code above gets user input and converts it from String to Integer (with .to_i) and saves result to age variable. This expression doesn’t look self-explanatory to someone who is looking to the code for the first time. Let’s improve it a bit, so it will (hopefully) become easier to understand:

1 def get_number
2 gets.to_i
3 end
4
5 age = get_number

Code is the same, but on lines 1-3 we defined a method with def...end syntax. This method won’t get executed, until we explicitly call it (on line 5 in our case). Now it looks little bit easier, especially if we want to initialize multiple variables this way:

age = get_number
salary = get_number
rockets = get_number

Methods in Ruby always return value, even if it seems they don’t return any. Result of the last expression is the return value for a method. In our case above we have only one line inside of get_number method (gets.to_i) and since it’s the last line, method get_number will return result of this expression. But if for some reason we want to return value earlier, we can use return keyword:

1 def check_if_world_is_crazy?
2 if 2 + 2 == 4
3 return false
4 end
5
6 puts "Jesus, I can't believe that"
7 true
8 end

Last line can be written as return true, but it’s up to you (and coding conventions, Rubocop is the right tool to check your style). Method can also accept parameters:

1 def get_number(what)
2 print "Enter #{what}: "
3 gets.to_i
4 end
5
6 age = get_number('age')
7 salary = get_number('salary')
8 rockets = get_number('number of missiles to launch')

Result:

Enter age: 10
Enter salary: 3000
Enter number of missiles to launch: 5

Would you agree that program above looks much more readable than the following?

print 'Enter age:'
age = gets.to_i
print 'Enter salary:'
salary = gets.to_i
print 'Enter number of missiles to launch:'
rockets = gets.to_i

Judgement Day Emulator

Let’s practice a bit to sum up everything we know about methods. The machines have taken over the world. The is a struggle for survival. Who will survive: humanity or machines? Now it’s up to destiny to decide our future. Well, actually up to the random number generator.

Program will show the steam of upcoming events happening in the world. It would be much more interesting if we could do it by using some graphics, but in our case it will all depend on observer’s imagination. One may like or program and even use it as screensaver.

Important note: this program can be done the different and better way. But we still have limited Ruby knowledge, so our goal is more to practice, rather than delivering a piece of art.

First, let’s agree that there are only 10000 humans and the same number of machines left. With every iteration we’ll have only one random event. And the number of humans and machines will be decreasing with the same probability. Victory is when there are no more machines (or humans) left. Let’s proceed with a solution.

We’ll start with definition of victory and the main loop with two variables:

humans = 10_000
machines = 10_000

loop do
 if check_victory?
 exit
 end
 ...
end

Variables humans and machines represent the information about survivors.

Method check_victory? returns Boolean type value if one side has won (it doesn’t matter which one). If there is a victory, we just exit the program. If there is no victory, we continue iteration inside of infinite loop. Let’s also print information about who actually won the battle inside of this method.

Now we need to define a couple of events that can happen. Let’s call them event1, event2, and event3. We’ll be calling this or another method depending on random number provided by rand. It’s like throwing dice with only 3 distinct values from 1 to 3:

 Sketch of the program we’re going to make
def event1
 # ...
end

def event2
 # ...
end

def event3
 # ...
end

...

dice = rand(1..3)

if dice == 1
 event1
elsif dice == 2
 event2
elsif dice == 3
 event3
end

We used elsif keyword above (we’re already familiar with else). elsif is one of the less intuitive abbreviations in Ruby, and it just means else if.

And we’ll finish our loop with sleep statement, which will delay the execution of our program by certain amount of seconds (from 0.3 to 1.5):

sleep rand(0.3..1.5)

Complete version of the program:

 Judgement Day Emulator, version 1
##
DEFINE VARIABLES
##

@humans = 10_000
@machines = 10_000

##
AUXILIARY METHODS
##

Method returns random value: true or false
def luck?
 rand(0..1) == 1
end

def boom
 diff = rand(1..5)
 if luck?
 @machines -= diff
 puts "#{diff} machines destroyed"
 else
 @humans -= diff
 puts "#{diff} humans killed"
 end
end

Method returns random city name
def random_city
 dice = rand(1..5)
 if dice == 1
 'San Francisco'
 elsif dice == 2
 'Moscow'
 elsif dice == 3
 'Beijing'
 elsif dice == 4
 'London'
 else
 'Seoul'
 end
end

def random_sleep
 sleep rand(0.3..1.5)
end

def stats
 puts "#{@humans} humans and #{@machines} machines left"
end

##
EVENTS
##

def event1
 puts "Missile launched against #{random_city}"
 random_sleep
 boom
end

def event2
 puts "Nuclear weapon used against #{random_city}"
 random_sleep
 boom
end

def event3
 puts "Group of soldiers have breached defence in #{random_city}"
 random_sleep
 boom
end

##
CHECKING VICTORY
##

def check_victory?
 false
end

##
MAIN LOOP
##

loop do
 if check_victory?
 exit
 end

 dice = rand(1..3)

 if dice == 1
 event1
 elsif dice == 2
 event2
 elsif dice == 3
 event3
 end

 stats
 random_sleep
end

Sample result:

Nuclear weapon used against London
3 machines destroyed
10000 humans and 9997 machines left
Group of soldiers have breached defence in London
2 machines destroyed
10000 humans and 9995 machines left
Nuclear weapon used against Seoul
4 humans killed
...

 Exercise 1

 Implement check_victory? method (now it just returns false). In case of victory it should show information about who actually won the battle and who lost. Replace 10_000 with 10 so it will be easier to work on this program (you won’t need to wait too long to see how your method works).

 Exercise 2

 Lookup documentation for “ruby case statements” and replace if...else with case...when.

 Exercise 3

 Improve the program, so every iteration we not only lose, but also get random number of humans and machines. Theoretically, this battle may never end, but with low initial number of humans and machines at the beginning (like 10 or 100 instead of 10000) there can be a case when one side randomly wins.

 Exercise 4

 Improve the program and add at least 3 events, so your output looks more interesting. Use your imagination.

Instance and Local Variables

Careful reader would have already noticed unknown prefix @ before variable name. In Ruby you can’t access variables out of scope of the current method. The exception is instance variables (this may sound confusing, but we’ll cover what “instance” is later, now just think of them as global-ish variables). For example, the following Ruby code won’t be executed and will produce error:

 This program doesn’t work
x = 123

def print_x
 puts x
end

print_x

The error message is “undefined local variable or method `x’ for main:Object (NameError)”. But what is “main”? It turns out that any program in Ruby is wrapped by “main” class. It’s very easy to prove if you run this program:

puts self
puts self.class

Output:

main
Object

In other words, main is top-level scope in Ruby. You don’t have to worry about that too much now, but knowing that is the key to understanding why method can’t access variable defined outside of the method. Variable x in the program above is not local variable. Local variable is any variable defined inside of a method. You can access local variables as you would usually do:

def calc_something
 x = 2 + 2
 puts x
end

But to access instance variables you should define this variable with @ prefix. With this in mind, we can rewrite program that didn’t work:

 Program that works now (compare to program above)
@x = 123

def print_x
 puts @x
end

print_x

Now print_x can access this variable.

JavaScript is little bit different. Method can access variable defined in its parent scope. This syntax is called “closure”:

 JavaScript program that works
x = 123

function printX() {
 console.log(x);
}

printX();

In other words, different languages have different features. These features are defined by the nature of a language and for the purpose of particular language. JavaScript is asynchronous event-driven language and closures are just useful when events are happening (for example, used is clicking on the element).

Programming Slot Machine

We’ll practice a bit and sum up everything we know so far, and implement simple one-armed bandit game. We will put some money in the bank, pull the handle and see what happens.

Let’s outline our plan. Variable balance will represent the amount of money we have in the bank. We’ll have three reels (positions, or slots) and few images. Traditionally, slot machines have fruit images, cherry, bell, and number “7”. To simplify our task we’ll be just using numbers from 0 to 5 instead of mentioned images - we can always come back to it and make improvements later.

Variables x, y, z will represent the reels. Each reel can hold only one value (from 0 to 5) at a time. This value will be defined by random number generator.

Next step is to define what “win” and “lose” means: when all three variables x, y, z are equal, we’ll be enforcing following rules:

 	If all numbers are zeroes, we lose everything

 	If all variables are ones, we add $10 to our balance

 	If all variables are twos, we add $20 to our balance

 	Otherwise we charge 50 cents for attempt

Program should work until we have money on our balance. Elementary age check will be helpful:

print "What's your age: "
age = gets.to_i
if age < 18
 puts 'Sorry, but you should be at least 18 to play'
 exit
end

balance variable keeps the balance (initialized with $20), also define the infinite loop:

balance = 20
loop do
 # ..
end

Wait for Enter key inside of the loop:

 puts 'Press Enter to pull the handle...'
 gets

Initialize variables x, y, z:

 x = rand(0..5)
 y = rand(0..5)
 z = rand(0..5)

Print result of a single draw:

 puts "Result: #{x} #{y} #{z}"

Check first condition “If all numbers are zeroes, we lose everything”:

 if x == 0 && y == 0 && z == 0
 balance = 0
 puts 'You lost your money'
 end

Check second condition “If all variables are ones, we add $10 to our balance”:

 elsif x == 1 && y == 1 && z == 1
 balance += 10
 puts 'You won $10'
 end

Add third condition “If all variables are twos, we add $20 to our balance” and also the last case “Otherwise we charge 50 cents for attempt”. Here is the complete code for all conditions:

 if x == 0 && y == 0 && z == 0
 balance = 0
 puts 'You lost your money'
 elsif x == 1 && y == 1 && z == 1
 balance += 10
 puts 'You won $10'
 elsif x == 2 && y == 2 && z == 2
 balance += 20
 puts 'You won $20'
 else
 balance -= 0.5
 puts 'You lost 50 cents'
 end

At the end show the final result:

 puts "Your balance is #{balance} dollars"

Complete program:

 Slot Machine Program
print "What's your age: "
age = gets.to_i
if age < 18
 puts 'Sorry, but you should be at least 18 to play'
 exit
end

balance = 20
loop do
 puts 'Press Enter to pull the handle...'
 gets

 x = rand(0..5)
 y = rand(0..5)
 z = rand(0..5)

 puts "Result: #{x} #{y} #{z}"

 if x == 0 && y == 0 && z == 0
 balance = 0
 puts 'You lost your money'
 elsif x == 1 && y == 1 && z == 1
 balance += 10
 puts 'You won $10'
 elsif x == 2 && y == 2 && z == 2
 balance += 20
 puts 'You won $20'
 else
 balance -= 0.5
 puts 'You lost 50 cents'
 end

 puts "Your balance is #{balance} dollars"
end

Result:

What's your age: 20
Press Enter to pull the handle...

Result: 5 5 3
You lost 50 cents
Your balance is 19.5 dollars
Press Enter to pull the handle...

...

Result: 1 1 1
You won $10
Your balance is 29.5 dollars
Press Enter to pull the handle...

You must agree that there is nothing complex here and program works. With knowledge we gained in last chapters we can build simple text games, do some basic calculations, make other useful applications. Ruby programs are small, elegant, and very easy to read and understand. And this is exactly what makes programming fun!

In next chapters we’ll cover essential data structures, will find out what classes and objects are, will get familiar with some tools, we’ll have foundation for absolutely amazing things you can do with Ruby programming!

 Exercise 1

 Define method that will return random number. Make sure program works with this method. After that apply animation to variables x, y, and z.

 Exercise 2

 Add more conditions to the game, like 333, 444, and so on. Use your imagination.

Arrays

Array is just a set of data. For example, array of tenants living in apartment building. Or array of numbers where each number has some meaning (for example, employee salary). Or array of objects: each object represents employee with multiple properties like salary, age, name, and so on.

In Ruby each element in array can be of different type. In other words, arrays look like a bucket where we can put apples, pears, some tape recordings, and a couple of aircraft ships. But usually arrays are homogeneous: all items (or “elements”) are of the same type.

But the question is why do we need arrays? Why would we need to put something into array? The question is quite simple: arrays are useful, because they represent a set of some data and we can perform bulk operations over this data. Let’s say we have a list of visited cities:

arr = ['San Francisco', 'Moscow', 'London', 'New York']

We initialized array with four elements inside of type String. Ruby knows it’s array because we used square brackets for array definition. We can perform variety of different useful operations over this data. For example, get the number of elements (visited cities):

$ irb
...
> arr.size
=> 4

Or just sort array in alphabetical order:

$ irb
...
> arr.sort
=> ["London", "Moscow", "New York", "San Francisco"]

Or we can iterate over array (walk over each element):

arr = ['San Francisco', 'Moscow', 'London', 'New York']
arr.each do |word|
 puts "Word #{word} has #{word.size} letters"
end

Output:

Word San Francisco has 13 letters
Word Moscow has 6 letters
Word London has 6 letters
Word New York has 8 letters

And nothing prevents developer from defining empty array:

arr = []

But why would we need an empty array? For the same purpose we need empty bucket – to put something inside on later steps. There are many ways to put something into array, but there are two standard ways:

 	
arr.push(123) - method push also implemented in some other languages (like JavaScript), and some programmers prefer this way.

 	
arr << 123 - double arrow shows to where we want to put something.

And trivial phonebook program could look like this:

 Trivial Phone Book Program, version 1
 1 arr = []
 2
 3 loop do
 4 print 'Type name and number (empty string to finish): '
 5 entry = gets.chomp
 6 break if entry.empty?
 7 arr << entry
 8 end
 9
10 puts 'Your phone book:'
11
12 arr.each do |element|
13 puts element
14 end

Result:

Type name and number (empty string to finish): Saul 12345
Type name and number (empty string to finish): Mummy (555) 111-22-33
Type name and number (empty string to finish): Honey (555) 12345
Type name and number (empty string to finish): Honey 2 (555) 98765
Type name and number (empty string to finish):
Your phone book:
Saul 12345
Mummy (555) 111-22-33
Honey (555) 12345
Honey 2 (555) 98765

Of course, this phone book application is minimalistic and lacks lots of features, program doesn’t save any data to disk, no search by name or phone number, but it works! We were able to save data temporarily and show the list of contacts on the screen. We can invoke arr.sort to sort all elements in our phonebook, so result looks much better!

 Exercise

 Run this program and think about adding arr.sort line. Where would you put it?

Few Words About “Each”

Array is represented by Array type and this type implements method each. You are already familiar with this method when we were performing action over each element. Technically, method each accepts block. As we mentioned before, you can pass block to any method, and further behavior of a program depends on what’s “under the hood” of this method.

So that method each runs what’s inside the block for each element of array. In other words, it runs (usually tiny) sub-program for every item:

arr.each do |item|
 # here we have sub-program
 # it may have multiple lines
end

Or it can be done with one line:

arr.each { |item| ...here we have 1-line sub-program... }

Examples above show that blocks accept parameters (item in our case). This parameter comes from each method, and it’s just next element of array. Everything between do and end (or between { and }) is block. This way ruby implements iteration over array (or “array iteration”, “iteration over each element of array”, “array traversal”).

We can specify any name as parameter. In example from previous chapter (iteration over cities) we used word as parameter name. Phone book application has element as parameter name. And in this chapter we have item. The only rule here is parameter name should be understandable for you and your team (ideally, tools like Rubocop must be also okay with that).

Method each looks like calling your own method:

def my_method(word)
 puts "Word #{word} has #{word.size} letters"
end

Compare it with each:

arr.each do |word|
 puts "Word #{word} has #{word.size} letters"
end

It’s sad that in Ruby you can’t pass the name of a method to each:

arr.each my_method

It would be a nice language feature. Note: actually, you can write the similar code, but 1) not exactly this way 2) with some limitations 3) nobody doesn’t do it anyway.

Method each is also implemented in some other types. Iteration over something is operation which is pretty often used by programmers here and there, and you’ll see iteration in some not very obvious places. For example, iteration over string (object of String type):

$ irb
> 'hello'.each_char { |x| puts x }
h
e
l
l
o

Method each for Range type:

(1001..1005).each do |x|
 puts "I'm robot #{x}"
end

Result:

I'm robot 1001
I'm robot 1002
I'm robot 1003
I'm robot 1004
I'm robot 1005

Initializing Array

In this chapter we’ll cover how to initialize simple, one-dimensional array. There could be arrays with multiple dimensions, but when it comes to arrays only, for beginner programmers two dimensions is usually enough. Make sure you practice initializing, accessing, and iterating over 1D and 2D arrays, because it’s a very common pitfall on interviews. Sometimes initializing arrays correctly is half the battle.

We are already familiar with the following syntax that creates empty array:

arr = []

If we want to initialize array with pre-defined values, program looks little bit different:

arr = ['one', 'two', 'three']

You can also get the size (length) of array with arr.size. Please note that methods in Ruby language often have the same names. String class has size method, and it returns the size of a string in characters. But size of Array class will return the number of elements in this array. String class has each_char method so one can iterate over the each character in particular string. But arrays have similar “each” method for iterating over each element. In other words, principle of a least surprise helps, and often you can guess the method for this or another class. We’ll be covering other types in this book soon (like Hash), try to guess what would size method return for these types.

Want it or not, there are multiple ways of initializing arrays in Ruby, and result is identical:

arr = []

Alternative syntax:

arr = Array.new

It can be considered as language design flaw, because newbies we’ll need to understand two ways of initializing array. But there are always many opinions.

The advantage of latter approach is ability to pass additional parameters, like:

 	Size of array (optional). Empty array will be initialized if not provided.

 	Block (optional)

 Passing parameter to Array.new
$ irb
> arr = Array.new(10)
=> [nil, nil, nil, nil, nil, nil, nil, nil, nil, nil]

By default array initialized with nil value. Keep in mind that nil and “empty” are not the same thing. nil is represented by NilClass, and when we say “empty”, we usually refer to an empty string - string with no characters. nil and empty string are different objects and can’t be equal in Ruby.

 Difference between nil and empty string
$ irb
> nil.class
 => NilClass
> "".class
 => String
 > nil == ""
 => false

We can also initialize array with some value. Imagine we’re bulding a computer game, where 0 is empty space, and 1 is soldier. We want to create array of soldiers. It can be done the following way:

Array.new(10, 1)

Code above creates array with the size of 10 where each element equals to 1:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Accessing Array

So far we were iterating over array. But let’s look how we can access certain element of array. You can access array by using index. Indexes can be tricky, but at the same time they’re easy. It’s the number of element minus one. In other words, if you’re going to access firth element of array, you’ll need index with the value of 4. Let’s create array with five strings in REPL:

> arr = %w(one two three four five)
=> ["one", "two", "three", "four", "five"]

And get the size of array:

> arr.size
=> 5

Size of array is 5. We have five elements inside. Let’s actually get the fifth element, we need index with the value of 4:

> arr[4]
=> "five"

In other words:

 	
arr[0] returns one

 	
arr[1] returns two

 	
arr[2] returns three

 	
arr[3] returns four

 	
arr[4] returns five

And when we know how to evaluate this expression, we can combine it with other methods, like:

puts arr[4]

Or pass the result of expression to your own method as we could do it with variable:

my_own_method(arr[4])

We can also assign (replace) the value of particular cell in array. For example:

replace "two" with "whatever"
arr[1] = 'whatever'

Here is the demo of how it works:

 Replace value and iterate over array
1 arr = %w(one two three four five)
2 arr[1] = 'whatever'
3 arr.each do |word|
4 puts word
5 end

Result:

one
whatever
three
four
five

We could also write this program another way (it’s correct unless you have too many elements in your array so your program becomes too long to fit on a screen):

 Replace value and print array elements sequentially
1 arr = %w(one two three four five)
2 arr[1] = 'whatever'
3 puts arr[0]
4 puts arr[1]
5 puts arr[2]
6 puts arr[3]
7 puts arr[4]

Missing Detail

Actually, we’re moving little bit fast. Let’s step back and look at this syntax used to define an array:

arr = %w(one two three four five)

What %w means here? There are a couple of shortcuts in Ruby to define arrays. Here is how we define exactly the same array without any shortcuts:

arr = ["one", "two", "three", "four", "five"]

Or with single quotes (preferred):

arr = ['one', 'two', 'three', 'four', 'five']

But this code looks little bit longer. It’s 45 characters, and version with %w has only 34 characters. Programmers just wanted to simplify their lives, so they introduced this shortcut syntax with %w prefix and parenthesis.

Arrays in all cases are exactly the same, so it’s up to you which syntax you prefer. However, some teams have their standards, and from our experience there is a preference for %w. In a good team you’ll get a warning from a tool like Rubocop if you’re not following naming conventions.

There are also objects similar to strings (explained later in this book) called symbols (represented by Symbol class). Just for the reference, you can also define array of symbols both ways.

Standard way:

arr = [:one, :two, :three]

With shortcut (note the %i shortcut this time):

arr = %i(one two three)

 Exercise

 Open up your REPL and try to define array of string with standard and shortcut way. Do the same for array of symbols.

Battle of Robots

Let’s build a simple game together to sum up all information from previous chapters. We’ll have 20 robots and two teams, 10 robots in each. Every team will be represented by its own array with the size of 10. Element of array (cell) may have only one of two values:

 	Zero, 0 - when robot is destroyed

 	One, 1 - when robot is still alive

Define two arrays. 1 in example below indicates that we define array with robots who are [still] alive:

arr1 = Array.new(10, 1)
arr2 = Array.new(10, 1)

Each team will attack after another. But what does it mean “to attack” in our case? If 1 in array is alive robot, and 0 is dead robot, then “to attack” means “changing the value for certain cell in array from 1 to 0”. But which cell are we going to attack? We have ten of them for each team. We have two options:

 	“Attack” cells one by one sequentially. In other words, at the beginning we attack cell 1 of array 1, then cell 1 of array 2, and so on. Whoever starts attacking first wins the game. Predictable and doesn’t sound too interesting.

 	It’s much more fun to pick index randomly. Randomness isn’t a guarantee that index will remain unique while generating random numbers, so one team can attack the same cell of another team. For example, on a fifth turn second team attacks third cell, but it’s possible that this cell was attacked before. So team won’t reach its goal in this turn of destroying enemy, because cell already equals to zero. And the number of destroyed enemies will remain the same. With this approach result of the battle is always a matter of luck.

So let’s stick with the latter approach and implement our game this way. We already know how to generate random index from 0 to 9:

i = rand(0..9)

We only need to access the element of array, and replace it with zero if it equals one. And we can find out if cell has been already attacked if its value is zero. Here is the Ruby code that implements this logic:

if arr[i] == 1
 arr[i] = 0
 puts "Robot by index #{i} destroyed"
else
 puts 'Oops, missed that!'
end

Team wins if all robots of another team have been destroyed. It would be useful to know how many alive robots do we have in array. Imagine we have the following array:

arr = [1, 0, 1, 0, 1, 1]

How do we get the number of elements equal to 1? Take a break and think about it. We already know at least one approach.

The answer is to use each method and increase variable while iterating over array:

 Calculate the number of ones in array, naive way
1 arr = [1, 0, 1, 0, 1, 1]
2 x = 0
3 arr.each do |element|
4 if element == 1
5 x += 1
6 end
7 end
8 puts "Array has #{x} ones"

Program above works, but there is also elegant way of doing that. Method count of Array class does exactly what we want, but the syntax is easier (please look up documentation before you read example below):

 Calculate the number of ones in array by passing block to ‘count’ method
1 arr = [1, 0, 1, 0, 1, 1]
2 x = arr.count do |x|
3 x == 1
4 end
5 puts "Array has #{x} ones"

Or the same code with keeping block on one line:

 One-liner to calculate the number of ones in array by passing block to ‘count’ method
1 arr = [1, 0, 1, 0, 1, 1]
2 x = arr.count { |x| x == 1 }
3 puts "Array has #{x} ones"

Now we have all we need. Two teams of robots, each team will attack after another. Team wins if all robots of other team has been destroyed. We can implement this game, and important note here is that we don’t need any user input, it runs automatically, we’ll be just observing.

 Exercise

 Try to implement this game by yourself. There is a chance that something can go wrong, but remember that you’re here for practice.

Here is how author would implement this game:

###############################
DEFINE ARRAYS
###############################

array for the first team
@arr1 = Array.new(10, 1)
array for the second team
@arr2 = Array.new(10, 1)

###############################
ATTACK
###############################

Method accepts array for attack
def attack(arr)
 sleep 1 # Add sleep here, so our program won't run too fast
 i = rand(0..9)
 if arr[i] == 1
 arr[i] = 0
 puts "Robot by index #{i} has been destroyed"
 else
 puts "Missed at index #{i}"
 end
 sleep 1 # one more sleep to beautify the output
end

###############################
VICTORY CHECK
###############################

def victory?
 robots_left1 = @arr1.count { |x| x == 1 }
 robots_left2 = @arr2.count { |x| x == 1 }

 if robots_left1 == 0
 puts "Team 2 wins, #{robots_left2} robots left"
 return true
 end

 if robots_left2 == 0
 puts "Team 1 wins #{robots_left1} robots left"
 return false
 end

 false
end

###############################
STATS
###############################

def stats
 # number of alive robots for the first and second team
 cnt1 = @arr1.count { |x| x == 1 }
 cnt2 = @arr2.count { |x| x == 1 }
 puts "1st team has #{cnt1} robots left"
 puts "2nd team has #{cnt2} robots left"
end

###############################
MAIN LOOP
###############################

loop do
 puts 'First team is going to attack...'
 attack(@arr2)
 exit if victory?
 stats
 sleep 3
 puts # empty line

 puts 'Second team is going to attack...'
 attack(@arr1)
 exit if victory?
 stats
 sleep 3
 puts # empty line
end

Result:

First team is going to attack...
Robot by index 9 has been destroyed
1st team has 10 robots left
2nd team has 9 robots left

Second team is going to attack...
Robot by index 0 has been destroyed
1st team has 9 robots left
2nd team has 9 robots left

...(skip)...

 Exercise 1

 Add more details to stats method so it prints the state of two arrays.

 Exercise 2

 Improve program the following way. Each cell in array must represent the percentage of life of a robot from 1 to 100. Initial value should be 100. Each attack should take random number from robot’s life value. This random number should be from 30 to 100. If life number is zero or less, we should consider this robot destroyed.

Arrays of Arrays (two-dimensional arrays)

We can specify any type while initializing arrays. For example, String:

$ irb
> Array.new(10, 'hello')
=> ["hello", "hello", "hello", "hello", "hello", "hello", "hello", "hel\
lo", "hello", "hello"]

Or Boolean (this type doesn’t exist, and in this book we intentionally refer to both types TrueClass and FalseClass as Boolean):

$ irb
> Array.new(10, true)
=> [true, true, true, true, true, true, true, true, true, true]

Or Integer:

$ irb
> Array.new(10, 123)
=> [123, 123, 123, 123, 123, 123, 123, 123, 123, 123]

In other words, element in array is arbitrary object. If element is object and array is object too, we can define array of arrays:

$ irb
> Array.new(10, [])
 => [[], [], [], [], [], [], [], [], [], []]

If we access this array by index, we’ll reach an array inside of root array. For example, index with the value of 4 can be used to access fifth element. Let’s try it in REPL:

$ irb
> arr = Array.new(10, [])
 => [[], [], [], [], [], [], [], [], [], []]
> element = arr[4]
 => []
> element.class
 => Array

You can see that we’re checking element’s class by .class, and while accessing element REPL shows us the value (=> [] line) and it’s empty ([]). What one can do with empty array? For example, add something:

element.push('something')

And what do we expect? Let’s sum up what’s been said in this chapter:

 	We defined array of arrays with the size of 10: arr = Array.new(10, [])

 	This array looks like this: [[], [], [], [], [], [], [], [], [], []]

 	We get the firth element: element = arr[4]

 	And we add value to this array: element.push('something')

Since element is array and we add something, it will look like array with the value inside:

['something']

And now we expect the arr (array of array) to look like:

[[], [], [], [], ['something'], [], [], [], [], []]

Let’s check in REPL:

> arr
=> [["something"], ["something"], ["something"], ["something"], ["somet\
hing"], ["something"], ["something"], ["something"], ["something"], ["s\
omething"]]

Oh no! Something’s not right! Here is the program:

arr = Array.new(10, [])
element = arr[4]
element.push('something')
puts arr.inspect # the way to print information similar to REPL

Where is mistake? If you’re programmer converting from another language, it’s worth making a break here and think about what could go wrong. This one can be also tricky interview question.

The answer isn’t obvious, and you need to have understanding of how Ruby language works, what is object, and what is reference (or pointer). Do you remember we covered this topic a little bit?

 …apartments house with multiple doorbells. New variable is similar to a doorbell that leads to this or another apartment. Doorbell is not apartment itself, but it’s associated with it.

We can also reproduce this issue with String class:

arr = Array.new(10, 'something')
element = arr[4]
element.upcase!
puts arr.inspect

Expected result:

["something", "something", "something", "something", "SOMETHING", "some\
thing", "something", "something", "something", "something"]

Actual result:

["SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "SOME\
THING", "SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING"]

What’s going on here? We’re modifying only one element, and all element of array get updated. Actually, it doesn’t matter which element we’re changing, fifth, or second, or last. Result is always the same. Try it yourself!

The answer to this puzzle is reference. When initializing array we’re passing the reference to single object:

arr = Array.new(10, 'something')

'something' above is String object (everything is object in Ruby). Since we’re passing the reference to this single object, array gets initialized with 10 cells that have exactly the same reference value! In other words, there is no object inside a cell, there is reference to object.

To avoid this side effect we needs these references to be different, so they point to different objects. And these objects will be placed in different locations in computer memory, but technically they will look the same.

It’s like having exactly the same type of beer in your six-pack: all bottles look the same, but they’re all different. If we change the state of one bottle, it won’t affect the state of other bottles.

With example of apartments house with multiple doorbells imagine the following scenario. We brought a box (array) and want to put 10 doorbells inside of that box. We did that, but all the wires lead to only one specific apartment. It doesn’t matter which doorbell we use, we’ll get the answer from the same tenants.

If we want to fix that we need these wires to lead to different apartments. So always avoid code like this one, it’s wrong:

arr = Array.new(10, []) # <-- WRONG!

Only because array inside is supposed to change its state. Why we would need empty array? There is no any sense to that, because one day we’ll want to add something to empty array, this is exactly what arrays were created for. But with strings things are actually easier, the following code is totally legit:

arr = Array.new(10, 'something')

But with one caveat: we are not going to use “dangerous” operation on String (or any other type). Dangerous operation is something that changes the state of an object, and usually these methods have exclamation mark at the end, for example: 'something'.upcase!. Do you understand why these methods were called “dangerous”?

And we’re safe to define arrays with numbers:

arr = Array.new(10, 123)

There are no any dangerous methods on Integer class, even if you can access array, you can’t modify it, you can’t change its state. You will only be able to replace one object with another, but previous object won’t disappear. It will remain in computer memory for a while, until garbage collector find it.

So if you type arr[4] = 124 you’ll replace the reference in array to another reference leading to new object (124). And all other references to previous “123“-object will remain untouched.

With numbers we’re getting what we expect:

$ irb
> arr = Array.new(10, 123)
 => [123, 123, 123, 123, 123, 123, 123, 123, 123, 123]
> arr[4] = 124
 => 124
> arr
 => [123, 123, 123, 123, 124, 123, 123, 123, 123, 123]

It’s okay if these details look complicated, because they are. Good news is while doing your everyday job you usually don’t deal with these complexities too often. You need only basic understanding and when the moment comes you’ll remember that it could be it, and you will do your search over Internet.

Probably some experienced programmers won’t like this approach, and you’ll hear advice to learn this and that, before you start doing something and move forward. But the experience of Ruby School students shows that moving fast is a good way to go; if you don’t understand something, skip it and move on. You’ll get back to the part you don’t understand later, and often it’s more important to spend time on looking for your first software development job, rather than polishing theoretical knowledge.

But let’s get back to the beginning, how do we define two-dimensional array? Imagine we’re programming “Sea battle” game and we need 10 by 10 array, with 10 rows, where each row contains 10 columns. How do we define array where each element is going to be the reference to new and unique object?

Let’s see how we can define arrays in C#:

var arr = new int[10, 10];

For the type of String:

var arr = new string[10, 10];
arr[9, 9] = "something";

For some unknown reason syntax in Ruby and JavaScript looks little bit more complicated. Below is how you define two-dimensional 10 by 10 array in Ruby (empty cells will be filled with nil value):

 Correct way to define two-dimensional array in Ruby
arr = Array.new(10) { Array.new(10) }

Wow, but why it looks so magic? Let’s dive a little bit deeper into this line. “new” method accepts one parameter and one block. First parameter is fixed, it’s the size of array. Second parameter is actually block which is going to be executed while initializing every individual element. Result of this execution is going to be new element. Block will be executed 10 times in our case. Here is how you can use block with String:

arr = Array.new(10) { 'something' }

Result is similar to the result of the following code:

arr = Array.new(10, 'something')

And it looks the same when you execute these two lines in REPL:

$ irb
> arr1 = Array.new(10) { 'something' }
 => ["something", "something", "something", "something", "something", "\
something", "something", "something", "something", "something"]

> arr2 = Array.new(10, 'something')
 => ["something", "something", "something", "something", "something", "\
something", "something", "something", "something", "something"]

But there is one subtle difference. While initializing, the first statement calls block. Every time it gets called we have new instance of String class with the value “something” in computer memory.

The second statement (when we define arr2 variable) Ruby takes already initialized “something” that we’re passing as second parameter. It gets created in memory before it gets passed to Array.new, and reference to this single instance is used for all cells of array.

Proof is quite easy. For folks who aren’t familiar with Ruby too much it looks like a magic trick. Modify element by index 0 in first array where cell has reference to its own object (try steps below in your REPL):

arr1[0].upcase!

Result of arr1:

> arr1
 => ["SOMETHING", "something", "something", "something", "something", "\
something", "something", "something", "something", "something"]

As you can see, only first element was changed, and it’s the proof that every cell has reference to its own object for first array. Now let’s follow these steps for the second array:

> arr2[0].upcase!
 => "SOMETHING"
> arr2
 => ["SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "\
SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING"]

Every element in array was changed, because cells in second array have reference to the same element.

Can you guess how this program would work if before “arr2[0].upcase!” we’d reinitialize, let’ say, fifth element?

> arr2[4] = 'something' # <-- REINITIALIZING FIFTH ELEMENT HERE
 => "something"
> arr2[0].upcase! # <-- CHANGE THE STATE OF OBJECT BY INDEX ZERO
 => "SOMETHING"
> arr2
 => ["SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "something", "\
SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING", "SOMETHING"]

That’s right, each cells have reference to updated with “upcase!” element, except fifth one. Fifth element is different object because it was reinitialized. That’s why array of arrays must be defined as follows:

arr = Array.new(10) { Array.new(10) }

If we want to fill array of arrays with some value (by default it’s nil), we must pass it to the second constructor (“new” part of class initialization called “constructor”, to be covered later in this book):

arr = Array.new(10) { Array.new(10, 123) }

This is how you define 10 by 10 two-dimensional array and initialize every cell with 0:

arr = Array.new(10) { Array.new(10, 0) }

Define 2D array with 4 rows and 10 columns and initialize it with “0”:

arr = Array.new(4) { Array.new(10, 0) }

Define 2D array with 2 rows and 3 columns and initialize with “something”:

arr = Array.new(2) { Array.new(3, 'something') }

Define 2D array with 3 rows and 2 columns and initialize with “something”:

arr = Array.new(3) { Array.new(2, 'something') }

Hopefully, initializing two-dimensional arrays makes more sense now. We have understanding of what array is, and let’s see how we can initialize arrays with predefined values. One-dimensional arrays (or just “arrays”) is quite easy to initialize with whatever you want. For example:

arr = [1, 2, 3]

Or:

arr = ['one', 'two', 'three']

Every array has objects (technically, “every array holds references to objects”). Two-dimensional array is the same array with only caveat that array has objects of type Array.

Pattern to define array of three strings, for example:

arr = [..., ..., ...]

But if you’re looking to define array of empty arrays, use [] instead of “...”:

arr = [[], [], []]

Tic-tac-toe game is a good example of array of arrays. For the following board let’s assume that “O” is represented by “0”, and “X” by “1”, empty cell is nil:

 [image: Tic Tac Toe]
 Tic Tac Toe

This is how this array would look like in Ruby:

arr = [[0, 0, 1], [nil, 0, nil], [1, nil, 1]]

Exactly the same expression looks more clear with multiple lines:

arr = [
 [0, 0, 1],
 [nil, 0, nil],
 [1, nil, 1]
]

Spaces or empty lines won’t affect execution of this program, so you can beautify it more if you really want.

 Exercise 1

 Try in REPL everything written above, run every example and make sure you understand concepts explained in this chapter (it’s okay if you don’t understand all of them, make a note and move on, you can come back to this chapter later).

 Exercise 2

 Create 5 by 4 array (5 rows and 4 columns), fill every cell of a row with random number from 1 to 5 (one random number per row). Example for 2 by 3 array:

[
 [2, 2, 2],
 [5, 5, 5]
]

 Exercise 3

 Do the same exercise, but for 4 by 5 array.

 Exercise 4

 Create new 5 by 4 array and fill every cell with random numbers from 0 to 9.

Gems

Until now all of our experiments were pretty straightforward. However, with two-dimensional arrays you may have been noticed the lack of visual cues. For example, array for “Sea battle” game doesn’t look super-intuitive in console:

$ irb
> Array.new(10) { Array.new(10) }
 => [[nil, nil, nil, nil, nil, nil, nil, nil, nil, nil], [nil, nil, nil\
, nil, nil, nil, nil, nil, nil, nil], [nil, nil, nil, nil, nil, nil, ni\
l, nil, nil, nil], [nil, nil, nil, nil, nil, nil, nil, nil, nil, nil], \
[nil, nil, nil, nil, nil, nil, nil, nil, nil, nil], [nil, nil, nil, nil\
, nil, nil, nil, nil, nil, nil], [nil, nil, nil, nil, nil, nil, nil, ni\
l, nil, nil], [nil, nil, nil, nil, nil, nil, nil, nil, nil, nil], [nil,\
 nil, nil, nil, nil, nil, nil, nil, nil, nil], [nil, nil, nil, nil, nil\
, nil, nil, nil, nil, nil]]

We still can understand what it is, but can you quickly find out where is fifth row and second column? You need to look close enough.

Ruby language designers knew that it’s impossible to create something that everyone likes. Instead of having fixed set of tools, it was decided to introduce extensions, so everyone’s able to add something new to the language.

Software developers from around the world took advantage of this opportunity and built amazing ecosystem of extensions - gems. You may have already heard about gems, especially if you know how to write code in other languages (they also called libraries or packets). And tools are similar. For example, there is “gem” shell command in Ruby, and “npm” (Node Packet Manager) shell command in Node.JS.

Word “gem” sounds more Ruby-ish than just a “packet”, but the meaning is the same: something that you can install and reuse if you know its name. There are few ways of installing gems, we’ll use “gem” shell command for now, which is a part of default Ruby language toolset, along with other commands like “irb” or “ruby”.

Let’s install our first gem:

$ gem install cowsay

“Cowsay” gem just prints a cow with a text bubble. Find gem documentation by searching Internet with “cowsay gem documentation”. Gem adds “cowsay” command to your shell, and you should be able to run it:

$ cowsay 'Hey, Joe!'

Hey, Joe!
 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

There are lots of gems for every occasion. Actually, that’s what Ruby language is famous for: whatever you do, there is a high chance that there is a gem for that.

Gem doesn’t necessarily adds a shell command. Often gems are reusable pieces of code you can attach to your program by using “require” keyword with gem name as parameter, like: require "something".

For our next chapters we need to install one useful gem you will love. This gem is quite popular, and kinda unofficial standard in Ruby ecosystem. It happens quite often: independent developers make gems and the crowd loves it so much, and it becomes an industry standard. And sometimes functionality from popular gems go into Ruby language itself!

Our gem name is “pry”. There is a page on GitHub https://github.com/pry/pry - remember to always look at official docs before you install something: independent developers from all parts of the world work on gems, and lifecycle of some gems can be unpredictable. It can be obsolete, deprecated, or just abandoned. You should always know what you install and what are you going to use in your project.

Here is what official docs say about “pry”: “An IRB alternative and runtime developer console”. We’ll switch from the tool we already familiar with (“irb”) to the new one. Let’s do it now and see why it’s better:

$ gem install pry
...
$ pry
>

Well, command prompt looks similar. But let’s type array definition in “pry” and see what happens:

$ pry
> arr = [[0, 0, 1], [nil, 0, nil], [1, nil, 1]]

Do you see code highlighting? By default numbers are highlighted in blue, and nils with cyan. Is that it? Almost, and actually, this detail is quite important.

You’re going to work with large amounts of data, and do it on a daily basis. So, multiply this tiny improvement by amount of data human can handle in a day, and then multiple it by the number of days you’re going to use Ruby (hopefully you’ll be happy with the language for the next 5-10 years).

The second detail is configuration. And here is where things go little bit unexpected. Gem is actually extension for Ruby language. But gems may have their own extensions too! And we’re going to install extension for better output formatting. In other words, information you see on your screen is going to be even more awesome. Let’s install “awesome print”:

gem install awesome_print

This gem doesn’t configure itself or adds any commands while being installed, so we need to take care of it and connect it to “pry”. There are details on how you can do that in official documentation, but the bottom line is to update “.pryrc” file located in your home directory. You can do it with any code editor or by running the following sequence in your shell:

 How you attach ‘awesome_print’ to ‘pry’
1 $ cat > ~/.pryrc
2 require 'awesome_print'
3 AwesomePrint.pry!
4 ^D

On the first line we just type “cat > ~/.pryrc”. You can copy next two lines from this book (if you’re reading electronic version of the book, copy lines one by one, so you paste without line numbers). And on line 4 you’ll need to press combination of Ctrl+D: it’s special terminal sequence to let your shell know about the end of your input. This is how you can update any file in your filesystem. Basically, we added only two lines to ~/.pryrc (line 2 and 3 in the listing above).

But where did these two lines come from and do I need to remember those? These two lines are not magic, and you can find them in official docs, just search Internet for “pry gem docs”, and scroll down to “Pry integration” section. There is something going on behind the scenes while these two lines are being executed, but don’t worry about it now.

You need to connect “awesome print” to “pry” only once on your computer.

Finally, let’s run “pry” and type array definition we used for tic-tac-toe game:

$ pry
> arr = [[0, 0, 1], [nil, 0, nil], [1, nil, 1]]
[
 [0] [
 [0] 0,
 [1] 0,
 [2] 1
],
 [1] [
 [0] nil,
 [1] 0,
 [2] nil
],
 [2] [
 [0] 1,
 [1] nil,
 [2] 1
]
]

Wow, it’s not just improved formatting, but both code and result are highlighted in colors!

[image: Pry with improved formatting and colors!]
Depending on your settings, your color scheme can look different. With “pry” and “awesome print” it’s so much easier to understand your programs and REPL snippets. From the picture above you can see indexes of rows and columns. For example, if we need to reach the center of this two-dimensional array (0 value of second row and second column), we need to type “arr[1][1]”.

Compare this output to default IRB we had before:

$ irb
> arr = [[0, 0, 1], [nil, 0, nil], [1, nil, 1]]
 => [[0, 0, 1], [nil, 0, nil], [1, nil, 1]]

And one more thing: one of the most powerful usages of “pry” is using it with a Ruby debugger. We’ll cover this topic later in this book.

 Exercise

 Define “Sea battle” (10 by 10) array in “pry” and see how it looks. Set the following cells to value of 1, 2, and 3 respectively: 1) third row, third column 2) fifth row, fourth column 3) fourth row, fifth column. Look at the resulting array in “pry”.

Accessing Array of Arrays

There is a trick while accessing 2D, two-dimensional, or array of arrays. When accessing this type of array you need to access row first, and column next. From previous chapters we know how to access one-dimensional array:

puts arr[4]

Or if we want to change the value:

arr[4] = 123

Where 4 is index. With 2D arrays we need to use double square brackets. For example, the following code will change the value of the cell in fifth row and ninth column:

arr[4][8] = 123

For a long time in the school we were told that in math coordinates of some area are usually defined as (x, y). Where “x” is horizontal axis (column), and “y” is vertical one (row). But accessing arrays is little bit confusing, because we need to access row first, and column next, in other words by using (y, x).

To get a better feeling of how it works we can break down this expression into multiple lines:

row = arr[4] # Get the entire array on fifth row into variable
row[8] = 123 # Change the ninth cell to 123

The way to print the value of fifth row and ninth column:

row = arr[4] # Get entire row into variable
column = row[8] # Get the value of cell into another variable
puts column # Print this variable

However, programmers usually use more compact notation: arr[4][8]

Depending on the type of work you’re doing, different naming convention can be used for rows and columns. Let’s look at the most common examples:

 	
row, column. Accessing array: arr[row][column].

 	
y - row, x - column. Accessing array: arr[y][x]

 	
j - row, i - column. Accessing array: arr[j][i]

You absolutely need to remember that you need to access row, y, j first when dealing with 2D arrays. This is the most common pitfall of every beginner while doing interviews.

Note that for index we use variable with the name “i”. If there is more than one index, use next letters from English alphabet: j, k, and so on. You don’t have to do that, and have freedom to name variables as you want. However, sometimes there are naming conventions, and if you follow them, other programmers will understand your code better.

Let’s create new two-dimensional array and try to traverse it. Traversal of all kinds of arrays and other data structures is a very common task, make a note for yourself to practice a lot before your next interview.

 Two-dimensional 3 by 3 array traversal
 1 arr = [
 2 %w(a b c),
 3 %w(d e f),
 4 %w(g h i)
 5]
 6
 7 0.upto(2) do |j|
 8 0.upto(2) do |i|
 9 print arr[j][i]
10 end
11 end

Result:

abcdefghi

At the program above (lines 7-11) we see two nested blocks, or one loop inside another (inner loop). But how does it work? We already know that first loop (with “j” variable) just “goes over” array. It doesn’t know that we have array of arrays. We can rewrite the following lines to demonstrate that:

0.upto(2) do |j|
 puts arr[j]
end

So this loop goes over three elements, but each element is array (but loop isn’t aware of that). It will print 3 lines:

['a', 'b', 'c']
['d', 'e', 'f']
['g', 'h', 'i']

Since each element is array, we have a right to iterate over it one more time, as we already did it before many times. Program above can be rewritten with using Array#each method:

 Two-dimensional 3 by 3 array traversal with Array#each
 1 arr = [
 2 %w(a b c),
 3 %w(d e f),
 4 %w(g h i)
 5]
 6
 7 arr.each do |row|
 8 row.each do |value|
 9 print value
10 end
11 end

Which is actually more preferred way to go. Can you guess why? Lines 7-11 do not rely on the size of array, and if you add more letters to your initial array, program will work correctly.

There is a way to rewrite this array definition without using “%w” helper, but readability in this case will suffer a little bit:

arr = [
 ['a', 'b', 'c'],
 ['d', 'e', 'f'],
 ['g', 'h', 'i']
]

 Exercise 1

 Traverse 3x3 array defined above manually, without loops, criss-cross, so it prints “aeiceg”.

 Exercise 2

 In REPL create two-dimensional 3 by 3 array where each element has the value of string “something”. Define this array the way so every element is protected from dangerous operations. For example, “arr[2][2].upcase!” statement should modify only on cell and won’t affect others.

 Exercise 3

 John Smith has a business where they have large pool of phone numbers, and they sell these phone numbers for advertisements. They want to sign a contract with you, but before they want to ensure you can follow their requirements and capable of delivering quality software. They say: we have phone numbers with letters, like 555-MATRESS. When customers type this phone number on phone keyboard, hey reach “555-628-7377”. Write a method in Ruby language that will translate phone numbers without dashes, like “555MATRESS” into phone numbers with digits only, like 5556287377. Method signature:

def phone_to_number(phone)
 # code here...
end

puts phone_to_number('555MATRESS') # should print 5556287377

Sample image of phone keyboard:

 [image: Phone keyboard]
 Phone keyboard

Multi-dimensional Arrays

We are already familiar with two types of arrays: 1 and 2 dimensional. However, there can be multiple dimensions, so it’s “array of array of array”. Sometimes they call it “tensor”. For example, popular framework for machine learning is called TensorFlow, sounds like something flows over multi-dimensional array and changes its inner data. However, machine learning is topic for another book (and it’s almost never done in Ruby, mostly Python, C++ and some other languages).

Here is an example of 3-dimensional array in Ruby:

 Three-dimensional array in Ruby
 1 arr = [
 2 [
 3 %w(a b c),
 4 %w(d e f),
 5 %w(g h i)	
 6],
 7 [
 8 %w(aa bb cc),
 9 %w(dd ee ff),
10 %w(gg hh ii)
11]
12]

It’s array of 2 by 3 by 3: two blocks, each block has 3 rows, where each row has 3 columns.

Dimension of array is just its property, if you deal with these types of arrays you need to know how to access them. For example, you can reach element “f” with “arr[0][1][2]” statement.

You probably won’t use three or more dimensional arrays in your everyday job too much, but arrays are often combined with another data structure - Hash (with eponymous type in Ruby). Multi-dimensional arrays require the knowledge of their dimensions (depth), and if we add one row or column at the very beginning, we must update indexes everywhere in our program. Not very convenient. Moreover, every update is a risk to introduce new error.

But mixing arrays with hashes is very powerful and wide-spread technique. It’s also known as JSON (JavaScript Object Notation). This name sounds a little bit confusing, because JSONs are everywhere, not only in JavaScript: in Ruby, Java, Python, literally in every programming language. And a programmer doesn’t need to know index (some number) to access specific row or column in JSON, because JSON objects can be accessed via keys, where key is some strings, like “date_of_birth”. Much easier to remember.

We’ll cover JSON objects later in this book.

 Exercise 1

 Define array outlined above in your REPL and try to read and write cell with “ee” value.

 Exercise 2

 Open up official docs for Array class at http://ruby-doc.org/core-2.5.1/Array.html to see if you can understand some of the methods explained in documentation, and maybe learn something new!

Closer Look into Array class

Array is essential data structure. Every programmer should know how to effectively query and update arrays. Ruby offers variety of methods to simplify array operations, like lookups, updates, calculating number of matches based on criteria, adding, removing, bulk operations over all elements, and so on. Ruby’s standard library is very powerful, predictable, and straightforward; programmers love to use it. We hope you’ll really enjoy manipulating arrays with Ruby. Let’s get started!

empty? method

Question mark at the end of a method indicates that method returns Boolean type (true or false). Use “empty?” method to check whether array has elements or empty. If array is empty, method returns true.

$ pry
> [].empty?
 => true

Keep in mind that “nil” object doesn’t implement “empty?” method. So if some method returns nil or array (which can be empty), you have to perform double check:

arr = some_method

if !arr.nil? && !arr.empty?
 puts arr.inspect
end

Also, there is one important detail you don’t want to miss. Every Ruby programmer sooner or later will use Rails framework. And Rails has some additional helpers for certain types to simplify your life as developer. For example, Rails will let you avoid double checks like in example above. Instead you can just use “blank?”:

if !arr.blank?
 puts arr.inspect
end

Or the opposite “present?”:

if arr.present?
 puts arr.inspect
end

Will you agree that the first line looks better than the line below?

if !arr.nil? && !arr.empty?

In other words, use “empty?” when there is no Rails framework and you’re working on Ruby-only project. But always prefer “present?” and “blank?” when you’re working with Rails. These two methods are implemented for many types, and it would be really helpful if you can bookmark this page, so you can always refer to the following table:

 [image: Rails blank? and present? methods for different types]
 Rails blank? and present? methods for different types

As you can see from the table above, “blank?” and “present?” are opposite (two last columns). And the second column says that only “nil” and “false” evaluate to “false”. In other words, all if-statements below are evaluated to “true” and will be executed:

if true
 # will be executed
end

if ''
 # will be executed
end

if ' '
 # will be executed
end

if []
 # will be executed
end

...

And so on…

From the table above we can see that method “empty?” is implemented for String, Array, and Hash.

Methods length, size, count

Methods “length” and “size” are identical and implemented for Array, String, Hash types:

[11, 22, 33].size # => 3
[11, 22, 33].length # => 3

str = 'something'
str.size # => 9
str.length # => 9

hh = { a: 1, b: 2 }
hh.size # => 2
hh.length # => 2

Method “count” works the similar way, but:

 	It’s not implemented for String

 	It can accept block

We can take advantage of block passed to “count” method to get some really handy calculations. Here is, for example, how you count a number of zeroes in array:

$ pry
> [0, 0, 1, 1, 0, 0, 1, 0].count { |x| x == 0 }
5

“count” method can be used with a pointer to a function (we haven’t covered this topic yet, but example below gives a basic idea of how it works). The following line does the same thing as the line above:

[0, 0, 1, 1, 0, 0, 1, 0].count(&:zero?)

It’s important to know that “count” with a block goes over entire collection, and if you use Rails framework with “count” you wanna make sure that your query is efficient.

 Exercise

 Calculate the number of even elements in the following array: [11, 22, 33, 44, 55]

include? method

“include?” method performs existence check over array and returns Boolean value. For example:

$ pry
> [1, 2, 3, 5, 8].include?(3)
true

Interesting detail is that some folks from Ruby community always wanted to rename this method to “includes?”, but it didn’t happen. So you have to remember that it comes without “s”. In JavaScript ES6 existence check uses the “correct” spelling:

$ node
> [1, 2, 3, 5, 8].includes(3);
true

Adding Elements to Arrays

Adding and removing elements is implemented with methods we already know: “push” and “pop”. These methods perform operations with the tail of an array: add element to the end, remove from the end. It looks like a stack of plates, where you push and pop from the top.

However, there are “unshift” and “shift” methods that do the same, but with the head of an array:

 	“unshift” is similar to “push”

 	“shift” is similar to “pop”

The metaphor here could be that “shift” shifts elements and returns one that didn’t fit.

Selecting Elements by Criteria

Imagine that we have a list of employees with their ages. We need to pick all the males who are going to retire next year. For simplicity let’s assume that employee is represented by an object. We are not familiar with Hash data structure yet, so let’s use Array. First element of this array is going to be age, and the second is gender. Meet the male with the age of 30:

[30, 1]

Female with the age of 25:

[25, 0]

And we have a list of such objects (array of objects, or two-dimensional array):

[[30, 1], [25, 0], [64, 1], [64, 0], [33, 1]]

Select all males with the age of 64:

$ pry
> arr = [[30, 1], [25, 0], [64, 1], [64, 0], [33, 1]]
...
> arr.select { |element| element[0] == 64 && element[1] == 1 }
(...1 element was selected...)

Select all males:

$ pry
> arr = [[30, 1], [25, 0], [64, 1], [64, 0], [33, 1]]
...
> arr.select { |element| element[1] == 1 }
(...3 elements were selected...)

Practice a bit in your REPL and try to select all females.

Rejecting Elements by Criteria

Method “reject” works the opposite way, comparing to “select”. It rejects elements by criteria.

Reject all males of the age 30 or above:

$ pry
> arr = [[30, 1], [25, 0], [64, 1], [64, 0], [33, 1]]
...
> arr.reject { |element| element[0] >= 30 }

Take Method

Method “take” takes certain number of elements from the beginning of a collection:

$ pry
> [11, 22, 33, 44, 55].take(2)
 => [11, 22]

Is There Any Match? (any?)

Imagine we have array that represents result of a lottery. Each cell is either true or false. We need to know if there are any wins (“true” element). Method “any?” has question mark at the end, so it always returns Boolean: true or false.

“any?” must be executed with a block, and block should have comparison expression. This comparison expression will be executed sequentially until condition is met (equals true):

$ pry
> [false, false, false, true, false].any? { |element| element == true }
true

Code above shows that there is actually a win among these five tickets. Method “any?” just indicates that there is a win in this array, but it can’t tell which ticket is winning.

In other words, method doesn’t return any index. If you want to find index of a winning ticket, Ruby’s principle of a least surprise suggests that there should be “find_index” method for that. And it actually exists!

$ pry
> [false, false, false, true, false].find_index { |element| element == \
true }
3

And it works!

All Elements Should Meet Criteria

Imagine that we have an array with ages of our users. We need to ensure that all of them are 18 or above. How would you do that? By using “all?” method:

$ pry
> [20, 34, 65, 23, 18, 44, 32].all? { |element| element >= 18 }
true

Few Words About Array Methods

We’ve discovered the following methods for Array class:

 	
push, pop - add and remove element from array

 	
arr[i] - access by index

 	
empty? - check if array is empty

 	
length, size, count - similar methods to get the size of array or get the count of elements by criteria

 	
include? - check if array includes certain element

 	
select, reject - select or reject elements by criteria

 	
take - take some elements from the beginning

 	
any?, all? - check if some or all elements meet certain criteria

You don’t need to remember all of them now, but it’s worth adding a bookmark here. Eventually you will remember and recognize these methods. Moreover, all of these methods were re-implemented in Rails web framework to deal with collections. Here are some examples how you can use them:

 	Select all registered users

 	Reject users with unconfirmed email address

 	Select users by certain criteria (age, gender, payment method, etc.)

 	Take first/next 10 users from collection to display them on page 1, page 2, and so on.

Symbols

Symbols are very similar to strings. Symbols are instances of Symbol class (and strings are instances of String class). Here is how you define a symbol in Ruby:

assign symbol :something to variable "x"
x = :something

Compare the code above to strings definition:

x = "something"
x = 'something' # alternative syntax

We use symbols when logically variable belongs to a set of similar values, for example:

order.status = :confirmed
order.status = :cancelled

Symbol “:confirmed” can be used in other parts of a program. But why are we using symbols in Ruby when the code above works well with strings? Consider:

order.status = 'confirmed'
order.status = 'cancelled'

It’s true, we often don’t have to use symbols. Moreover, in some programming languages there is no any concept of symbols at all (for example, in JavaScript). But there are few reasons why a Ruby programmer wants to use symbols.

First reason is that symbols are immutable. One can’t perform dangerous operations on them, but it’s possible for strings (like “upcase!”). In other words, by using symbols you demonstrate your intent: this value is fixed, and there is probably a limited set of similar values.

It’s similar to a theatre ticket. You can write “Sector A” by hand on every ticket or you can use rubber stamp for this purpose. Stamping takes less resources and it is much faster. Moreover, every word written by hand is unique, like strings - they look the same, but technically located in different parts of computer memory. But stamped words are always the same and lead to the only one source.

Second reason is that symbols are efficient and reusable, and because of immutability Ruby interpreter doesn’t need to allocate memory every time you create a new symbol. For example, if you have a string of “something” (9 characters), and you define this string in thousands of different places, interpreter will use at least of 9000 bytes of memory when program gets executed.

But that’s not the case for symbols. We allocate only one chunk of memory per symbol, so no matter how much definitions of “something” we have, we’ll use only 9 bytes of memory.

Technically speaking, references to the same symbols are always the same. References to the same strings aren’t always the same, they can be the same.

Let’s play and use a bit tricky way to create an array of strings, for each create-operation we’ll be calling a block:

arr = Array.new(100) { 'something' }

Code above creates 100 strings of “something”. These strings are all different objects. Here is how you can verify that (use __id__ property of Object):

> arr[0].__id__
70100682145140
> arr[1].__id__
70100682144840

But when we create an array of symbols using the same trick, result is different - Object identifier is always the same:

$ pry
> arr = Array.new(100) { :something }
...
> arr[0].__id__
2893788
> arr[1].__id__
2893788

In other words, array of symbols has references to the only one object.

Another benefit of symbols is that Ruby compares symbols by reference only. And reference is just a value like 0xDEADBEEF that fits into one of CPU registers (4-8 bytes, depending on architecture).

That being said, Ruby can compare symbols by comparing two short references. But string comparison implemented with byte-by-byte comparison, with two pointers to different areas of a memory, so it’s very inefficient.

Computer scientists say that two symbols comparison operation takes constant time (often represented by big-O notation as O(1)). And string comparison takes linear time, O(N).

Your program will work fine if you always use strings and never use symbols. But if you’re looking to optimize your code, and make it more efficient, or to show your intent to other programmers, you might need symbols.

 Exercise

 You’re becoming more professional programmer, and this time you were assigned a real story from your technical lead. Here is how it sounds:
_As a user, I want to play rock-scissors-paper game with a computer, so I can spend my time with fun. You can use “[:rock, :scissors, :paper].sample” to get the random symbol. Here is how the beginning of a game may look like:

print "(R)ock, (S)cissors, (P)aper?"
s = gets.strip.capitalize

if s == ...

Hash

Hash data structure has many names: hash, hash table, map, dictionary, and even object in JavaScript. Hash and array are essential data structures for any programmer. These data structures are different, but they were designed for the same goal: to store and retrieve data. The only difference is how these two operations are implemented.

What is array and how do we store and get the data back from array? Imagine that a kid has lots of items (toys). Mother put all these toys to a single shelf and assigned sequential number (1, 2, 3 and so on). We need to visually scan the entire shelf if we want to find our favorite toy. It can take some time if this shelf is long enough. However, we can easily find a toy if we know its number.

Hash looks like a magic bucket. There is no any order, and we don’t know how it works. You can put any object to this magic bucket and assign a name: “Hey, magic bucket, here is a ball”. We can also get any object from it: “Hey, magic bucket, give me this thing called ball”. Important detail is that we name things, and use this name to get objects back. This name is the key (or hash key). And item lookup happens in constant time, immediately.

But how does this magic bucket work? Why in the case of array we have to scan the entire shelf while magic bucket takes no time4? Secret is its inner organization and how it works under the hood: there are multiple small buckets (“bucket” is the actual name for inner structure), and object goes to specific small bucket, depending on its characteristics (let’s say, color). More objects require more inner buckets to be present.

If the hashes are so good, why not always use them?

First, this data structure does not guarantee any order. If we add data to an array using “push”, we know exactly which element was added first, which one after. But there is no order in the hash once value is there, also there is no way to tell when it got there.

Note: although the hash data structure doesn’t guarantee any order, order is guaranteed by Ruby hash implementation (however, the authors wouldn’t recommend relying on it). This is what the official documentation at https://ruby-doc.org/core-2.5.1/Hash.html says:

 Hashes enumerate their values in the order that the corresponding keys were inserted.

But since any web developer should know JavaScript at least at a minimum level, let’s see what the documentation on JS says about it:

 An object is a member of the type Object. It is an unordered collection of properties each of which contains a primitive value, object, or function

However, in the newer version of JavaScript (ES6 and above), the Map class (one of hash implementations) will return values from the hash in the order. So rule of thumb here is not to rely on the hash order.

Secondly, for every data structure there is such a concept as “the worst time of execution”. In case of Hash it is linear time, O(N): the code will scan through all the elements. But in case of arrays, lookup by index5 always takes constant time, O(1). So if we’re okay with using indexes (like 0, 1, 2) instead of keys (like :red, :green, :blue), then it’s better to use arrays, it’s guaranteed to be faster.

However, the worst cases are not common in practice, and the main reason programmers use hashes is convenience for a human being. It is much easier to say “get the ball” than “get the object by index 148”.

To define a hash in a Ruby program we need use curly brackets (square brackets are used for arrays):

$ pry
> obj = {}
...
> obj.class
Hash < Object

Don’t name your variable “hash”, because it is a reserved language keyword (but you can enter it into the REPL and see what happens). That’s why the authors normally use “obj” (object) or “hh” (double “h” says it’s more than just a variable).

Programmers say that the hash is a key-value storage, where each key is assigned a value. For example, the key is a “ball” (string), and the value is the physical object “ball” itself. The hash is often called “dictionary”. This is partly true, because the dictionary of words is a perfect example of hash. Each key (word) has a meaning (description of the word and/or translation). In the Java language hash used to be called “dictionary” too, but since the seventh version this concept has become obsolete and the dictionary has been renamed into “map”6.

The key and value in the hash can be any object, but most often the key is a String (or Symbol), and the value is… The value is the actual object, it is difficult to predict what it will be. It can be a string, a Symbol, an array, a number, another hash. So when developers define a hash in a Ruby program, they normally know in advance what type it will keep.

For example, let’s agree that the key in the hash is Symbol, and the value is a number (type Integer). We’ll keep the weight of different types of balls (in grams) inside of our hash:

obj = {}
obj[:soccer_ball] = 410
obj[:tennis_ball] = 58
obj[:golf_ball] = 45

If you write this program into the REPL and type “obj”, you will see the following:

{
 :soccer_ball => 410,
 :tennis_ball => 58,
 :golf_ball => 45
}

Text above is perfectly valid from the Ruby’s language perspective, and we could initialize our hash without writing the values (without using assignment operator “=”):

obj = {
 :soccer_ball => 410,
 :tennis_ball => 58,
 :golf_ball => 45
}

The operator “=>” in Ruby is called “hash rocket” (in JavaScript “fat arrow”, but has a different meaning). However, the “hash rocket” notation is now obsolete. It would be more correct to write the program this way:

obj = {
 soccer_ball: 410,
 tennis_ball: 58,
 golf_ball: 45
}

Pay attention that despite the fact that the record looks different, if we write “obj” in REPL, we will get the same conclusion as above. In other words, the keys (:soccer_ball, :tennis_ball, :golf_ball) are Symbol types in this case.

To get the value back from the hash, use the following construction:

puts 'Golf ball weight:'
puts obj[:golf_ball]

So you access hash very similar to array, but instead of index you use the key. Compare:

arr[4]
obj[:golf_ball]

Keep in mind that symbols (Symbol) are not strings (String). Consider the following example where we add two entries (with the same value of 45), they visually look very similar, but in practice hash will keep two different objects:

obj = {}
obj[:golf_ball] = 45
obj['golf_ball'] = 45

Hash above is initialized with two key-value pairs. First key has the type of Symbol, and the second has the type of String:

{ :golf_ball => 45, "golf_ball" => 45 }

 Exercise 1

 Using the hash below write a program that transforms the hash to the Moon conditions. It’s known that weights on the Moon are 6 times less than weights on the Earth:

obj = {
 soccer_ball: 410,
 tennis_ball: 58,
 golf_ball: 45
}

 Exercise 2, the Moon store

 Using the hash from the previous exercise write a program that for every type of the ball above will ask the number of items user wants to buy. User should be able to type the number from a console. At the end program should calculate the weight of all items in the cart. Also, program should print both weights: for Moon and Earth.

Other types as Hash values

In previous chapter we figured out that hash is a set of key-value pairs, where key is usually Symbol or String and value is an object. We used the type Integer in our examples. However, there is no any limitation here and we can use any types for keys and values, including strings, arrays, and even other hashes!

It’s the same for arrays. Array elements can be numbers, strings, array themselves (in this case we’ll get two-dimensional arrays), and even hashes. And these hashes can contain other hashes and other arrays. In other words we can use any combination of arrays and hashes, and create deeply nested data structure called JSON (JavaScript Object Notation - we’ve already mentioned that the hash in JavaScript is often called “object”). Despite the fact that this acronym originates from JavaScript, it is also widely used in Ruby.

Here is how this combination might look like:

obj = {
 soccer_ball: { weight: 410, colors: [:red, :blue] },
 tennis_ball: { weight: 58, colors: [:yellow, :white] },
 golf_ball: { weight: 45, colors: [:white] }
}

Let’s break down the code above into smaller parts. Here is the top-level hash:

obj = {
 ... this is the hash ...
}

For every key in the hash above we define another hash, like:

obj = {
 soccer_ball: { ...this is the hash... },
 tennis_ball: { ...this is another hash... },
 golf_ball: { ...and another hash... }
}

And all of these three hashes have the following keys and corresponding values:

 	Key :weight (Symbol), value type: Array

 	Key :colors (Symbol), value type: Array

Note the :golf_ball hash, it has :colors key with the type of Array, but technically it can be written as follows:

 golf_ball: { weight: 45, color: :white }

We’ve intentionally chosen the Array type initially, it was a programmer’s choice. Ruby allows any syntax, but our decision was to to keep the structure (or schema). We’re doing this for the following reasons:

 	To avoid ambiguity. Every line looks similar.

 	To keep array of “colors”, so we can add another color in the future. It’s a good example of how programmers plan their programs. They have option of choosing any type, but what works better now and what will work better in the future? Is there any information that indicates that we might need this or another type in the future? In our case we have this information - all previous records have more than one color.

 	To keep the code simple. We’re not talking about existing code, but about the code that traverses a data structure. If data structure is uniform, the code is going to be more simple, because there won’t be any special/edge cases like handling two different types for the same purpose.

In other words, often JSON objects have schema, well-defined structure. But how one can access such a nested object? Well, the same way we access arrays and hashes, but combining these access operations. Let’s print all the colors for the tennis ball:

arr = obj[:tennis_ball][:colors]
puts arr

Weight for the golf ball:

weight = obj[:golf_ball][:weight]
puts weight

Add new “:green” color to array of colors for the tennis ball:

obj[:tennis_ball][:colors].push(:green)

Structure we defined above starts with curly bracket. It means that JSON object has the type of Hash. But JSON objects can be arrays too. It depends on your application requirements. If the primary goal of our application is to print a list (we don’t need any random access to update or read the hash), JSON object above can be represented the other way:

obj = [
 { type: :soccer_ball, weight: 410, colors: [:red, :blue] },
 { type: :tennis_ball, weight: 58, colors: [:yellow, :white] },
 { type: :golf_ball, weight: 45, colors: [:white] }
]

The structure above is nothing else, but a array of objects with some properties (keys):

obj = [{}, {}, {}]

Depending on requirements a programmer defines the right representation of data.

 Exercise 1

 Online store defines a shopping cart the following way (qty is the quantity of items):

cart = [
 { type: :soccer_ball, qty: 2 },
 { type: :tennis_ball, qty: 3 }
]

And the warehouse availability is defined by the following hash:

inventory = {
 soccer_ball: { available: 2, price_per_item: 100 },
 tennis_ball: { available: 1, price_per_item: 30 },
 golf_ball: { available: 5, price_per_item: 5 }
}

Write a program that prints the total price of all items in the cart, and also informs if there is enough items at warehouse. Try to change cart and inventory and see if your program works correctly.

JSON-structure of a real-world application

JSON-structure is a universal way of describing almost any data. For example, the following hash describes the state of UI7 of minimalistic TODO-list application:

{
 todos: [{
 text: 'Eat donut',
 completed: true
 }, {
 text: 'Go to gym',
 completed: false
 }],
 visibility_fiter: :show_completed
}

UI part of the app may look like this:

 [image: To-Do app, first item is visible, "Show completed" switch is on]
 To-Do app, first item is visible, “Show completed” switch is on

If we break down this data structure, we’ll see that there is no magic:

{
 todos: [{ ... }, { ... }, ...],
 visibility_fiter: :show_completed
}

Value by the key of :todos is Array. Every element of the array is hash (object), which has two properties: 1) text 2) completion flag (Boolean type which is either true or false). Root level hash has also :visibility_filter key with corresponding value of :show_completed. It’s up to developer to pick the right naming for hash keys or values. We just assume that somewhere some part of our program will be responsible for filtering out items based on the value of the filter. That’s why we have two items in todos-array, but show only one on the mockup above.

When we turn off the switch, the UI will look different:

 [image: To-Do app, all items are visible, "Show completed" switch is off]
 To-Do app, all items are visible, “Show completed” switch is off

And the state of the program will be represented by slightly different hash:

{
 todos: [{
 text: 'Eat donut',
 completed: true
 }, {
 text: 'Go to gym',
 completed: false
 }],
 visibility_fiter: :show_all
}

When we want to add an item (“Call mom” below), we just push this element to “todos” array:

{
 todos: [{
 text: 'Eat donut',
 completed: true
 }, {
 text: 'Go to gym',
 completed: false
 }, {
 text: 'Call mom',
 completed: false
 }],
 visibility_fiter: :show_all
}

So the last item gets reflected in UI:

 [image: To-Do app with one extra item]
 To-Do app with one extra item

 Exercise 1

 Create a JSON structure to represent the state of the following online-banking account:

 [image: UI of an online banking account]
 UI of an online banking account

 Exercise 2

 Write a program that accepts hash you created in Exercise 1 and prints the result to the screen. Make sure that switch above works and the program doesn’t show any deposits if the switch is off.

English-Spanish dictionary

Let’s practice to sum up everything we know about hashes, arrays, and their combinations. We’re going to build minimalistic English-Spanish dictionary application. You can guess from the title which data structure we’ll be using: hash (also known as dictionary, or hash map, or “object” in JavaScript).

The most important thing here is database. We won’t be using sophisticated database management systems like Postgres, MySQL, etc. But we’ll keep data organized in the data structure in computer’s memory. It could look like this:

dict = {
 'cat' => 'gato',
 'dog' => 'perro',
 'girl' => 'chica'
}

We’re saying “it could look like” because there is no single opinion at this time. Feel free to use any other data structure. In our case it’s going to be a set of key-value pairs, where key is English word (String type), and value is translation (Spanish word, String type).

Hash data structure allows to perform fast lookups in our database. “Fast” here means lookups in constant time (or O(1)). Simply put, no matter how many words do we have in hash, lookup time is going to be about the same.

Compare this approach to arrays. We still can solve this problem using arrays, however there are few caveats. Here is how the code would look like:

arr = [
 { word: 'cat', translation: 'gato' },
 { word: 'dog', translation: 'perro' },
 { word: 'girl', translation: 'chica' }
]

But to find element in array we’ll need to iterate over the each element and perform comparison. More elements we have, more time we need for lookups. In other words, the number of elements we need to check grows along with the size of array. Computer Science says the search complexity takes linear time, O(N) (where N is the number of elements).

In real life you probably won’t notice this difference for small number of elements. Moreover, newer versions of Ruby language use arrays instead of hashes for 7 elements or below! We won’t see it though, because normally programmers don’t need to poke around with a language internals. However, anyone can open up Ruby language implementation (which is written with C) and confirm that.

Anyway, hash serves better for our purposes. By using this or another data structure we demonstrate our intention to other programmers: “we’re using this specific data structure, and we assume that we’re going to use this data structure specific way”. The way you implement your programs will “dance” around decisions you made at the very beginning, and picking the right data structure is the most important step.

One can look up an element in array by simply providing an index, which is a number ranging from zero to the size of array. In case of dictionary application we don’t know these numbers, we know words. We have a key word, and we need to find out the value word. Here is how you perform lookups in the hash:

dict[input]

Here is how minimalistic application would look like:

dict = {
 'cat' => 'gato',
 'dog' => 'perro',
 'girl' => 'chica'
}

print 'Type a word to translate: '
input = gets.chomp

puts "Translation to Spanish: #{dict[input]}"

Result:

Type a word to translate: dog
Translation to Spanish: perro

Keep in mind that we have one-way dictionary only, it’s English-Spanish. You can’t use it reverse to lookup Spanish words, because you access a hash by the key, not by value. There is no any way for reverse-lookup in hashes. The only workaround to create another, reverse-hash for this specific purpose, where keys are Spanish words and values are English ones.

Constant O(1) and linear O(N) times are definitions from Computer Science. Beginner programmers don’t need to know all the details, but it’s always important to ask yourself - what would be the time complexity if I implement my program this way, is this approach going to be efficient? Time and space complexities for all popular data structures could be found in the Poster of common algorithms used in Computer Science

For example, you can see that the average time complexity to search in array is linear O(N); while for hashes it is constant O(1):

 [image: Computer Science Poster]
 Computer Science Poster

 Exercise 1

 Implement sophisticated English-Spanish dictionary, where one English word is represented by multiple Spanish translations.

 Exercise 2

 Implement your own phone book. For every record (key is the last name) specify three additional parameters: email, cell_phone, work_phone. Program should ask for the last name and show contact info.

Comparison of hashes and arrays

Initialization

Array: arr = []

Hash: hh = {}

Iteration

Array:

arr.each do |element|
 # ...
end

Hash:

hh.each do |key, value|
 # ...
end

or

hh.each_key do |key|
 # ...
end

Data representation

Array, sequential collection of elements:

 [image: Array]
 Array

Hash, data stored in an associative manner:

 [image: Hash]
 Hash

Access

Array, access by index (type Integer):

 	arr[0]

 	arr[1]

 	
arr[2], etc.

Hash, access by key where the key is an object of any type (Symbol, String, Integer, etc):

 	hh[:whatever]

 	hh['cat']

 	
hh[31337], etc.

Purpose

Array: represent elements in sequential order.

Hash: keeps data in an associative manner with the fast access by a key. Can be used to keep configuration settings, options, parameters.

Class

Arrays: represented by Array class.

Hashes: represented by Hash class.

Most often used methods of Hash class

In general, “Hash” data structure is pretty straightforward. Ruby language has some methods of Hash class that you will probably see in other languages as well. Here is how, for example, hash access looks like in JavaScript:

$ node
> hh = {};
{}
> hh['something'] = 'blabla';
'blabla'
> hh
{ something: 'blabla' }

Difference is that JavaScript doesn’t have Symbol type, and most of the time strings are used as hash keys. Compare Ruby to JavaScript.

Ruby:

hh[:something]

or (also valid syntax):

hh['something']

JavaScript:

hh['something']

Hash is the data structure that is also implemented in other tools, for example, in databases. Well-known Redis database is nothing but sophisticated key-value storage. In previous chapters we’ve implemented a phone book. But imagine that we need to persist this data on application restart. We have a couple of ways to do that. For example, we can save (serialize) this information into a file. This approach works great, but it can be a little bit slow when you have millions of records. Another approach is to use this NoSQL database, central storage operated by Redis through an API (Application Program Interface).

No matter what exactly you’re using, either some sort of library (gem), data base, or plain old Ruby language (or even other programming language), interface for Hash access remains the same:

 	“get(key)” - gets the value

 	“set(key, value)” - set the value for a specific key

Documentation for Redis database has similar example:

redis.set("mykey", "hello world")
=> "OK"

redis.get("mykey")
=> "hello world"

Wikipedia says that Redis is nothing but a key-value store:

 Redis is… key-value store…

Curious reader might ask “why do I need Redis while we have hash data structure implemented in Ruby, and it is represented by Hash class?” Well, Hash in Ruby language doesn’t keep the data on disk, so every time you restart your program, all the data you stored in hash goes away. For example, your phone book application isn’t very useful because of that - you can keep the program running, but if you need to restart your computer you’ll need to type in your phone records again. The second reason is that Redis was designed to keep millions and millions of key-value pairs efficiently. And normally we don’t keep that number of records in simple hash in Ruby language (or any other language).

Below we’ll take a look at the most often used methods of Hash class. All of these methods are also explained in documentation.

Setting a default value in Hash

It is often useful to have default values in a hash. You might even want to make a bookmark, since that trick can be used while solving interview questions. We’ll take a look at one of these questions.

Given a sentence calculate the usage frequency for each word. For example, there are two words “the” in the sentence, one “dog”, and so on. How do we solve this problem?

Imagine we have a string “the quick brown fox jumps over the lazy dog”, let’s split this string into array, so we have array of words for this sentence:

str = 'the quick brown fox jumps over the lazy dog'
arr = str.split(' ')

We have array of words in “arr” variable, let’s traverse the array and put each element into a hash, where hash key is the word itself, and the value is the counter. As the first step we will just set this counter to one (1) for every word:

hh = {}
arr.each do |word|
 hh[word] = 1
end

However, we don’t want to set the counter to one (“1”), since we want to calculate the number of occurrences of every word in a sentence. So we need to increase the counter by one. We can’s just do “hh[word] += 1” (or “hh[word] = hh[word] + 1”), because if the word is not present in the hash, we’ll get the following error:

NoMethodError: undefined method `+' for nil:NilClass

In other words, “plus” operation isn’t applicable to nils. So we need to perform a comparison: if the word is already in the hash, increase the counter by one. Otherwise, just add this word with initial counter value (which is one):

arr.each do |word|
 if hh[word].nil?
 hh[word] = 1
 else
 hh[word] += 1
 end
end

Here is how full application listing would look like:

 Calculate the number of words in a sentence
 1 str = 'the quick brown fox jumps over the lazy dog'
 2 arr = str.split(' ')
 3 hh = {}
 4
 5 arr.each do |word|
 6 if hh[word].nil?
 7 hh[word] = 1
 8 else
 9 hh[word] += 1
10 end
11 end
12
13 puts hh.inspect

Program above works as expected, and here is the result:

{"the"=>2, "quick"=>1, "brown"=>1, "fox"=>1, "jumps"=>1, "over"=>1, "la\
zy"=>1, "dog"=>1}

Readability of the program above can be improved if we could set the initial (default) value for the hash, for example:

 Calculate the number of words in a sentence
1 str = 'the quick brown fox jumps over the lazy dog'
2 arr = str.split(' ')
3 hh = Hash.new(0)
4
5 arr.each do |word|
6 hh[word] += 1
7 end
8
9 puts hh.inspect

Nine lines of code instead of thirteen!

But what exactly “Hash.new(0)” means? It has two parts:

 	
Hash.new - initializing hash, compare it to the shorter alternative: {}

 	
Hash.new(0) - providing parameter while creating an instance of a Hash class (we’ll cover what “creating instance” is in the next chapters). In this case “0” is the parameter and initial value for default hash values.

 Exercise

 Create a program that calculates the number of occurrences of different letters (characters, not words) for the given sentence and prints result to the screen.

Passing parameters to methods

Let’s say we need to call a method and pass multiple parameters to this method. For example, a user has selected specific number of soccer balls, tennis balls, and golf balls. We need to create a method to calculate the total weight. It can be done the following way:

def total_weight(soccer_ball_count, tennis_ball_count, golf_ball_count)
 # ...
end

And the method call itself would look like:

x = total_weight(3, 2, 1)

Three soccer balls, two tennis balls, and one golf ball. Will you agree that “total_weight(3, 2, 1)” doesn’t look very readable from the first sight? We know what 3, 2, and 1 are, because we created this method. However, for developers from our team it can be misleading. They have no idea which parameters go first, and they need to examine the source of “total_weight” function to understand that.

It’s not super convenient, and some IDEs (Integrated Development Environment) and code editors automatically suggest the names of method parameters. For example, this functionality is implemented in RubyMine editor. However, Ruby is dynamically typed programming language, and sometimes even sophisticated code editors can’t find out the parameter names for a method. Also, often Ruby programmers don’t use these sophisticated code editors, and prefer lightweight (and fast) code editors without these features.

So most programmers would love the “total_weight” method to be implemented the slightly different way:

def total_weight(options)
 a = options[:soccer_ball_count]
 b = options[:tennis_ball_count]
 c = options[:golf_ball_count]
 puts a
 puts b
 puts c
 # ...
end

params = { soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_count:\
 1 }
x = total_weight(params)

Will you agree that

total_weight({ soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_co\
unt: 1 })

looks much more clear than just “total_weight(3, 2, 1)”?

Yes, syntax with passing method parameters as a hash takes more space on the screen, but it has the following advantages.

First is that parameter order is not critical anymore, parameters are named now. In case of “total_weight(3, 2, 1)” we need to respect the order, and always remember the right order: first parameter is for the number of soccer balls, etc. In case of parameters as a hash we can provide parameters regardless of an order:

total_weight({ golf_ball_count: 1, tennis_ball_count: 2, soccer_ball_co\
unt: 3 })

Programming is more fun now because we don’t have to remember the parameter order. Also, we can simplify that syntax a little bit more and omit curly braces:

total_weight(golf_ball_count: 1, tennis_ball_count: 2, soccer_ball_coun\
t: 3)

With all these improvements in mind the method call to calculate the weight of an order can be rewritten the following way:

 Calculate total weight, accept options as a hash
 1 def total_weight(options)
 2 a = options[:soccer_ball_count]
 3 b = options[:tennis_ball_count]
 4 c = options[:golf_ball_count]
 5 puts a
 6 puts b
 7 puts c
 8 # ...
 9 end
10
11 x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
12 count: 1)

But what if we call the method above without any arguments at all? The initial expectation is that method should return zero. However, we’re getting the error:

 ArgumentError: wrong number of arguments (given 0, expected 1)

Ruby says that method expects one parameter, but zero were given. From the business logic perspective the error above look reasonable: don’t call a method the wrong way (especially the method that calculates something); if you need to get the total weight, provide parameters explicitly: how many soccer, tennis, and golf balls do you want.

But imagine that we want “total_weight” method to be called without any parameters at all. In other words, we’ll have signatures, two ways of calling the method:

 	
total_weight(options) - with options

 	
total_weight - without any options

If options aren’t provided we should return the weight of an empty box (29 grams, for example). How could we do that?

The trick is to assign default value to “options” with special Ruby syntax. In our case we can just assign an empty hash: “{}”. If hash is empty variables “a”, “b”, and “c” on lines 3-4 will be initialized with “nil”.

Here is the Ruby syntax to assign default value to a parameter:

def total_weight(options={})
...

Let’s take advantage of this feature and improve our program:

 Calculate total weight, accept options as a hash, where options parameter has default value
 1 def total_weight(options={})
 2 a = options[:soccer_ball_count]
 3 b = options[:tennis_ball_count]
 4 c = options[:golf_ball_count]
 5 puts a
 6 puts b
 7 puts c
 8 # ...
 9 end
10
11 x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
12 count: 1)

“total_weight” method now can be called without any parameters (try it yourself in “pry”).

The following program is improved version of the code above and does the actual calculation of total weight, including the weight of the box:

 Calculate the total weight in grams, including the weight of a shipping box
1 def total_weight(options={})
2 a = options[:soccer_ball_count]
3 b = options[:tennis_ball_count]
4 c = options[:golf_ball_count]
5 (a * 410) + (b * 58) + (c * 45) + 29
6 end
7
8 x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
9 count: 1)

Program above works and calculates the total weight correctly. For three soccer, two tennis, one golf ball, and one shipping box it produces 1420 grams. But what if you call “total_weight” without any parameters?

...
> total_weight
NoMethodError: undefined method `*' for nil:NilClass

Oops! What is happening here? Well, if you won’t specify the parameter, it won’t exist in “options” hash on lines 2-4, and variables “a”, “b”, and “c” will equal to nil. And nils can’t be multiplied:

$ pry
> nil * 410
NoMethodError: undefined method `*' for nil:NilClass

There is one trick we can do here: use “or” logic operator. Try to guess the result of execution of the following program:

if nil || true
 puts 'Yay!'
end

It prints “Yay!” in the terminal. Ruby sees nil, which is “falsy” condition. However, “||” (double pipe) says there is something else to check. And something else is “true”.

So “nil || true” always produces “true”. And result of this expression returns back to if-statement, and at the end we’re getting “if true, then print Yay!”.

Now try to guess what would be the value of variable “x” after executing the following expression:

x = nil || 123

Correct answer is “123”. The same trick can be applied to “a”, “b”, and “c” variables, for example:

 a = options[:soccer_ball_count] || 0

In other words, “a = ... || default_value” is conventional syntax for setting default values to a variable, you’ll see it a lot, so don’t get confused. If value in options is not specified, it will be set to “0” by default.

 Calculate total weight and use default values
1 def total_weight(options={})
2 a = options[:soccer_ball_count] || 0
3 b = options[:tennis_ball_count] || 0
4 c = options[:golf_ball_count] || 0
5 (a * 410) + (b * 58) + (c * 45) + 29
6 end
7
8 x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
9 count: 1)

In the program above we use default value syntax 4 times:

 	on line 1, when we define default value {} for “options”

 	on lines 2-4, when we set default value “0” for undefined hash keys

Now “total_weight” works without any parameters and returns 29 (grams) for an empty box. You can also pass any number of parameters from zero to three:

> total_weight
29
> total_weight(tennis_ball_count: 2, golf_ball_count: 1)
190
...

Now imagine that we have a new business requirement. Product owner says “we’re giving away one free golf ball for every order”. How this requirement would affect the method we’ve just created? We simply change the default value for a golf ball count from zero to one:

 Calculate total weight and use default values
1 def total_weight(options={})
2 a = options[:soccer_ball_count] || 0
3 b = options[:tennis_ball_count] || 0
4 c = options[:golf_ball_count] || 1 # <- changed here
5 (a * 410) + (b * 58) + (c * 45) + 29
6 end
7
8 x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
9 count: 1)

We’ve covered how to pass parameters as a hash to a method. This way of passing parameters is widely used in real life applications, especially when there is a need to pass more than 5 values. Similar approach is used in other programming languages.

 Exercise

 Soviet Mission Control Center assigned you a task to implement “launch” method for experimental space ship. Method must accept parameters as a hash and send dog astronauts to the space. Parameter names:

 	“angle” - space ship launch angle. Equals to 90 if not specified.

 	“astronauts” - ids of astronauts represented as array of symbols (Symbol). Possible values: :belka and/or :strelka. If not specified, both Belka and Strelka must be sent to the space.

 	“delay” - the number of seconds for delay before space ship launch. Equals to 5 if not specified.

Method should interactively (by producing numbers to the terminal) count the time left to start (example: “Time to start: 5 4 3 2 1”). Right after that moment print the names of astronauts who have been sent to the space with information about the space ship angle. Method should accept any number of parameters (from zero to three). Possible ways of calling this method:

 	launch

 	launch(angle: 91)

 	launch(delay: 3)

 	launch(delay: 3, angle: 91)

 	
launch(astronauts: [:belka]) and so on

HashSet

There is a way in Ruby language to list all the keys in a hash, here is how this method works:

$ pry
> hh = {}
=> {}
> hh[:red] = 'ff0000'
=> "ff0000"
> hh[:green] = '00ff00'
=> "00ff00"
> hh[:blue] = '0000ff'
=> "0000ff"
> hh.keys
=> [:red, :green, :blue]

We defined a hash and pushed a few key-value pairs in it. Keys are of a type of Symbol, and values are just strings (String). Just FYI, these strings (ff0000, 00ff00, 0000ff) are conventional three-byte representation of color code RGB, where first byte is responsible for red (R) color, second for green (G), and third one for the blue (B).

Getting the list of hash keys isn’t very often used operation. However, there is a need to use keys only in a hash.

A programmer is free to use hash data structure and arbitrary data for values (like true, for example), but there is a special hash-like data structure designed to keep keys only, without any values. The common name of this data structure is HashSet (in Ruby language represented by Set class):

 Set implements a collection of unordered values with no duplicates

In other words, set is a collection of items that usually originate from the common source.

Let’s practice to understand HashSet a little bit more: given an English sentence, find out if all the letters of English alphabet were used in this particular sentence. For example, sentence “quick brown fox jumps over the lazy dog” is commonly used to test typewriters, printers, fonts, and so on - because it uses all the letters of English alphabet. And if we omit the first word (“quick”), we won’t find the letter “q”: “brown fox jumps over the lazy dog”.

We’ll create a method that will return “true” if all the letters of English alphabet were used for the provided string, otherwise “false”. How would you approach this problem?

Well, it’s actually pretty straightforward. We’ll iterate over the each character in given string, and if it’s not space, we’ll add it to hash (regardless of its existence in the hash, because keys in a hash are always unique and aren’t duplicated). Since there are no duplicates in a hash, we can only have 26 records maximum, one record for each letter of English alphabet.

But there is something that feels off in this challenge. If we use classic hash, we need to set keys and values. And value in this case will be useless:

hh[letter] = true

true, or false, one, zero or any string is fine as the value in the line above, because we just do not check it later. We rely on the hash data structure and check “size” property, but we never use the value. In other words, we’re wasting computer memory for the values we don’t need. It would be nice if we could avoid that, and the most important thing it would be nice to show our intention - “we don’t need values in hash for this particular purpose”.

And it is where HashSet data structure comes into play. Here is how our program listing looks when we use HashSet (represented by Set class in Ruby):

 Find out if all letters of English alphabet are used in given sentence
 1 # Import namespace below, because "set"
 2 # is not imported by default.
 3 require 'set'
 4
 5 # The main that accepts a string (sentence).
 6 def f(str)
 7 # Create set instance
 8 set = Set.new
 9
10 # Iterate over each character in a string
11 str.each_char do |c|
12 # Only if character is greater than "a" and less than "z"
13 # (ignore other characters)
14 if c >= 'a' && c <= 'z'
15 # Add to set
16 set.add(c)
17 end
18 end
19
20 # result is true when all letters of English alphabet are present
21 set.size == 26
22 end
23
24 # prints true, because we use all letters of English
25 # alphabet in the following sentence
26 puts f('quick brown fox jumps over the lazy dog')

Question “What’s the difference between Hash and HashSet?” is one of the popular interview questions. Not knowing these details doesn’t indicate that you cannot write computer programs. But knowing that shows that you’re familiar with data structures, can understand subtle differences and probably you’re just more experienced developer.

One of mistakes you can make here is to start splitting the given string into individual characters (objects, represented by instances of String class) by using “split” method:

> "quick brown fox jumps over the lazy dog".split('')
=> ["q", "u", "i", "c", "k", " ", "b", "r", "o", "w", "n", " ", "f", "o\
", "x", " ", "j", "u", "m", "p", "s", " ", "o", "v", "e", "r", " ", "t"\
, "h", "e", " ", "l", "a", "z", "y", " ", "d", "o", "g"]

While this might work for relatively short strings, method “split” allocates N objects in memory, where N is the length of the string. But there is actually no need to allocate anything more than 26 objects inside of a HashSet, and we can use iteration over the string by using native String class methods (which, in fact, will allocate these objects anyway, but one by one. And these objects will be disposed by garbage collector on the way).

Another common pitfall here is iteration to the end of a string. In a normal block of text the probability of not meeting all the letters of English alphabet decreases with every iteration. So most likely you won’t need to iterate over each character in four-gigabyte string and update HashSet on the way.

 Exercise 1

 Program above has one of described pitfalls. Can you spot that?

 Exercise 2

 After reading this chapter try to implement this program by yourself without looking into the book.

Iteration over hash elements

Iteration over hash elements isn’t something you see very often, because the main purpose of hash data structure is to add and access elements by a key. However, it’s always good to know and have understanding about how to iterate over elements. We already know how to iterate over arrays:

arr.each do |element|
 # do something with element
end

Iteration over key-value pairs looks similar:

hh = {
 soccer_ball: 410,
 tennis_ball: 58,
 golf_ball: 45
}

hh.each do |k, v|
 puts "Weight of #{k} is #{v} grams"
end

Result:

Weight of soccer_ball is 410 grams
Weight of tennis_ball is 58 grams
Weight of golf_ball is 45 grams

Variables “k” and “v” represent key and value of this particular iteration. You can omit value if you don’t need it, or just replace “v” with a string starting with “_” (underscore), or just with a single underscore. It’s not a Ruby syntax, but naming conventions everyone understands - if you don’t need something, use underscore prefix to show your intention:

hh = {
 soccer_ball: 410,
 tennis_ball: 58,
 golf_ball: 45
}

hh.each do |k, _|
 puts "Warehouse has #{k}"
end

Code above can also be rewritten by using “each_key” method of a Hash class.

 Exercise

 Given the following data:

data = {
 soccer_ball: { name: 'Soccer ball', weight: 410, qty: 5 },
 tennis_ball: { name: 'Tennis ball', weight: 58, qty: 10 },
 golf_ball: { name: 'Golf ball', weight: 45, qty: 15 }
}

Write a program that prints:

Warehouse availability:
Soccer ball, weight 410 grams, quantity: 5 items
Tennis ball, weight 58 grams, quantity: 10 items
Golf ball, weight 45 grams, quantity: 15 items

“dig” method

Look at the following nested data structure:

users = [
 { first: 'John', last: 'Smith', address: { city: 'San Francisco', c\
ountry: 'US' } },
 { first: 'Pat', last: 'Roberts', address: { country: 'US' } },
 { first: 'Sam', last: 'Schwartzman' }
]

The structure above has its own data scheme. The format is the same for every record (there are 3 total records in this array), but two last records are missing something. For example, the second one is missing the “city”. Third record doesn’t have “address”. And what we want is to print all the cities from all the records (we might have more than three).

First thing that comes to mind is iteration over the array of elements and using standard hash access:

users.each do |user|
 puts user[:address][:city]
end

Why that wouldn’t work? Let’s give it a try:

San Francisco

-:8:in `block in <main>': undefined method `[]' for nil:NilClass (NoMet\
hodError).

Oops, it produces error. But why? Well, let’s try to access every element manually:

$ pry
> users[0][:address][:city]
=> "San Francisco"
> users[1][:address][:city]
=> nil
> users[2][:address][:city]
NoMethodError: undefined method `[]' for nil:NilClass

Here we go. It worked for the first element. There was also no any error for the second element, result is just “nil”. However, for the third user (user with index 2) expression “users[2][:address]” gives “nil”, because there is no “address” field for Sam. And then we basically execute “nil[:city]” which always produces error, because you can’t access nil like that, there is nothing inside nils.

So how do we fix this program? For example, by using if-statement:

users.each do |user|
 if user[:address]
 puts user[:address][:city]
 end
end

It works now and there is no error, we did a great job! But what if we add one more nested object to “address”?

street: { line1: '...', line2: '...' }

So that we always have two lines of street address for “address” node. Here is how it looks:

users = [
 {
 first: 'John',
 last: 'Smith',
 address: {
 city: 'San Francisco',
 country: 'US',
 street: {
 line1: '555 Market Street',
 line2: 'apt 123'
 }
 }
 },
 { first: 'Pat', last: 'Roberts', address: { country: 'US' } },
 { first: 'Sam', last: 'Schwartzman' }
]

Now we want to print all “line1” addresses for all the records. Can you do that? Here is the first thing we might want to do - improve already existing program by just adding “[:line1]” navigation:

users.each do |user|
 if user[:address]
 puts user[:address][:street][:line1]
 end
end

However, the the code above will choke on the second record, because for the second record “user[:address][:street]” is nil. If it is not clear, don’t hesitate to try it yourself in your pry/irb console.

What we can do is to add another check for nil:

users.each do |user|
 if user[:address] && user[:address][:street]
 puts user[:address][:street][:line1]
 end
end

It works great with the second condition. Here we check if “address” is not nil and if the following “street” is not nil:

if user[:address] && user[:address][:street]

In other words, for every level of nesting we will need to add one more check, so our program won’t raise any errors on nils. It wasn’t very convenient and programmer-friendly, so Ruby starting from 2.3.0 (you can check your version by running “ruby -v”) has “dig” method:

users.each do |user|
 puts user.dig(:address, :street, :line1)
end

Method accepts any number of parameters and you can use it to access deeply nested structure. If one or more keys in the provided chain wasn’t found, the method returns nil.

Side note: keep in mind that Rails has similar (but slightly different) “try” method, and latest version of Ruby also implements “safe navigation operator”, which can be useful for nil checks while working with chains of objects and methods.

Key presence

We often need to check if the key exists in a hash. It could be done without getting a value via “has_key?” method:

$ pry
> hh = { login: 'root', password: '123456' }
...
> hh.has_key?(:password)
true
>

“has_key?” only checks for existence and doesn’t perform any value comparison. Example above is okay to use when you want to ensure that something is present.

 Exercise

 Explain the difference between:

{
 "books": [
 {
 "id": 1,
 "name": "Tom Sawyer and Huckleberry Finn",
 },
 {
 "id": 2,
 "name": "Vingt mille lieues sous les mers",
 }
]
}

and

{
 "books": {
 "1": {
 "name": "Tom Sawyer and Huckleberry Finn"
 },
 "2": {
 "name": "Vingt mille lieues sous les mers"
 }
 }
}

Which data structure is better if we want to search for a book by id? Which data structure was designed to support constant O(1) search, and which one supports only linear O(N) search, and which one would you pick as a programmer? How many hashes and arrays were used in every example? How would you add a book to each of these data structures?

Part IV. Fun with Object-Oriented Programming

People think that Object-Oriented Programming is something very complicated, magical and not easy to tackle. But in reality it’s all pretty straightforward if we talk about things you gonna be working on daily. The right way of doing OOP could simplify the daily life of a programmer. However, it requires more brain power than the common way of doing OOP.

This books covers the essentials, common way of doing OOP, which is a must for every beginner. If you’re looking for an elegant way of writing your object-oriented code, start reading “Elegant Objects” by Egor Bugayenko.

Classes and objects

“Object-Oriented Programming” assumes there should be an object somewhere. But what are objects? From our everyday lives we know that everything is an object. Book on the table, for example. A man walking down the street. BMW model E34 crossing the road. But if you look closer, BMW E34 is a certain class of objects. With all the variety of other cars, this particular one is exactly the same as another of the same model. But at the same time they’re different instances.

The most obvious example of a class is a technical drawing (model) of some product:

 [image: Technical drawing]
 Technical drawing

You can see technical details of a product like width, height, radius, and so on. You can see these details before the final product is actually manufactured. Class in programming language is something similar to this drawing. It’s a pattern, and based on this pattern we can create something real:

 [image: Real object based on technical drawing above]
 Real object based on technical drawing above

And something real is the actual object (or multiple objects) we’re building based on this drawing. Objects are also known as instances or class instances.

Having one drawing we can create multiple objects, and the same is true for a class. There is one class, and multiple objects you can create based on this class. For example:

 Class and three objects in Ruby
1 class Car
2 end
3
4 car1 = Car.new
5 car2 = Car.new
6 car3 = Car.new

Above we have only class, and three objects: three cars created with this drawing. Our “drawing” takes only two lines, but it’s only because or drawing is default (empty). There is nothing super special in our class at the moment, but in real life we normally add some characteristics to cars (like color, audio options, license plate number and so on).

State

State is utterly important concept in any object-oriented language. Ruby is object oriented one. There are other object oriented languages out there: Java, C#, JavaScript. There are also object-orientish languages, which aren’t 100% object-oriented, but share most or some of these concepts (for example, Golang, Objective-C and so on).

The main difference between object oriented language and non-object-oriented is that object oriented languages have a concept of object state. Let’s dive deeper into that.

Back to our example with BMW model E34. Somewhere in Germany, probably in BMW factory in Munchen, there is a drawing of this particular model. Factory produced numerous of instances of this model. However, each model has multiple details:

 	Engine

 	Wind shield

 	Body

 	Doors

 	Wheels, and so on.

All of these objects aren’t useful without being a part of an actual car - why would you need a wheel without having a car? However, all these components being assembled together represent living organism, something that actually works, and this sophisticated object has its own state.

All the BMWs E34 models manufactured in Germany over the course of multiple years were exactly the same. However, all of them have different state. State is what differentiates one car from another. But what does the state look like?

For example, mileage. “Car” object is quite sophisticated mechanism, and it’s unlikely that two different cars have exactly the same mileage. The second parameter that defines a state could be the level of gasoline in the tank. Another parameter that defines a state is the actual state of engine: on or off.

All these parameters can be controlled by car owners. These parameters, including some other parameters that we normally don’t even think of, define the state of an object.

In other words, object in object-oriented language is a living organism, and this organism has its own state. There is a way to change the state of an object: from inside or outside. When we open the door of a car, we’re changing the state from outside. However, we change the state of the engine from the inside. Also, the object itself can change its own state: for example, fan turns on automatically when the engine temperature is too high.

Let’s demonstrate what was written above with a simple proof-of-concept code:

class Car
 def initialize
 @state = :closed
 end

 def open
 @state = :open
 end

 def how_are_you
 puts "My state is #{@state}"
 end
end

car1 = Car.new
car1.how_are_you

car2 = Car.new
car2.open
car2.how_are_you

Result:

My state is closed
My state is open

We’ve created new class “Car” - we’ve made a “drawing” of an object with Ruby language. Then we created an instance of the class by saying “Car.new” and assigned reference to this object to “car1” variable. It’s important to note that “car1” variable doesn’t have the object in it; it’s only the reference to an object located somewhere in computer memory. Remember the analogy with multi-apartment building, where the bell outside leads to specific apartment. The same rule is applicable here: variable is reference to an object. We might have multiple variables pointing to the same object. Below we’re assigning the value of “car1” to “car777”, there are two variables, but only one actual object:

car777 = car1

Then we request a status (state) of this object from the outside by asking “how are you?”, and object reports its state. First car reported that the state is “closed”: “My state is closed”, but why did it happen? Because we defined “initialize” method:

def initialize
 @state = :closed
end

This method gets called every time we create new instance (new object). In other words, every time you say “Car.new”, “initialize” gets called. Nobody knows why we use lengthy “initialize” (you have to spell it with “z”) instead of just “init” or “new” in Ruby. The following looks better, but it’s incorrect, you must use “initialize”:

class Car
 def new
 # ...
 end
end

Car.new

“initialize” method is also referred as “constructor” in documentation and programming books. And in JavaScript version ES6 and above it’s called this way:

class Car {
 constructor() {
 console.log('hello from constructor!');
 }
}

let car1 = new Car();

Run the program above (by typing “node” in your terminal and pasting this snippet) to see “hello from constructor!” message. Method was called during the object initialization. Here is exactly the same code in Ruby language:

class Car
 def initialize
 puts 'hello from constructor!'
 end
end

car1 = Car.new

It’s one of the least obvious things in Ruby: we say “new” and “initialize” gets called.

But why do we need a constructor? Use it to define the initial state of an object. For example, we want doors, windows, trunk to be closed when we produce another car.

You might have noticed that we used “@” (“at” sign) before “state” variable. This syntax is used to define instance variable. We already covered this a little bit in previous chapters. But in general, we have three types of variables:

1) Local variables. These variables are normally defined inside of a method, and not accessible from other methods. For example, the following code will produce the error, because “aaa” variable isn’t defined in method “m2”:

class Foo
 def m1
 aaa = 123
 puts aaa
 end

 def m2
 puts aaa
 end
end

foo = Foo.new
foo.m1 # works fine, prints 123
foo.m2 # won't work, variable not defined

2) Instance variables - variables of particular class instance (or “variables of particular object”). You can access these variables with at-sign “@”:

class Foo
 def initialize
 @aaa = 123
 end

 def m1
 puts @aaa
 end

 def m2
 puts @aaa
 end
end

foo = Foo.new
foo.m1
foo.m2

Instance variables define the state of an object. Nothing prevents you from defining instance variables in class methods, however it’s a good practice to define instance variables in constructor only; you are showing your intention: this is my instance variable, and we’re going to use it.

The following instance variable is defined inside of a method. This code works fine, but result is actually depends on the call order (last two lines):

class Foo
 def m1
 @aaa = 123
 puts @aaa
 end

 def m2
 puts @aaa
 end
end

foo = Foo.new
foo.m1
foo.m2

Result:

123
123

But result is different when two last lines are reversed:

123

Ruby tries to call “m2” method, and instance variable is not set, so default result is “nil”, and “puts nil” produces nothing on a screen. It’s one of the Ruby’s curious features: when instance variable is not defined, it’s assumed to be nil. But this trick won’t work for local variables (without “@” prefix): Ruby will raise runtime error.

3) Class variables. Class variables belong to their class and also known as “static variables”. It’s not the most frequently used feature, and you probably won’t see it too often. Class variables have “@@” prefix, and their value is shared (remains the same) between all objects. When you change this variable, it will be changed for all other objects as well.

There are also two other types of variables in Ruby language:

 	Global variables. They go with the prefix of “$”. You can access them from any point of your Ruby program. Sounds like a good idea, there is a great temptation to use them everywhere, but you should avoid that. It’s not a good practice and excessive use of global variables increases complexity of your program dramatically!

 	Special pre-defined “variables” like “ARGV”, “ENV”, and others. It’s not the actual variables, but Ruby programmers often refer to these pre-defined objects as “variables”. “ARGV”, for example, is used to pass parameters to your program from command-line. “ENV” is used to read your shell environment variables from Ruby program.

Normally, to be able to write an object-oriented program, a beginner should understand the difference between local and instance variables.

And now is tricky question. What does the following code do?

...
puts aaa

You say “prints aaa variable to the screen” and you’d be right, because it’s possible to rewrite this program into this one:

aaa = 123
puts aaa

But what if we do it the other way:

def aaa
 rand(1..9)
end

puts aaa

Program above prints the random value (from 1 to 9). In other words, we don’t know for sure what “puts aaa” really means until we understand the context. It’s either variable access or method call (or something else - we’ll talk about “something else” or “method_missing” in the next chapters).

Meanwhile, our class looks like this:

 [image: Car class diagram]
 Car class diagram

You can see from the picture above that we have two methods to manipulate the state of this object, they’re highlighted by pink color. Another one, “initialize” is a public constructor - you can only create an object by using this method (you do it with “Car.new”).

State kept in instance variable “@state” (naming is up to you, you can name it as you want), and by default there is no any standard way to access this variable from outside. There is no any limitation about how state should look like, it’s all up to you actually. You might want to use ten instance variables and implement sophisticated business logic inside of your class, but API (in our case these two methods, “open” and “how_are_you”) remains the same.

In a similar way to a real car, we might want to play music inside. However, unless it is implemented by our API, nobody will ever notice we have some music playing inside. This principle is known as “encapsulation”.

Suppose you were driving down the road and have met a hitchhiker. Hitchhiker is so shy so she doesn’t want to open the door. She would like to say “how are you”, but before she wants to ensure that the door is open. In other words, we want others to be able to read our state, to read our instance variable(s). How would we do that?

The easiest way is to add a method with a meaningful name that just returns the state. We could add “aaa”, but let’s call it “state”:

class Car
 def initialize
 @state = :closed
 end

 # new method goes below
 def state
 @state
 end

 def open
 @state = :open
 end

 def how_are_you
 puts "My state is #{@state}"
 end
end

Here is the class diagram:

 [image: Car class diagram]
 Car class diagram

The state itself, represented by instance variable “@state”, isn’t accessible. However, there is a way to read it through “state” method. State variable and method use the same word “state”, but they are two different things. We could name the method as we want, for example “aaa”, it’s not a mistake. Sounds good, now a hitchhiker can see that the state of a car is “open”, because he or she can read the state with the “state” method.

Well, you can see (read) the state from the outside, but you can only change the state from the inside. Which is, really, a way to go: we might never need the way to close a door from the outside. But what if it is necessary? It’s up to software developers to think about business logic: how are we going to use this or another component? Do we really need this functionality or we can save some time here and avoid implementing that?

If we know for sure we gonna need that, it could be implemented the following way:

def close
 @state = :closed
end

It’s that simple! Here is one of the final class implementations:

 [image: Car class diagram]
 Car class diagram

Let’s practice a little bit more and think about what if we need to turn on the engine? Our state could be represented by multiple parameters now (mathematicians would say “defined by the following vector”): open, closed, engine_on, engine_off. We would add two methods: “turn_on”, “turn_off” so we have control over the newly defined state subset. We would’ve end up with quite lengthy class.

Sometimes it’s easier to have “superpowers” and allow any state manipulations from the outside: “I trust you so much, please do whatever you want, open doors, turn the engine on and off, play any music, you’re the master and I’m the puppet”. As you can imagine, this doesn’t always lead to the best outcome. However, this way of manipulating state is widely used. The rule of thumb here is to never cross the line when poor software design bites you back.

Here is how you allow full control over your state or any other instance variable:

attr_reader :state
attr_writer :state

Whoa, looks like magic! It actually is, also known as syntactic sugar. Code above creates two methods: to read and write instance variable:

def state
 @state
end

def state=(value)
 @state = value
end

First method looks familiar, we had exactly the same implementation to read the state. The second method has “=” in its name, so it is used for instance variable assignment.

A curious detail is that these two attr-lines above can be replaced with a single line:

attr_accessor :state

(Don’t confuse “attr_accessor” with “attr_accessible” from Rails framework, these are two different things).

Improved class can be summarized as follows:

class Car
 attr_accessor :state

 def initialize
 @state = :closed
 end

 def how_are_you
 puts "My state is #{@state}"
 end
end

Usage example:

car1 = Car.new
car1.state = :open

car2 = Car.new
car2.state = :broken

car1.how_are_you
car2.how_are_you

Sample output:

My state is open
My state is broken

Visual representation of the class:

 [image: Car class diagram]
 Car class diagram

 Exercise 1

 Implement “Monkey” class with two methods: “run” and “stop”. Each method should change the state of an object. You must expose the state of an object the way it’s accessible (readable), but not writeable from the outside. Create a couple of instances of this class, call newly created methods and ensure your program works.

 Exercise 2

 Use random state while initializing “Monkey” class, so the monkey either runs or not. Create an array of ten monkeys. Print the state of all the objects to the screen.

State, one more example

Now it is more or less clear what the state is. But how it is used in practice? What’s the advantage of having a state? Why would we keep the state inside of an object and why do we need to encapsulation?

Well, as you already know, object is a living organism. It turned out that it’s much better to combine under one hood multiple variables that affect the flow of a program, and avoid using them separately.

Imagine we have a robot that walks on the ground, and we’re observing the scene from the top. Robot starts moving at certain point and can move left, right, up and down by any number of steps.

At the first glance it looks like we could avoid using any classes here. We would have two variables: “x” and “y”. We would add “1” to “x” when the robot moves right, “1” to “y” when robot moves up, and so on. There is no need for any objects or classes, and it’s all true. However, there is one caveat. Code complexity grows exponentially when you need to add more robots, and program readability plummets.

With two robots we need four variables, two for each. First tuple is “x1” and “y1”, second is “x2” and “y2”. Not very convenient, but let’s say we can deal with that for now. But what if we have more than two of them? “You can use an array” you say. Yes, it’s true - you can create an array of variables. It will look like a data structure with specific schema, and a set of methods that know how to work with this data structure, how to read this data schema. But hold on a sec, it’s much easier to deal with variables rather than with custom-crafted data structure!

It’s easier to have “x = x + 1” rather than “x[5] = x[5] + 1”. So objects and classes make your program easier to read, understand, and modify. Let’s practice and create a robot class:

class Robot
 attr_accessor :x, :y

 def initialize
 @x = 0
 @y = 0
 end

 def right
 self.x += 1
 end

 def left
 self.x -= 1
 end

 def up
 self.y += 1
 end

 def down
 self.y -= 1
 end
end

robot1 = Robot.new
robot1.up
robot1.up
robot1.up
robot1.right

puts "x = #{robot1.x}, y = #{robot1.y}"

Note the syntax we use to access instance variable: “self.”. You should have “self.” or “@” here, because by default Ruby treats unknown literal as a local variable or method. By using this syntax we’re saying: “it’s instance variable, not local”, “this variable is defined on a class level, not inside of our method”.

Also, try looking into the code above and guess what would this program print. Here is the right answer:

x = 1, y = 3

The robot has made four moves and its coordinates now are 1 by “x”, and 3 by “y”.

We can create ten robots with the following syntax:

arr = Array.new(10) { Robot.new }

And now let’s do the trick and call the random method for every robot in array:

arr.each do |robot|
 m = [:right, :left, :up, :down].sample
 robot.send(m)
end

The trick is two lines inside the each-block. First line picks random Symbol from the array. This symbol is the name of a method we’re going to call: right, left, up, down. The second line is the actually “tricky way” to call the method by a name.

Only with a couple of lines of code we were able not only to create a set of similar objects, but also do some bulk operations on them. Would you agree it was easier than dealing with individual variables one by one?

For the sake of experiment, imagine 60 by 25 scene and put every robot right into the middle. Every second we’ll iterate over array of robots and change their direction the random way, like we did it above. While doing that we’ll be redrawing the map of robots, indicating robot by star, and empty space by dot. We want to see a simple animation of how robots spread out of the middle to the edges.

Below is the code for this program:

class Robot
 # Accessors, so we can access coordinates from the outside
 attr_accessor :x, :y

 # Constructor, accepts hash. If not specified, empty hash will be use\
d.
 # In hash we expect two parameters: initial coordinates of the robot.
 # If not specified, will equal to zero by default.
 def initialize(options={})
 @x = options[:x] || 0
 @y = options[:y] || 0
 end

 def right
 self.x += 1
 end

 def left
 self.x -= 1
 end

 def up
 self.y += 1
 end

 def down
 self.y -= 1
 end
end

Commander is something that moves a robot.
class Commander
 # Issue a command to move a robot. Accepts robot object
 # and sends it a random command.
 def move(who)
 m = [:right, :left, :up, :down].sample
 who.send(m)
 end
end

Create commander object, we'll have only one commander
in this example.
commander = Commander.new

Array of ten robots.
arr = Array.new(10) { Robot.new }

Infinite loop (hit ^C to stop the loop)
loop do
 # Tricky way to clear the screen
 puts "\e[H\e[2J"

 # Draw the grid. It starts with -30 to 30 by X,
 # and from 12 to -12 by Y
 (12).downto(-12) do |y|
 (-30).upto(30) do |x|
	 # Check if we have a robot with X and Y coordinates
 found = arr.any? { |robot| robot.x == x && robot.y == y }

 # Draw star if a robot was found. Dot otherwise.
 if found
 print '*'
 else
 print '.'
 end
 end

	# Move to the next line on the screen.
 puts
 end

 # Move each robot randomly.
 arr.each do |robot|
 commander.move(robot)
 end

 # Wait for half a second.
 sleep 0.5
end

Result:

...
...
...
.............................*...............................
...
...........................*.......*.........................
...
...........................*.................................
............................*................................
...............................*.*...........................
............................*................................
...
...
...
........................*.......*............................
...
...
...
...

Demo: https://asciinema.org/a/jMB47AhjBnxgMofSgIVzHObIH

 Exercise

 Let the “initialize” method to accept another option - the number of a robot, so this number is another parameter that defines the state of particular robot instance. Modify “up” and “down” methods, so these methods are no-op (empty, do not do anything) if the number is odd. If the number is even, “right” and “left” methods should be no-op. Try to guess how animation would look like with these changes?

Duck typing and polymorphism

There are some intricate definitions in object-oriented programming. However, not all the real programmers (those who make living by doing that) can say what polymorphism and duck typing are, and what is the difference between these two. It happens because the programming practice is often easier than theory, and at later time one can say: “oh, now I understand what it means”.

But where did the term “polymorphism” come from? If comes from the greek roots “poly” (many) and “morphe” (form). Wiktionary says “The ability to assume different forms or shapes” and biological: “The coexistence, in the same locality, of two or more distinct forms… not connected by intermediate gradations”. Wow, that’s rather interesting - “distinct coexistence” and “not connected” at the same time!

Polymorphism can be illustrated by the following joke:

Father: son, go and get Red Label.
Son: 750ml or 1 liter?
Mother: son, go and get Red Label.
Son: 500 grams or 1 kg?

“Father” object assumes “Red Label” to be a whiskey, while “mother” object assumes “Red Label” to be a cheese. Basically, the method (“Son”) changes based on the type of object it was called upon.

There is similar joke, illustrated by https://www.youtube.com/watch?v=GLc9n3MV9ZE. Find the time to watch this 1 minute YouTube video before we proceed to explanation.

What has actually happened here? A programmer would say every object has the same interface. Objects are different, but all of them have received command sent by a commander “obj.send(:sit)” and didn’t raise any error.

Statically-typed language programmer would define interface for that (don’t get confused with GUI acronym - Graphic User Interface, it’s not about graphics). Here is C# example:

interface IListener {
 void Sit();
}

class Dog : IListener {
 public void Sit() {
 // ...
 }
}

class Human : IListener {
 public void Sit() {
 // ...
 }
}

So here we’ve just defined “listener” interface, “IListener”. And (class) Dog, along with (class) Human implement this interface. In other words, for dog and human instances we can say “dog.Sit()” and “human.Sit()”, or just “instance.Sit()”. When interface is implemented, anyone can use this interface without actually knowing any other object details.

However, there is no any support for interfaces in Ruby! But there is similar concept, we have duck typing instead of interface. Here is the widely-used definition of duck typing in computer programming:

 If it walks like a duck, and it quacks like a duck, then it has to be a duck.

But what does it mean? It just means that if we have two classes with the same methods (both name and signature are the same, implementation can be different), then from a consumer standpoint these classes are the same. Consumer here is just a code that calls the method.

Coming back to the joke from the video about human and dog, from consumer (commander) standpoint human and dog are the same objects that implement “sit” method. That’s why everyone sits when commander says “sit!”.

“Duck” class can be implemented the following way:

class Duck
 def walk
 end

 def quack
 end
end

If we implement “walk” and “quack” in any other class, from consumer standpoint it’s going to be a duck, even if class name isn’t “Duck”. In the following example we’re going to define these methods for “Dog” class. But from a duck commander this dog looks like a duck. Duck commander might think “I don’t know who you are, but if you really want to be a duck, you have to walk and quack”:

class Duck
 def walk
 end

 def quack
 end
end

class Dog
 def walk
 end

 def quack
 end
end

class DuckCommander
 def command(who)
 who.walk
 who.quack
 end
end

Create instances of duck and dog
duck = Duck.new
dog = Dog.new

Note how Duck Commander can command duck and dog
without raising any errors!
dc = DuckCommander.new
dc.command(duck)
dc.command(dog)

“Phew! But why do we need all these complications?” - reader might ask, - “what’s the real-world benefit from these concepts?”

Well, it duck typing and interfaces simplify our programs. Let’s add a dog to our robots game. Dog needs to walk from the top left corner to the bottom right corner and avoid robots on the way. When robot catches the dog, game is over.

Where do we start? The very first thing is that we have to show dog on the screen. Robot is indicated by star “*”. Dog will use “@” symbol. What “interface” our Robot has, which methods it implements from a consumer standpoint? Up, down, left, right, x, y. The same thing works for a dog. However, one piece is missing: we’ll need different labels for dog and robots, so let’s add this method:

class Robot
 # ...

 def label
 '*'
 end
end

class Dog
 # ...

 def label
 '@'
 end
end

So we have two at the same time similar and different classes. They implement the same interface, but underlying behavior is different. Do you remember what polymorphism is? “The coexistence, in the same locality, of two or more distinct forms”. So we have coexistence in the same locality - both classes implement the same interface. Distinct - they are distinct when it comes to naming, how objects are indicated visually on the screen, and distinct by underlying implementation: robot can walk each way, while dog walks only from left to right and from up to down (see the code below).

Let’s change the program we’re already familiar with and see how polymorphism works in practice:

class Robot
 # Accessors, so we can access coordinates from outside
 attr_accessor :x, :y

 # Constructor, accepts hash. If hash not specified, empty is used.
 # We expect two parameters in hash: initial robot coordinates;
 # if not specified, both will equal to zero.
 def initialize(options={})
 @x = options[:x] || 0
 @y = options[:y] || 0
 end

 def right
 self.x += 1
 end

 def left
 self.x -= 1
 end

 def up
 self.y += 1
 end

 def down
 self.y -= 1
 end

 # New method, just a symbol we use for robots.
 def label
 '*'
 end
end

Dog class has the similar interface, some methods are empty below.
class Dog
 # Accessors, so we can access coordinates from outside
 attr_accessor :x, :y

 # Constructor, accepts hash. If hash not specified, empty is used.
 # We expect two parameters in hash: initial dog coordinates;
 # if not specified, both will equal to zero.
 def initialize(options={})
 @x = options[:x] || 0
 @y = options[:y] || 0
 end

 def right
 self.x += 1
 end

 # Empty method, but it exists. When called does nothing. We need it
 # to avoid "missing method" error.
 def left
 end

 # Another empty method.
 def up
 end

 def down
 self.y -= 1
 end

 # New method, just a symbol we use for robots.
 def label
 '@'
 end
end

Comander class sends commands and moves robots and dogs.
Note that THIS CLASS IS EXACTLY THE SAME AS IN PREVIOUS EXAMPLE.
class Commander
 # Send command to move an object. Method accept object and sends
 # it a random command.
 def move(who)
 m = [:right, :left, :up, :down].sample

 # Polymorphism is happening here! We're sending command,
 # but we're unaware of receiver!
 who.send(m)
 end
end

Create commander object. There is going to be only one commander.
commander = Commander.new

Array of 10 robots and...
arr = Array.new(10) { Robot.new }

...one dog. Since dog implements the same interface, all objects
in array will be kinda same.
arr.push(Dog.new(x: -12, y: 12))

Infinite loop goes here (press ^C to stop)
loop do
 # Tricky way to clear the screen
 puts "\e[H\e[2J"

 # Draw the grid. It goes from -12 to 12 by X, and 12 to -12 by Y.
 (12).downto(-12) do |y|
 (-12).upto(12) do |x|
 # Check if we have somebody with "x" and "y" coordinates.
 somebody = arr.find { |somebody| somebody.x == x && somebody.y ==\
 y }

 # Print label if somebody present. Print dot otherwise.
 if somebody
 # POLYMORPHISM GOES HERE.
 # We print "*" or "@", but we don't know what it is exactly,
 # and we don't have to know.
 print somebody.label
 else
 print '.'
 end
 end

 # Go to the next line.
 puts
 end

 # Hit check. If both objects have the same coordinates and their
 # labels aren't equal, then we assume that a robot caught the dog.
 game_over = arr.combination(2).any? do |a, b|
 a.x == b.x && \
 a.y == b.y && \
 a.label != b.label
 end

 if game_over
 puts 'Game over'
 exit
 end

 # Move each object in random order.
 arr.each do |somebody|
 # Call move method. Code is the same as in previous example.
 # Commander doesn't know about the object type.
 commander.move(somebody)
 end

 # Sleep for half a second.
 sleep 0.5
end

Result:

.........................
.........*...............
.........................
...........*.............
........@................
...............*.*.......
........*.....*..........
.........................
............*............
...*.....................

Demo: https://asciinema.org/a/KsenHLiaRbTilZa081EhZSFXF

 Exercise 1

 Remove all the comment from program above. Can you understand every single line of it?

 Exercise 2

 Add three more dogs to the field.

 Exercise 3

 Modify the program, so if all the dogs reached left or bottom margin it prints “Win!”

Inheritance

 	What inheritance is?

 	Quickest way to get rich!?

Inheritance is the third foundation of object oriented programming:

 	Encapsulation

 	Polymorphism

 	Inheritance

But at the same time it’s pretty controversial concept. There are many opinions about inheritance. Even so, we’ll take a quick look into how inheritance works in Ruby, and after that we’ll discuss why overusing inheritance is a bad practice.

Imagine we want to add another player to the robots field along with robots and dogs - Human, so we have three types of objects: dog(s), robots, human(s). What would junior object-oriented programmer do? He or she would use the following trick.

It isn’t hard to find out that we’ve got “up”, “down”, “left”, and “right” methods. We also have “x” and “y” methods (these are actually instance variables, accessible through helper methods created by “attr_accessor”). There is also “label” which is different for every object type. Methods “up”, “down”, “left”, and “right” implement some kind of functionality which is almost always identical.

In other words, there is something exactly the same, and there is something unique. Our “up”, “down”, “left”, and “right” are pretty straightforward, it’s just one line, and we simply copy them over from one object to another:

 Three different classes with the similar functionality
 1 class Robot
 2 def right
 3 self.x += 1
 4 end
 5
 6 def left
 7 self.x -= 1
 8 end
 9
10 def up
11 self.y += 1
12 end
13
14 def down
15 self.y -= 1
16 end
17 end
18
19 class Dog
20 # ...
21
22 def right
23 self.x += 1
24 end
25
26 def down
27 self.y -= 1
28 end
29 end
30
31 class Human
32 def right
33 self.x += 1
34 end
35
36 def left
37 self.x -= 1
38 end
39
40 def up
41 self.y += 1
42 end
43
44 def down
45 self.y -= 1
46 end
47 end

But what if each of the methods above has ten or more lines of code and we want to improve something? (like, adding z-axis to get three-dimensional field). We’ll need to copy the code between all the existing classes. And in case of an error, we’ll need to fix in three places instead of just one.

The beginner object-oriented programmer would say: “aha, I see repeating functionality, why wouldn’t we use inheritance? We have the Robot with four methods implemented, and we can reuse/share them for all other classes” like that:

 Same as above, but has less code because of inheritance
 1 class Robot
 2 attr_accessor :x, :y
 3
 4 def initialize(options={})
 5 @x = options[:x] || 0
 6 @y = options[:y] || 0
 7 end
 8
 9 def right
10 self.x += 1
11 end
12
13 def left
14 self.x -= 1
15 end
16
17 def up
18 self.y += 1
19 end
20
21 def down
22 self.y -= 1
23 end
24
25 def label
26 '*'
27 end
28 end
29
30 class Dog < Robot
31 def up
32 end
33
34 def left
35 end
36
37 def label
38 '@'
39 end
40 end
41
42 class Human < Robot
43 def label
44 'H'
45 end
46 end

We used “<” character that says “Human and Dog classes inherit functionality from the Robot”. The “<” character itself visually shows the flow of functionality. It flows from Robot to Human, from Robot to Dog: “class Human < Robot”, “class Dog < Robot”. Programmers say “class Human inherits [functionality/methods] from Robot”.

 [image: Class diagram]
 Class diagram

When classes are defined this way, we can create their instances the same way we did it before:

robot = Robot.new
human = Human.new
dog = Dog.new

“Human” class inherits all methods from “Robot”, except “label”. Programmers say “method ‘label’ was redefined” (or “overridden”). Diagram above reflects that. Also, Dog class has three redefined methods: “label”, “up”, and “left”. The rest were inherited from “Robot”.

This approach looks genius! “Dog” class had 28 lines, and now it is 11 lines only. “Human” class had 28 lines, and now it is only 5 – only because we used inheritance. If we use inheritance in the program we had created before, it would work. Unfortunately, there is one flaw to that design.

And this flaw is not technical. From technical standpoint everything works. Image you are the business owner of your own software development shop. Your client asked to created a program we’ve discussed above, you used inheritance and everything works, you got your money and client got the program that does its job. Client doesn’t understand the code, he or she is happy it just works fine, because actual result in on the screen. What can go wrong?

Good news for beginners is that the vast majority of all software written this way. Business is interested in automated business operations. For example, if it’s entertaining looking at the screen while four dogs crossing the robots field (and you can make bets), then the business goal is accomplished. Business often doesn’t care how software is implemented, and the “how” question is always up to a programmer.

From professional standpoint our program is not 100% correct. Inheritance is very powerful tool and it’s very easy to misuse. It’s the common mistake to use inheritance as code share/reuse/copy-and-paste tool. And there is even opinion that inheritance shouldn’t exist in object-oriented programming.

Let’s look closer into what was done wrong. Long story short, we used Robot’s functionality, but did it without respect. Here is inheritance excerpt from WikiPedia (book author strongly recommends to get yourself familiar with entire WikiPedia article):

 …Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors …, to reuse code and to … extend original software…

It all makes sense. There “Human” class and there is “Dog” class. There is existing implementation “Robot”. We used inheritance to reuse code and to extend original software. What’s could go wrong? Excerpt from Oxford dictionary:

 Derive (a quality, characteristic, or predisposition) genetically from one’s parents or ancestors.

The thing is that “Dog” and “Robot”, and “Human” and “Robot” have nothing in common. “Dog” and “Human” can’t get characteristics from the “Robot” genetically. We just pretended that they can, but in the real world these objects are totally different. Mixing things that aren’t very mixable isn’t a very good idea. Especially at the very beginning, at initial stage of software design.

“Robot” isn’t living organism anymore. It looks like it is independent, but now we always have to keep in mind that robot methods are reused somewhere else. We can’t just drop them. In other words, I’ve mixed few concepts and introduced extra coupling only for the purpose of code duplication/reuse, only to make our program little bit shorter.

In other words, we’ve picked the wrong abstraction. It’s the most common mistake of every object-oriented programmer. And there is nothing wrong with mistakes, we all make mistakes, it’s totally okay to make them. But you need real experience to recognize this type of mistake. Right way to design software requires more brain power, more knowledge. The advice here is to read books, and write software of course.

Sandi Metz says that code duplication is far cheaper than the wrong abstraction. So… it turns out that inheritance we’ve just covered isn’t useful at all, and we’re just fine with code duplication?

That’s pretty much the summary: use it wisely, do not overuse it, don’t use it blindly, think about it before using it. Sad fact is that some software development teams are often over obsessed with code duplication. They try to avoid it at all costs, and often introduce wrong abstractions. Mostly it’s because it’s visually much easier to spot the code duplication rather than wrong abstraction.

Code duplication isn’t always bad: for example, in tests it’s okay to introduce little bit of code duplication so tests are more readable. There is also another procedural mechanism to share/reuse functionality in your programs: modules. Let’s take a look.

Modules

Module is a chunk of code you can include in a class or into another module:

 MyModule contains logic for robot, human, and dog
 1 module MyModule
 2 attr_accessor :x, :y
 3
 4 def initialize(options={})
 5 @x = options[:x] || 0
 6 @y = options[:y] || 0
 7 end
 8
 9 def right
10 self.x += 1
11 end
12
13 def left
14 self.x -= 1
15 end
16
17 def up
18 self.y += 1
19 end
20
21 def down
22 self.y -= 1
23 end
24 end
25
26 class Robot
27 include MyModule
28
29 def label
30 '*'
31 end
32 end
33
34 class Dog
35 include MyModule
36
37 def up
38 end
39
40 def left
41 end
42
43 def label
44 '@'
45 end
46 end
47
48 class Human
49 include MyModule
50
51 def label
52 'H'
53 end
54 end

In the program above we defined the module with “module... end” syntax and included the module to our classes with “include” keyword. Class diagram would look like this:

 [image: Class diagram using modules, three classes share common functionality]
 Class diagram using modules, three classes share common functionality

Visually it looks pretty much like inheritance. However, using inheritance just to copy/share the code is not cool, it’s just not the right tool. It’s better to be honest about what are you doing. With modules you are honest and you admit: yes, I’m just copying the code, there is no any inheritance involved.

Subtyping vs Inheritance

Comparing to modules, there is a better way “to specify a new implementation while maintaining the same behaviors …, to reuse code and to … extend original software…”. We’re not using inheritance mechanism to copy over variables and methods from one object to another, but about the actual sub-typing.

For example, duck, cuckoo and ostrich are subtypes of a bird:

 [image: Subtyping/inheritance demo]
 Subtyping/inheritance demo

For the definition of word “inherit” from Oxford dictionary we already mentioned in the previous chapters, the diagram above makes perfect sense:

 Derive (a quality, characteristic, or predisposition) genetically from one’s parents or ancestors.

Even based on our life experience we can say that yes, subtypes are correct, and the abstraction above makes sense. And this fact enables polymorphism: it doesn’t really matter what kind of bird it is, we can feed the bird, let it fly, and so on.

From technical standpoint, in Ruby language subtyping is inheritance, and it is what it should be. Look at the code with empty classes:

class Bird
end

class Cuckoo < Bird
end

class Duck < Bird
end

class Ostrich < Bird
end

In statically-typed languages like C# (or Java, Golang) we can introduce “interface” instead of the inheritance:

interface Bird {
	void Feed();
	void GiveWater();	
}

interface Duck : Bird {
}

interface Cuckoo : Bird {
}

interface Ostrich : Bird {
}

And one of the things that is no code for interface, only method definition (or “interface definition”). You can’t just mindlessly copy a code over. But in dynamically-typed languages like Ruby, we keep interfaces either in mind, or introduce some abstract class (“Bird” above), and use inheritance.

We can use similar approach for the program with human, robot, and dog. Instead of modules, introduce some abstract class that is not represented in real life, like “Player”. And then inherit from this class all these entities, like:

 [image: Subtyping/inheritance demo for human/robot/dog game]
 Subtyping/inheritance demo for human/robot/dog game

The approach looks very similar to modules. However, in this case we’re saying that explicitly: “we see abstraction, it’s some sort of a player”. No matter what happens to a player, it always has left, right, up, down, label methods. Any method that accepts Dog, Human, or Robot can assume these methods exist. We also extract entities like Dog, Human, and Robot and letting others know that they’re somewhat different. They have something similar, but we do not inherit Human from Robot, like it was before. These five methods are the only interface.

 Exercise

 Stop right here and before we implement the diagram above together, try to implement it yourself! You should have all the knowledge now, can you do it? Practice, practice, practice!

The code would look like:

 1 class Player
 2 attr_accessor :x, :y
 3
 4 def initialize(options={})
 5 @x = options[:x] || 0
 6 @y = options[:y] || 0
 7 end
 8
 9 def right
10 self.x += 1
11 end
12
13 def left
14 self.x -= 1
15 end
16
17 def up
18 self.y += 1
19 end
20
21 def down
22 self.y -= 1
23 end
24
25 def label
26 end
27 end
28
29 class Robot < Player
30 def label
31 '*'
32 end
33 end
34
35 class Dog < Player
36 def up
37 end
38
39 def left
40 end
41
42 def label
43 '@'
44 end
45 end
46
47 class Human < Player
48 def label
49 'H'
50 end
51 end

We used subtyping through inheritance to extract the common functionality. And unfortunately or fortunately, Ruby language has no interfaces, so we cannot code the “classic subtyping” and extract interface.

Ruby is very flexible language and brings freedom to a developer: whatever you do is up to you. There are numerous ways of extracting abstraction. Moreover, Ruby will even let you to create abstract “Player” class we defined above. It’s because we don’t have a definition of abstract classes in Ruby, but it should be one in your head. Nothing prevents a programmer from messing up Dog, Human, and Robot classes by adding whole bunch of unrelated methods that would spoil the common interface.

It is probably not a big deal when program isn’t lengthy. However, imagine your first day in a corporation. Pat created “Player” class and submitted changes to git repository. You’re looking at commit history and it says that the file “player.rb” was added to the repo 5 years ago. Pat works for a different company now. How would you know about the intent here? Is it okay, 5 years later to create an instance of “Player” class?

In other words, the freedom comes with a price. It’s very easy to write a code that you can understand, but not that easy so everyone else will understand it 5 years later without a problem. If a class is abstract, it’s probably worth adding a comment or extra check to it.

It’s always up to developer how to use inheritance, what’s going to be an abstract class, are you going to reuse the code with modules, and so on. If you’re unsure, don’t make it smart, make it simple. Making simple is often harder than making it smart though. In this case use modules, add comments, and document everything.

Class methods

We are already familiar with instance methods. However, there is another type of methods - class methods. In some other programming languages they can be referred as “static methods” or “self methods”. The same thing is true for variables: there are instance variables, and class variables (less often used). There is also local variables - these are available only inside methods. One should understand the difference between instance and class methods (and variables, of course). But what is the difference?

Imagine the technical drawing of an object (or see it in “Classes and objects” chapter). This drawing has all sizes specified. The drawing (or “class”) can be used to produce actual object (“instance”). Sizes from the drawing make sense only when object has been produced. When there is no object, sizes are just numbers on paper. They say “when actual object (instance) is going to be produced, the size should be this”. That’s why we call it “instance variables”.

However, there is also meta-information on the drawing, like who is the author. Imagine we’ve produced one thousand objects (instances), and it turned out that author is not Sam Smith, but Pat King. We would probably get eraser and replace the wrong name with the right one.

For 1000 already produced objects nothing will change, since it’s meta-information. It’s not the size of an object, it can exist without this information. However, if somebody is going to ask who is the actual author of this wonderful bolt, the answer will be different.

So, this meta-information is like class methods (or class variables). And sizes, and the actual data that defines behavior of a real object are instance methods (or instance variables).

Many programmers don’t like class method and variables, and there is a reason for that. It’s not fun when we got mistaken with the author of a technical drawing. However, we can fix it. We’ll iterate over each drawing (or its copies), and replace the name with the right one. But that’s half the trouble. What if material was specified incorrectly? Should be steel, but specified as plastic. When already existing objects will try to “get” what they are made of, they all gonna get incorrect answer!

We often see it in a real world. In 2019 author of this book got a letter from Honda car manufacturer saying:

 Statement from American Honda Motor Co., Inc. Re: Confirmed Rupture of Defective Takata Airbag Inflator…
On March 29, 2019, following a joint inspection, American Honda and the National Highway Traffic Safety Administration (NHTSA) confirmed that a defective Takata driver’s airbag inflator ruptured in the crash of a 2002 Honda Civic on June 8, 2018, in Buckeye, AZ.
…
The vehicle involved in this crash had been under recall since December 2014 for replacement of the Takata driver’s frontal airbag inflator…

Serious issue! Objects (cars) have been already produced. And it turned out that some instance variable (airbag) was specified incorrectly. There was a need for recall, and Honda had to provide instructions on how to replace the airbag and spend millions of dollars to fix the issue for already produced objects (or instances).

So you have to be really careful with class (static) methods and variables. No issue to instance variables, like amount of gas in the tank is a good example of such variable, and we’re fine if gasoline is low, it’s expected, just go to the gas station and refill your tank. Class methods (and variables) once specified shouldn’t change their behavior over time. You have to be extra careful when combining both class and instance variables or methods. Look at his code with a class method:

class Person
 def self.say_something
	puts 'Hi there!'
 end
end

Person.say_something

At the last line we call the method in a particular way. Pay attention that we do not create any instance here. Compare the code above with the similar code, but with creating class instance:

class Person
 def say_something
	puts 'Hi there!'
 end
end

dude = Person.new
dude.say_something

We defined “dude” variable that represents an instance of a person. After that we’re asking to “say_something”.

It looks like these programs are pretty much the same, but everything changes when we introduce the state. Imagine we want the person to say his/her name. What would we do when we write a program the way we did it many times before? Just pass a name to constructor, and it is going to be the part of object state:

class Person
 def initialize(name)
	@name = name
 end

 def say_your_name
	puts "My name is #{@name}"
 end
end

dude = Person.new('Sam')
dude.say_your_name

Lines 1-11 above is just preparation for setting up the living organism. When it’s ready, we literally ask: “dude.say_your_name”. Object “dude” is alive, he’s got his own name. We can specify other parameters as well, like blood pressure, list of friends, and so on. However, things are different when we talk about static class (the class that only has class, static, methods). To display a name, we should pass it as an argument. The class looks more like utility, not a living organism:

class Person
 def self.say_your_name(name)
	puts "My name is #{name}"
 end
end

Person.say_your_name('Sam')

Even though the program looks less lengthy and easier to understand, there is no any living organism here, there is no state. There is just a name, like echo, it exists no matter what. It looks like we’re talking to “Person”, but the class doesn’t represent a living person. One can say:

Person.say_your_name('Sam')
Person.say_your_name('Pat')
Person.say_your_name('Val')

And all of that will get executed. It doesn’t look and feel right. It would be so much better if we rename things a little bit:

class Megaphone
 def self.shout(whatever)
	puts whatever.upcase
 end
end

Megaphone.shout('Hello')

In other words, there is some megaphone, probably the only one, and there is no any other. And you can say something and it will shout. In this case the usage of a class method is justified, with a few caveats. Even in this case we can always say “wait, megaphone might have different color and other parameters”. You don’t know it now, but who knows, maybe in the future you’ll need to add some attributes to megaphone and it means your program design is incorrect.

The only good news is our class only 5 lines long, it can be modified easily. But imagine what happens to wrong abstractions in, let’s say, enterprise software? The price of fixing wrong abstraction is huge.

 duplication is far cheaper than the wrong abstraction
…
prefer duplication over the wrong abstraction

https://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction

If you’re unsure about your choice, it can be better just to duplicate code.

We found that use of class methods sometimes justified, and sometimes it’s better to avoid them. Some very seasoned software developers recommend to avoid class methods at all. But the truth is that most likely you’ll have to use class methods in libraries, frameworks, and in Ruby language itself. You will have to deal with them.

Rule of thumb is to use class methods when there is no state (and state is not planned in foreseeable future). For such classes statical code analysis tool called Rubocop might give you a warning like: “Prefer modules to classes with only class methods. Classes should be used only when it makes sense to create instances out of them”.

So you will avoid static class and use module instead:

module Megaphone
 module_function

 def shout(whatever)
	puts whatever.upcase
 end
end

Megaphone.shout('Hello')

(if you don’t know what “module_function” is, follow the “warning” link above and scroll down a bit).

We found that using class (static) methods only in a class is not recommended - use modules instead. And module is just a set of methods, grouped together by certain criteria. We use modules primarily for code duplication, and it is in line with Sandi Metz’s advice “prefer duplication over the wrong abstraction”.

The truth about Object-Oriented programming

Object-Oriented programming was introduced as a tool with growing code complexity. One of the main goals of OOP is to avoid code duplication, simplify a system, make it more maintainable, and cut down development costs.

However, there are other opinions as well. Some programmers think that “[code] duplication is far cheaper than the wrong abstraction”. It sounds reasonable, because OOP is not only encapsulation, polymorphism and inheritance. It’s also patterns and practices that have their own pros and cons.

One might need not only theoretical knowledge, but also significant development experience in order to juggle and apply OOP principles. Often multiple programmers work on a single project at the same time, some of them leave, some of them join over the time. Is there any guarantee that all of them are familiar with all of these practices and can understand subtle details of OOP?

Since there can’t be standards here, folks with decent knowledge and software development experience might have their own opinions. These opinions can differ, and we end up with two camps of proponents and opponents of Object-Oriented programming.

 Object oriented programs are offered as alternatives to correct ones…
Object-oriented programming is an exceptionally bad idea which could only have originated in California.

Edsger W. Dijkstra, one of the most influential figures of computing science’s founding generation in “TUG LINES”, Issue 32, August 1989

 Object-oriented programming offers a sustainable way to write spaghetti code.
…
The phrase “object-oriented” means a lot of things. Half are obvious, and the other half are mistakes.

Paul Graham, computer scientist and programmer, entrepreneur, venture capitalist, author, and essayist, in The Hundred-Year Language, 2003.

 Object-oriented programming, whose essence is nothing more than programming using data with associated behaviors, is a powerful idea. It truly is. But it’s not always the best idea. … Sometimes data is just data and functions are just functions

Rob Pike, one of Go programming language designers.

And so on…

Ruby language offers fun and joy along with human-friendly syntax, and intentionally simplifies classic OOP you can see in C++ and Java. While this simplicity and freedom enables programmers to write code that often far from being perfect, practice and years have demonstrated that Ruby isn’t only supports Object-Oriented approach, but can be effectively used in real business applications.

The key to efficient object-oriented software is not to make applications design smarter, but make them simple. It’s okay to compromise: duplication is not necessarily a bad thing, if concept and vision is still up in the air, why ignoring what actually works for now? Understanding of objects oriented concepts often comes with time.

While building software keep in mind that a code has two readers: computer and human. Computer doesn’t really care about how you create a program: if it works, it works. But a person on the other side of the monitor really cares what and how you create. So try to make it simple, don’t make it smart. Making unreadable code is easy, making a code readable is hard.

Debugging a program

Debugging is a process of fixing bugs when you interact with active program rather than just only looking into a source code. When computers were quite simple, there was no need for a sophisticated debugger. Programmers used to write a code and look at results. If results were fine, then program was fine.

You probably won’t need a debugger for a simple program as well. However, when complexity grows, the probability of introducing a bug grows too. If you have only one “if...else” statement, you have only two code branches. With two such statements you multiple two by two. With three statements multiple this number again by two (4 * 2 = 8). In other words, for three statements we have eight combinations of a program flow. For ten “if...else” statements this number is 1024! And we’re not considering user input.

In other words, the number of ways a program might get executed grows exponentially, while the complexity of the program grows linearly. And the probability of introducing error increases over time.

In real life programmers tend to debug programs the same amount of time they spend on creating these programs. That’s why it is crucial to understand how debugger works, and how to debug a program.

There are multiple ways of debugging a Ruby program, for example:

 	By using output to the console (with methods like “puts” and “print”)

 	By using text console debugger

 	By using built-in graphical debugger integrated into interactive development environment (IDE)

Let’s take a closer look at these options.

Debugging by using output to console

It is one of the most efficient and easiest ways to debug a program. In any part of a program we can say:

puts something.inspect

“inspect” method is implemented for every object. It returns string representation of an object. One might ask “why to use “puts something.inspect” while we always can “puts something”?

Inspect is more verbose, and its purpose is, yes, to inspect. For example, “puts nil” and “puts ""” statements put empty line on the screen. While having “.inspect” gives you a better idea of what it is:

$ pry
> puts nil

> puts nil.inspect
nil
> puts ""

> puts "".inspect
""

For programs that produce to your terminal lots of information (applicable to all Ruby on Rails application, for example) you might want to use the following trick:

puts '=' * 80
puts something.inspect
puts '=' * 80

Code above will print “=” eighty times and then inspection of the variable on the next line. You can easily spot this debugging statement in a lengthy output of other unrelated debug messages. Below is such example, we can see that our “something” variables equals to “123”:

 (11.7ms) SELECT "schema_migrations"."version" FROM "schema_migratio\
ns" ORDER BY "schema_migrations"."version" ASC
Processing by HomeController#index as HTML
 Rendering home/index.html.erb within layouts/home
 Rendered application/_header.html.erb (Duration: 10.5ms | Allocations\
: 762)
 (7.0ms) SELECT promises_stats.* FROM promises_stats
 ↳ app/models/promise.rb:17:in `amount_sum'
==
"123"
==
 Rendered application/_footer.html.erb (Duration: 1.3ms | Allocations:\
 166)
 Rendered home/index.html.erb within layouts/home (Duration: 4747.1ms \
| Allocations: 2147650)
Completed 200 OK in 4765ms (Views: 4745.9ms | ActiveRecord: 7.0ms | All\
ocations: 2149461)

To “stop the world” at a certain point you can use “raise” statement. Ruby will generate “standard error” exception and program will terminate (the Rails framework will terminate only current request):

puts '=' * 80
puts something.inspect
puts '=' * 80
raise

Ruby is dynamically typed language, and it’s not always possible to say where exactly this or another method is defined until you run a program. RubyMine IDE from Jetbrains (subscription based) has fantastic feature “Go to declaration” (usually Cmd+B shortcut on macOS and Ctrl+B on other operating systems). It allows you to jump to the place where method is defined. However, even sophisticated IDEs sometimes can’t understand where the method is defined because of dynamic nature of Ruby runtime.

In this case the following trick can be used:

puts method(:something).source_location

If object has method “something”, path will be displayed along with the line number.

When code gets executed multiple times, single debugging statement can pollute your screen, so having conditional “puts” is useful:

puts something.inspect if i == 100

Sometimes you want to print a stack trace. What is stack trace? Basically, the exact picture, evidence of how and why this particular line got executed. Use Ruby’s “caller” statement, here is example of a program that returns exponentiation for a random number:

 1 def random_pow
 2 pow(rand(1..10))
 3 end
 4
 5 def pow(x)
 6 puts "=" * 80
 7 puts caller
 8 puts "=" * 80
 9 x ** 2
10 end
11
12 puts random_pow

Result:

==
-:2:in `random_pow'
-:12:in `<main>'
==
64

Stack trace has backwards output. As we can see, the first execution is happening on line 12 where we call “random_pow” method. The next is on the second line where we call “pow” method. And inside “pow” method we print stack trace with “caller” statement.

JavaScript has similar syntax to print information to the console (also, this method can accept multiple parameters):

console.log(some_variable);

“console” object also implements “dir” and some other methods that look similar and useful for debugging:

console.dir(some_variable);

You can’t debug Ruby programs with JavaScript, but it’s always useful to compare implementation. We’ll look closer into this option in the next chapters.

Debugging by using console debugger

We’re already familiar with Pry, which is another REPL (read-execute-print-loop). Pry implements more features rather than IRB (Interactive Ruby, standard REPL). With a little bit of extra effort Pry can be used as a console debugger. We’ll look into basics of debugging with Pry. Knowing how to use this tool will save you a lot of time.

If for some reason Pry is not installed on your system yet (you can check it with “which pry”), type simple installation command:

$ gem install pry pry-doc

This command installs two gems: “pry” and “pry-doc”. Last one is a plugin for “pry” (normally plugin names for Pry start with “pry-“ prefix) and contains documentation about native Ruby methods.

You can type Pry commands once Pry is executed with just typing “pry” in your terminal:

$ pry
> help

Help
 help Show a list of commands or information about a spe\
cific command.

Context
 cd Move into a new context (object or scope).
 find-method Recursively search for a method within a class/mod\
ule or the current namespace.
 ls Show the list of vars and methods in the current s\
cope.
 pry-backtrace Show the backtrace for the pry session.
 raise-up Raise an exception out of the current pry instance.
 reset Reset the repl to a clean state.
 watch Watch the value of an expression and print a notif\
ication whenever it changes.
 whereami Show code surrounding the current context.
 wtf? Show the backtrace of the most recent exception.

(and so on...)

You can get help for any command from the list above by adding “-h”, for example:

[1] pry(main)> whereami -h
Usage: whereami [-qn] [LINES]

Describe the current location. If you use `binding.pry` inside a method\
 then
whereami will print out the source for that method.
...

Look at the Ruby program that is supposed to raise a number to the second power, so for 2 result is 4, for 3 result is 9, for 4 is 16, and so on (this operation equals to multiplying number by self one time):

def random_pow
 pow(rand(1..10))
end

def pow(x)
 x ^ 2
end

puts random_pow

Can you spot anything wrong above? Looks pretty legit: it generates random number and raises the number to the second power. However, it is weird. Give it a try. For example, it prints 6 when it shouldn’t. Program can print only 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

The program was made intentionally with the bug. Can you spot it? It’s okay if you can’t, that’s why we need a debugger. Let’s try to debug it together by applying technique from the previous chapter “Debugging by using output to console”:

 1 def random_pow
 2 pow(rand(1..10))
 3 end
 4
 5 def pow(x)
 6 puts "Pow parameter: #{x}"
 7 x ^ 2
 8 end
 9
10 puts random_pow

We added line 6, and it is supposed to print the value we pass in into “pow” method. Here is the result of a sample run:

Pow parameter: 3
1

Hm… Very strange. Input parameter is 3. The second power of 3 is 9, not 1. What’s going on?

When program is simple enough, the answer is obvious. However, when program is huge, and it’s not easy to reproduce the bug with just running a program (for example, when you need to go though multiple steps like registration, email confirmation, and so on), debugging the program can be a hassle and can take some time.

Programmers say we “need to set a breakpoint”. When execution reaches to this certain point, the program will stop and will be ready for thorough investigation. By using some tools a programmer can try to find out what’s going wrong at this exact breakpoint, what variables are, what’s the parameters, how call stack looks like, and so on. In other words, there is going to be a context ready for review and manipulation, not only code and final result on the screen.

Let’s see how to set a breakpoint with Pry:

 1 require 'pry'
 2
 3 def random_pow
 4 pow(rand(1..10))
 5 end
 6
 7 def pow(x)
 8 binding.pry
 9 x ^ 2
10 end
11
12 puts random_pow

We’ve set a breakpoint by adding two lines (1 and 8). First line requires gem “pry” to be included. For performance reasons installed gems aren’t included in Ruby programs by default. so we need “require ...” statement. From Ruby’s standpoint Gem is just a side code written by some enthusiast. So when we say “gem install ...”, we download gems from Internet. And when we say “require...”, we include already downloaded gem from some default place in our local filesystem.

Highly likely that you’ll deal with Ruby on Rails (RoR) framework in the future, and it has “Gemfile” support by default. You just need to add your gem names to this file, and if it’s done correctly, RoR will load these gems automatically.

Line 8 in the listing above has “binding.pry” statement. It’s a special syntax indicating breakpoint: “stop the program at exactly this point and show debugger prompt”.

Note that before we were running Pry from the command line, but now we need to execute the program as we normally do:

$ ruby app.rb

Program started, Ruby found method definitions on lines 3 and 7 and the last line is the actual entry point which is “puts random_pow” (or “puts(random_pow)”, or “puts(random_pow())” - as you already know, parenthesis are optional). In other words, we want to put a string on the screen, and it should be result of “random_pow” method, so Ruby starts with executing “random_pow” first.

“random_pow” generates random number and calls “pow” where our breakpoint is:

$ ruby app.rb

From: /Users/ro/work/book/app.rb @ line 8 Object#pow:

 7: def pow(x)
 => 8: binding.pry
 9: x ^ 2
 10: end

[1] pry(main)>

Arrow on the left shows where you are. You can type “whereami” Pry command to bring this screen back if you mixed up somehow and the listing has disappeared.

So now, instead of empty Pry state we had by running “pry” from the terminal, we are inside of a running program! We have the state of the interrupted program, with all its memory, initialized variables, parameters, and so on. So exciting, it’s like debugging a Robot and investigating what’s on its mind! Here is what we can do:

 	See variables values (variable “x” in our case)

 	We can change variable values

 	We can call any method one or more times

 	We can paste some code from the clipboard and see how it works

 	We can execute the next line and go step by step gradually changing the state of a program

Some useful Pry commands are:

 	“next” executes the next statement (next line). After that you can read (and write) variables again.

 	“exit” to continue execution of a program. This command tells Pry to exit back to the program. The better name for this command would be “continue”.

 	“exit!” - hard exit, stop execution right now and go back to the terminal.

 	“whereami” - where am I? Shows the debugger prompt with arrow pointing to the current line.

These are essential commands, and there is more (type “help” to see the list, but you probably won’t need them for this chapter).

So, how do we find the bug we were talking about? Let’s print “x” variable and then type in “x ^ 2” and see what happens:

[2] pry(main)> whereami

From: /Users/ro/work/book/app.rb @ line 8 Object#pow:

 7: def pow(x)
 => 8: binding.pry
 9: x ^ 2
 10: end

[3] pry(main)> x
2
[4] pry(main)> x ^ 2
0

That’s rather interesting! We found that “x” equals to 2, and result of “x ^ 2” is zero. It is not something we expected. We expect to see 4, not zero. So we were able to identify the problem line. And there was no need to run the program multiple times.

Statement “x ^ 2” is syntactically correct, but in Ruby language it won’t raise the number to the second power. “^” operator is used to perform “exclusive-or”. But in some other programming languages it is “raise to the Nth power” operator, but in Ruby one should use “**” for that. Here is correct version of the program:

def random_pow
 pow(rand(1..10))
end

def pow(x)
 x ** 2 # THIS LINE HAS BEEN FIXED
end

puts random_pow

We’re familiar with Pry basics now. From now on, if you face a bug, you know what to do: set a breakpoint and go step by step examining your variables.

To conclude, there is another useful, but not very well known command: “system('reset')”. It’s not a Pry command: “system” is reserved Ruby method that runs a system command. And “reset” is command to reset your terminal settings to default (not to reset your computer). Typing “system('ls')” resulting in printing the list of files in current directory, and “system('pwd')” prints working directory (p.w.d.).

Running “man reset” in your terminal (manual for “reset” command) says “initialize a terminal…”

But why do we need it and why one would want to call “reset” from Pry? If you’re working on small programs you will probably never need it. However, large Rails applications have multiple gems which can inadvertently pollute your terminal and change its settings (for example, when you type, but don’t see yourself typing). Use “system('reset')” to bring back default terminal settings without restarting the terminal. You can also do it by omitting “system” and wrapping actual command in backticks:

[1] pry(main)> `reset`

(screen cleared)

""
[2] pry(main)> whereami
...

Debugging with IDE

Until now we’ve been using only console tools for debugging. Many programmers prefer to use console tools, not only debuggers, but also text editors like Vim, Emacs, and other application.

The advantage of console tools is that they work at any “host”: on developer’s computer or on remote Linux server (which often is used for purposes of serving clients, not for development). In other words, knowing how these tools work allows you to debug a program not only locally, but remotely as well, one needs only SSH connection.

However, convenience of IDE debugging has been deeply appreciated. Authors of this book do not use IDE debugging quite often, but it’s something definitely worth mentioning. Here is how RubyMine IDE looks like:

 [image: Debugging with IDE]
 Debugging with IDE

As you can see from the image above there is no need for “binding.pry” and “gem install pry”, normally IDE will take care of this magic. With a mouse pointer you can activate breakpoint: you’ll see the red circle on the left. You can also start debugging from the menu:

 [image: Running debugger from the menu]
 Running debugger from the menu

When debugger has been started and the flow of a program has been successfully interrupted at the breakpoint, we can do the same things we already did with Pry, like:

 	Going to the next line (F8 instead of “next”)

 	Adding other breakpoints

 	Using advantages of the IDE. For example Cmd+B on MacOS (or Ctrl+B on Linux/Windows) to go to the method definition.

Using IDE debugger is somewhat easier than using Pry. However, there can be some dance around setting this up. Some options are located not in the very obvious places:

 [image: RubyMine settings]
 RubyMine settings

From the other side, it’s a matter of habit. RubyMine requires subscription and customer support is always ready to answer your question.

At the moment of writing there is also a free way of installing RubyMine available. It can be done though an EAP - Early Access Program. You will need to install Jetbrains Toolbox first to unlock this feature. After that, icon of the app with “EAP” label can be picked up from the dropdown menu:

 [image: Installing RubyMine EAP]
 Installing RubyMine EAP

You might need to update this tool the similar way every month or so.

The similar debugging functionality is available through free and open source tool called VsCode (Visual Studio Code, not to confused with Visual Studio) from Microsoft.

Practice: save the world with Ruby

At this point we know how Ruby debugger works, so we can not only create programs, but debug them as well. Debugger allows to interrupt a program and examine internals, and it means we can observe the execution flow, also without interfering with it.

Imagine you are building a program that tries to download something from Internet. Everything looks correct, but there is always some uncertainty when it comes to a server reply. Server can generate error. Sometimes there is no Internet connection. Sometimes you’re getting response in unexpected format, and so on. In this cases it is useful to set a breakpoint and look at the response.

In this chapter we’re going to practice. Machines took over the world. Your name is John, and you should save the universe. In order to do that, you should reach the central server and type correct password. However, you know only the username: “admin”. You will need to hack the password.

For this exercise you’re going to install Docker (also known as “Docker for developers” or “Docker community edition (CE)”). You can download Docker from official website for Windows and Macs. There is also Linux instructions, which can be summed up to:

$ curl -fsSL https://get.docker.com -o get-docker.sh
$ sudo sh get-docker.sh

You might need to restart your computer and/or terminal. Make sure Docker works by checking its version:

$ docker -v
Docker version 17.06.2-ce, build cec0b72

Once Docker is installed, we can start our training host. Theory behind it is that Docker is virtualization platform. It allows to execute mini-operating systems inside your own operating systems. These operating system are based on Linux images. In other words, one can run hundreds of miscellaneous Linux servers. But how this need has emerged?

The fact is programmers often deal with numerous third-party software, like databases, web servers, caching systems, and so on. Complexity of software products is increasing, and for local development purposes you might need to install multiple versions of, let’s say, the same database. Only problem is that two versions can be incompatible. What would you do?

The rescue came from Docker. It allows to run fully isolated software inside these mini-operating systems. Since they’re isolated, you can run as many of them as you need to. With the help of command line parameters you can specify port numbers to listen to (like 1234,or 5555) without being worried about what’s going on inside these containers.

Such image was created for your convenience by author of this book. You can download and safely execute it with the following commands:

$ docker rm xxx; docker run -it --name xxx -p 4567:4567 ro31337/rubyboo\
k-save-the-world

Command above actually contains two commands:

 	“docker rm xxx” - remove container by the name “xxx”. If it doesn’t exist, Docker will generate the error “Error: No such container: xxx” - just ignore it.

 	“docker run -it --name xxx -p 4567:4567 ro31337/rubybook-save-the-world” - downloads and runs the container, while mapping the port from inside of the container to your local network interface.

(These two commands are separated with “;” and not with “&&” intentionally. If first command fails, the second one gets executed anyway)

Output of the command above (hit Ctrl+C to stop the container, but don’t hurry - we’ll need to access it from the browser below):

Unable to find image 'ro31337/rubybook-save-the-world:latest' locally
latest: Pulling from ro31337/rubybook-save-the-world
...
Digest: sha256:bb0eb57fb52db2be2214d978cb304101b3cb883ccc454c1ad97faee8\
4b088b0d
Status: Downloaded newer image for ro31337/rubybook-save-the-world:late\
st
[2018-08-15 02:25:13] INFO WEBrick 1.4.2
[2018-08-15 02:25:13] INFO ruby 2.5.1 (2018-03-29) [x86_64-linux]
== Sinatra (v2.0.3) has taken the stage on 4567 for development with ba\
ckup from WEBrick
[2018-08-15 02:25:13] INFO WEBrick::HTTPServer#start: pid=1 port=4567

Open up your browser at http://localhost:4567/ and you’ll see the following prompt:

 [image: Protected area we need to get access to]
 Protected area we need to get access to

What we can do here is just to type login and incorrect password, since the right password is unknown (give it a try). But how do we get the right password?

The very first thing we need is the most commonly used passwords file. It’s already available at our host at http://localhost:4567/passwords.txt - there is 10 thousand different password like “love”, “god” and so on. You can grab this file to your local file system with wget command (or just save the file from your browser):

$ wget http://localhost:4567/passwords.txt

We know for sure that one of these passwords is correct. Think about how you can utilize your Ruby language knowledge and advance further?

The first step would be iteration (loop) over every password in this list. We need to store the current password in some kind of a variable so we can perform comparison later. So how one would iterate over each line in a text file (“passwords.txt” in our case)?

There are many ways to iterate over each line in a text file:

 	Read the entire file into memory as a single string and split this string into array of strings with “split("\n")”

 	Get the array of lines from a file, and iterate over array

 	Use already existing method for this purpose: read lines one by one from a text file

All of the above ways can be implemented by a programmer. We’ll stick to the last option, because it won’t read the entire file into memory, but reads lines one by one. Imagine that you have a very large file (few gigabytes, for example). Why would you inefficiently use computer memory to read this file at once instead of reading it by chunks?

Hold on, careful reader might say, we’ll need to read the file into memory anyway, and while reading it Ruby will produce string objects for every single line in the file. That’s true. However, after accessing these objects and redefining variable value, those will be marked as “garbage”. Ruby does some background garbage collection, and will free up the memory taken by garbage, unused objects. So the memory consumption will remain at about the same level.

This probably doesn’t matter for files like we have (with the size of about 10KB), but it’s important to think about computer resources in a way so they’re not consumed in a wasteful manner.

Look at the “each_line” method from IO class (which stands for input-output). Fore we move further, try to do the following exercise.

 Exercise 1

 Without looking to solution below use the provided documentation link and implement the program that reads lines from a file one by one and prints the length of every single line.

Below is the code of such program, it reads “passwords.txt” and prints the line size:

File.new('passwords.txt').each do |line|
 password = line.chomp
 puts password.size
end

Result of running the program:

$ ruby save_the_world.rb
...
6
5
8
6
6

Yay! We got something on the screen. However, the real programmer never believes herself (himself). You need to make sure that it works, you need to perform some additional validations. Let’s use pipe method from our shell. With the pipe symbol “|” we can redirect the output to somewhere else. For instance, to “wc -l” command.

“wc” manual (“man wc”) says that “-l” flag is used to count the number of lines. In other words, POSIX operating systems (MacOS, Linux, but not Windows) should have this command available, and we should be able to calculate the number of lines in standard input. In our case it should print 10000.

Let’s give it a try:

$ ruby save_the_world.rb | wc -l
 10000

Looks good, but what about the number of lines in “passwords.txt”?

$ cat passwords.txt | wc -l
 10000

Looks good as well. Since “ruby save_the_world.rb” prints the line sizes one by one, let’s print the last five lines to make sure the output makes sense:

$ tail -5 passwords.txt
eighty
epson
evangeli
eeeee1
eyphed

Compare lengths of these lines to the output we have:

6
5
8
6
6

Looks good. Recommendation is that every time you step forward through your solution, make sure the current step is correct. It’s like computer game: move forward, save. If something goes wrong, roll back to the previous save point.

The mistake a beginner programmer could had made here is to forget “chomp”. And output in this case is different: “...8, 7, 10, 8, 8”, and it’s two characters more in every word. “passwords.txt” has non-standard line endings for POSIX (macOS, Linux) systems: CRLF (or “\r\n”) instead of LF (“\n”).

The next step is to submit data to the server. Let’s dig into how it looks like when a user types in some data. We’ll need Chrome browser. Open up the http://localhost:4567.

Open context menu (right click or click with two fingers on an empty space) and pick “Inspect” from the drop down menu:

 [image: Chrome context menu]
 Chrome context menu

You’ll see Chrome Developer Tools panel at the bottom::

 [image: Chrome Developer Tools]
 Chrome Developer Tools

It is very powerful tool that has elements navigator (“Elements” tab, active on the image above), JavaScript console (REPL, “Console” tab), debugger (“Sources” tab), network packet view tool (“Network” tab) and other utilities.

Depending on your computer screen you can dock this panel to different parts of the screen, or bring it as a separate window:

 [image: Chrome Developer Tools dock options]
 Chrome Developer Tools dock options

What we need is “Network” tab where we can look closer into network connections happening in the browser. Open up this tab, fill out login and password on the page (you can type “admin” and “123456” as a password) and hit “Login” button. You’ll see the message about incorrect username and password (it is expected, nothing wrong with it) on the page and the line with 200 status code below:

 [image: Network tab in Chrome Developer Tools]
 Network tab in Chrome Developer Tools

Selecting this line gives you the parameters of the query:

 [image: Query parameters]
 Query parameters

We need these:

 	Request URL (also known as “endpoint”): http://localhost:4567/login

 	Request method (or just “method”): POST

 	username

 	password

Unfortunately, Chrome Developer Tools doesn’t show you original query as a plain text. However, tools like Fiddler (for Windows) or Charles Proxy (macOS) can show the raw data:

 [image: Charles Proxy shows the raw HTTP request]
 Charles Proxy shows the raw HTTP request

If we connect from a simple tool like telnet and send the text you see on the right, you’ll give exactly the same answer. This is basically how browsers work, most of the time they operate with text request and responses.

 Exercise 2

 Modern tools (like Chrome Developer Tools) represent the server response in UI-friendly format, hiding details while response is just a text. Login to your favorite website while running, for example, Charles Proxy and look at the raw text data for both request and response. If you struggle finding website to login, use http://localhost:4567/login. Compare this data with what Chrome Developer Tools shows as a response in “Network” tab.

 Exercise 3

 Try to connect to the Docker container with “telnet” (you might need to install it first, look up the docs online). Try to send GET-request manually by running “telnet localhost 4567” and typing “GET / HTTP/1.0” followed two new lines (hit Enter to send a new line). Can you see the html response from the container?

 Exercise 4

 Try to connect to the Docker container with “telnet” and send the following POST-request manually (for example, by typing all of that in your terminal - do not copy and paste) and hit Enter:

POST /login HTTP/1.0
Content-length: 30

username=admin&password=123456

Now you know a little bit about GET and POST requests. GET request is more like a query that is used to get the data. While POST is HTTP command that submits the data and can modify the backend state.

It would be nice if we could do what we did manually with some Ruby methods. We’re lucky to have standard “net/http” library. Let’s create minimalistic program that just sends POST request with “admin” username and “123456” password.

 Exercise 4

 Looking at the HTTP library documentation link above, try to implement this program by your own. The program should connect to “http://localhost:4567/login”, submit “username” and “password” parameters. The program should print response. The response should contain “Wrong username or password, please try again” text (some extra html is okay).

Here is the listing of such program (no, really - try do it yourself before looking at the listing below):

require 'net/http'

uri = URI('http://localhost:4567/login')
res = Net::HTTP.post_form(uri, username: 'admin', password: '123456')
puts res.body

For the most part, code above is copied from the docs. First line says that we require “net/http” library. Third line creates URI object (represents Universal Resource Identifier). URI here contains four parts:

 	http protocol

 	host name (localhost)

 	port number, 4567

 	path, “/login”

Line 4 is just a static (class) “post_form” method call on HTTP class from module Net where we pass newly created URI object and hash with parameters. Hash can be specified explicitly, however it’s not recommended in newer versions of Ruby:

res = Net::HTTP.post_form(uri, { username: 'admin', password: '123456' \
})

Rubocop (static code analysis tool) would complain about that line though, throwing “Redundant Curly Braces” warning.

Last line in the listing above prints the response body:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>App</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.\
0">
 <link rel="stylesheet" href="tacit-css.min.css"/>
 </head>

 <body >
 <div>
 <p>Wrong username or password, please try again</p>

 </div>
 </body>
</html>

What if we combine two programs together: iteration over each password from the passwords file, and program that creates http requests:

require 'net/http'

uri = URI('http://localhost:4567/login')

File.new('passwords.txt').each do |line|
 password = line.chomp
 puts "Trying #{password}..."
 res = Net::HTTP.post_form(uri, username: 'admin', password: password)
 puts res.body
end

The program works fine, for every password in the passwords file it submits request and prints result on the screen. Since password is in the list, we have guarantee that sooner or later the program is going to print different result, without saying “Wrong username or password, please try again”, it is going to be something else. All we need to do now is to keep on watching. However, there is a room for improvement:

 	Watching output is quite fast for a human. It tries 10 password every second. It’s possible, but not easy for a human to spot the different output.

 	From the program’s standpoint there is no difference between right or wrong guess: it will continue iterating over passwords in the file no matter what.

All of that is quite easy to fix: if response body contains word “Wrong”, then we need to continue. Otherwise we should stop the flow and exit. Let’s put all of these changes and look at result:

require 'net/http'

uri = URI('http://localhost:4567/login')

File.new('passwords.txt').each do |line|
 password = line.chomp
 puts "Trying #{password}..."
 res = Net::HTTP.post_form(uri, username: 'admin', password: password)
 if res.body.include?('Wrong')
 # don't do anything, just continue
 else
 puts "Password found: #{password}"
 exit
 end
end

Result:

Trying password...
Trying 123456...
Trying 12345678...
Trying 1234...
Trying qwerty...
Trying 12345...
...
Password found: (actual password removed from the book so you have more\
 fun!)

Yay! We found the password and saved the world! Try to type “admin” and the actual password in UI and you’ll get the following result:

 [image: You saved the planet!]
 You saved the planet!

 Exercise 5

 Run the program and save the world. Think about how you can improve if-else statement so it looks little bit more readable.

 Exercise 6

 Using the actual password, replace “123456” below, connect to the server with telnet and type the following request:

POST /login HTTP/1.0
Content-length: 30

username=admin&password=123456

Hit Enter and make sure server response contains “Congratulations”.

Docker, crash course

In our last chapter, we touched on the subject of virtualization. It’s worth taking a closer look into basic concepts. To date, there are three main approaches to virtualization that any programmer should be familiar with.

First one is about “classic” virtualization when you have two operating systems - host and guest. For example, your host operating system is Windows, and you want to run Linux inside Windows. In this case you can take advantage of solutions like VirtualBox (free of charge) or VMWare Workstation (has more features, but there is no free version). Here is how it looks like:

 [image: Linux Mint running inside Windows with VMWare Workstation]
 Linux Mint running inside Windows with VMWare Workstation

Pros of this approach is that operating systems “think” that they’re running on a stand-alone computer and work in very much the same way. Virtualization software allows you to see the actual UI of guest operating system, connect devices (USB, for example), play sound simultaneously on guest and host operating systems, and so on.

There are few downsides of such a way of virtualization. The first downside is the size of an image. Even Linux with UI shell requires few gigabytes on a hard drive and at least 1 GB of RAM. The second downside is that because that it is hard to run multiple containers at the same time, system performance degrades and everything becomes very unresponsive and slow. And another downside is that often there is no command line utilities: when everything is controlled through UI, automation is hard.

Second approach to virtualization is to use tools like Vagrant. It allows you to run and provision containers with a file called “Vargrantfile”. There is a base image, and a list of steps that Vagrant need to go through to build the desired image. You can also specify shared folders and hide guest OS UI if you need.

It is little bit more flexible because of the scripting syntax available (which is, by the way, Ruby program!). Programmers can share their Vagrant files, most of the time these files are quite small, so sharing containers is easy, because base images are kept in central repository, and everyone can provision a system with certain flavor and certain set of pre-installed tools.

Vagrant works at the top of VirtualBox (or VMWare) and allows you to run any operating systems inside (including Windows). When it comes to Linux inside Vagrant, developers prefer to run without any UI shell: it saves memory and allows to keep multiple running containers at the same time.

Sometimes Vagrant is used as development environment operating system. You can configure shared folder which is available on both host and guest OS, so program execution is happening inside the container, and file changes are happening outside. For example, you can edit your programs in Windows, but run these programs in Linux.

Imagine it is your first day as a programmer, you’re getting new computer and instructions and it says:

Dear friend! Welcome to the team. We’re working on Project X, it is Ruby On Rails web application. You need to install and configure the following tools before you can start working on the project:

 	MySQL, time burden is ~1 hour

 	Ruby, Node.js, rvm, nvm, time burden is ~3 hours

 	Redis (20 minutes)

 	Git and related tools like git-lfs, ~1 hour

 	Clone the latest code

 	Run commands to seed the database

Every item in the list has its own instructions for a human. Where to go, where to download, which parameters you need to specify and so on. More professional team would provide you the better instructions, like:

 Dear friend! Welcome to the team. We’re working on Project X, it is Ruby On Rails web application. So you can start you need to install Vagrant, download this Vagrantfile and run “vargant up”. It will take some time to provision guest OS, but it is going to happen automatically while you can read some manuals and enjoy your coffee. Once everything is done, you’ll see the app. If something goes wrong, we won’t put a blame on you, because we want to unify our development environment provisioning, it’s our standard for everyone on the team. We keep this Vagrant file in a good shape, so everyone has exactly the same experience!

Third approach (and the most commonly used) is virtualization through Docker. We’re already familiar with this approach a little bit. Docker allows to run lightweight containers which were made for virtualization purposes. For example, Linux Alpine is only 5 MB docker image. So on one machine you can run tens or even hundreds such lightweight containers.

While working with Docker it’s crucial to distinguish between “container” and “image”. Image is just a pattern, like a technical drawing, like a class in computer programming. Image itself is not a living organism, it just exists on the hard drive, or available remotely (through Docker Hub, for example). But container is instance that were made based on the image. So you can do the following operations with these two entities:

 	with a container: you can start and run, stop, remove (rm), see the list of running containers with ps (process status)

 	with an image: remove (rmi - remove image), see the list of available images (“images” subcommand).

With having this picture in mind it is much easier to understand how Docker actually works. We do not intend to provide you a comprehensive Docker guide, but some essential commands are always useful. If you don’t know what Docker is, there is a very high change you’ll hear about it in the future:

 	“docker version” - show docker version

 	“docker ps” - show the list of running containers (similar to ps shell command)

 	“docker ps -a” - show all containers (not only running containers)

 	“docker images” - show the list of images

 	“docker rm container_name” - remove container by name

 	“docker rm f767ff6ecebf” - remove container by ID

Example of a command to start a container (we already did it in the previous chapter):

$ docker run -it --name xxx -p 4567:4567 ro31337/rubybook-save-the-world

Use “docker run --help” to get the help for “run” or any other command.

Also, here are some useful combinations of commands/parameters (used below):

 	“docker ps -a -q” - show all container identifiers in a quiet mode (list only).

 	“docker images -q” - show all images identifier in a quiet mode (list only).

The most useful script to fix things up if you messed up something and want to start from scratch. These three commands will stop and remove all containers and images:

docker stop $(docker ps -a -q)
docker rm $(docker ps -a -q)
docker rmi $(docker images -q)

Ruby Version Manager (RVM)

Information in this chapter is very important for a Ruby beginner. Probably it would worth to keep it at the beginning of the book. However, it can take some time to digest the information about RVM, and our focus was on a quick start. Now when you know how Ruby works and (hopefully) did a lot of exercise, you can exercise with setting up some useful tools.

RVM is a thin layer for your shell (which is “bash”, but hopefully Oh-My-Zsh) or IDE. Every programmer often runs Ruby app with “ruby app.rb”, but where the actual “ruby” comes from? Let’s look at the “which” command output when RVM isn’t installed:

$ which ruby
/usr/bin/ruby

So Ruby programming language is just a binary executable file located at “/usr/bin/ruby”. Here is how it looks like when you open this file with Far Manager:

 [image: Ruby binary]
 Ruby binary

If you delete the file, you won’t be able to run Ruby programs. But how does the shell know that Ruby needs to be started from “/usr/bin” directory? Look at the $PATH environment variable for your shell (your output can be slightly different):

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

So $PATH variable has multiple directories, separated by “:” (colon):

 	/usr/local/bin

 	
/usr/bin (where “ruby” is actually located)

 	/bin

 	/usr/sbin

 	/sbin

When you type “ruby” command, your shell tries to find the file in the first directory. If the file wasn’t found, it iterates over the next directories until the file is found. One can redefine this variable such a way, so shell looks up the file somewhere else first (you’re getting it right, you need to prepend new directory to the $PATH, not to append). But where you should do that?

All shells (bash, zsh, etc) keep its settings in home directory. You can find out what’s your home directory by typing “echo $HOME” or “echo ~”. Bash keeps settings in “.bashrc” dot-file in home directory.

In POSIX/UNIX-compatible systems (not on Windows) “Dot-file” is a file prefixed with dot, and “hidden” by default. It’s not visible with “ls” command, but visible with “ls -a” (“list all”). Dot-files in Windows aren’t hidden, and visibility is controlled by so-called file attributes. There is Ctrl+A combination in Far Manager to control this attribute on Windows (for Far Manager on POSIX/UNIX-compatible systems this dialog is slightly different).

Zsh settings can be found at home directory in “.zshrc” file (full path is “~/.zshrc”). $PATH environment variable almost always defined in dot-files that keep settings for your shell.

But why do we need RVM and all of that jazz?

We already know that Ruby is a standalone program located somewhere on your disk. But what if new version is released? The fact is that releases are happening quite often, and new versions have new features, improved performance, and so on. We were talking about Ruby language, but what was the actual language on your system? You can get the version banner with the following shell command:

$ ruby -v
ruby 2.6.1p33 (2019-01-30 revision 66950) [x86_64-darwin16]

“System” Ruby is the “ruby” located in your “/usr/bin” directory and ships with your operating system.

However, it’s not the case for Windows, and the latest news for the macOS 10.15 say:

 Scripting language runtimes such as Python, Ruby, and Perl are included in macOS for compatibility with legacy software. Future versions of macOS won’t include scripting language runtimes by default, and might require you to install additional packages. If your software depends on scripting languages, it’s recommended that you bundle the runtime within the app.

Moreover, system Ruby often isn’t the latest Ruby released, there is probably newer version with new features and performance improvements. But how do you know that’s the latest version?

Hold on for a moment, you probably won’t like the latest-latest Ruby. It doesn’t mean that new versions are always bad. The very latest versions are almost always “nightly builds”. All changes that were introduced during the day go the single branch and get built automatically.

Side note: compilation is translation of the source into machine language. Programs written with Ruby language don’t get compiled, but interpreted: we run Ruby programs with “ruby app.rb”, not just “./app”. So there is no such a thing as build for Ruby programs. However, lots of programmers do refer to “build” as to successful run of all the tests, sometimes with some magic to additional assets like images, CSS files, and so on. But the Ruby itself is written with C. As could be seen if you call “show-method loop” in Pry (you might need to install pry-doc with “gem install pry-doc”):

$ pry
[1] pry(main)> show-method loop

From: vm_eval.c (C Method):
Owner: Kernel
Visibility: private
Number of lines: 6

static VALUE
rb_f_loop(VALUE self)
{
 RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size);
 return rb_rescue2(loop_i, (VALUE)0, loop_stop, (VALUE)0, rb_eStopIt\
eration, (VALUE)0);
}

So the nightly builds for Ruby language itself actually exist. But for Ruby programs programmers often refer to “build” as to successful execution of all the tests with some extra magic.

For the record, popular Firefox browser is available as nightly builds. Here is what nightly build is, according to Firefox developers:

 Every day, Mozilla developers write code that is merged into a common code repository (mozilla-central) and every day that code is compiled so as to create a pre-release version of Firefox based on this code for testing purposes, this is what we call a Nightly build. Once this code matures, it is merged into stabilization repositories (Beta and Dev Edition) where that code will be polished until we reach a level of quality that allows us to ship a new final version of Firefox to hundreds of millions of people.

In addition, there are also “preview” builds. The difference between nightly and preview is that the latter is more stable. But what we’re really interested in is “stable” or “LTS” build. In other words, there are different kinds of builds:

 	nightly build

 	preview

 	alpha

 	beta

 	stable

 	LTS (long-term support) - not really a build, more like a version tag

To find out what’s the latest stable is, go to official Ruby language downloads and scroll down a bit to see “Stable releases section”. You can download it right from the website. It comes as “tar.gz” archive, use the following command to unpack it:

$ tar xzf ~/Downloads/ruby-X.Y.Z.tar.gz

Don’t forget to change “X.Y.Z” to the Ruby version you’ve downloaded. After unpacking this file you’ll see directory with the source code. You can “cd ruby-X.Y.Z” and “ls -lah” to see contents. You can’t run the source code, so you need to build the Ruby so you have executable “ruby” file. You can do it with running “./configure” and “make”:

$ cd ruby-X.Y.Z
$./configure
checking for ruby... /usr/bin/ruby
tool/config.guess already exists
tool/config.sub already exists
checking build system type... x86_64-apple-darwin17.6.0
checking host system type... x86_64-apple-darwin17.6.0
checking target system type... x86_64-apple-darwin17.6.0
checking for clang... clang
checking for gcc... (cached) clang
...
$ make
 CC = clang
 LD = ld
...

At the end you’ll end up with “ruby” file in your current directory. You can run the file to check the version:

$./ruby -v
ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-darwin17]

Prefix “./” says that the file needs to be executed from the current directory, not from the file located in one of the $PATH directories. Compare the following with what’s written above:

$ ruby -v
ruby 2.3.3p222 (2016-11-21 revision 56859) [universal.x86_64-darwin17]

If you do “sudo make install”, you’ll replace your system Ruby with newly compiled version. However, on macOS it will probably end up in “/usr/local/bin”, while the system Ruby is in “/usr/bin”. It shouldn’t be a problem, because “/usr/local/bin” goes before “/usr/bin” in $PATH.

You might need to restart the terminal, or “source ~/.bashrc”, “source ~/.zshrc”, depending on your shell.

Would you agree that all of that was somewhat complicated? Why the Ruby team did things this way? The answer is that there is only one Ruby, but many operating systems. Not only Windows, macOS, Linux, but also different versions of these operating systems. Every operating system has its own settings, related to performance, for example. So Ruby can take advantage of these settings, one need to build Ruby on exactly the same computer that you have (or on your own). Also, CPUs can differ for the same operating system. And one CPU optimization can work on one computer, but won’t work on another. For example, when one computer is newer, and another is older.

We’ve built Ruby language, replaced the system Ruby with newer version, and we won’t have to go through all of that again. Great! Hold on a second, there is one more thing. It’s not always that easy in software development world (and it’s why we’re getting paid a lot as programmers).

You have probably already noticed that version is represented by three numbers. Not the Ruby 1, 10, 42. But Ruby 2.3.3, Ruby 2.5.1, and so on. Why do we need three numbers instead of just one?

There is such thing as Semantic Versioning (or SemVer). The summary says:

 Given a version number MAJOR.MINOR.PATCH, increment the:

 	MAJOR version when you make incompatible API changes,

 	MINOR version when you add functionality in a backwards compatible manner, and

 	
PATCH version when you make backwards compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

For Ruby 2.3.1, the major is 2, the minor is 3, and the patch is 1. We’ll look closer into this, because it is important.

Software development process can include:

 	bug fixes - patch version is increasing

 	adding features and improvements, minor version is increasing

 	breaking (not compatible with previous release) changes were introduced, major version is increasing

While we fixing bugs, the program logic mostly stays the same. Two versions may differ, but not that much. Two versions of Ruby would have one or more bug fixes. You can drop-in replace one version with another and everything will work exactly the same way. Developers increase patch number because they want to emphasize that new version is better, it has more fixes.

Let’s say we had version “0.1.0” (recommended initial version in SemVer), and new version is “0.1.1”. It means something was fixed, and “0.1.1” is better. Or, for example, we had version “0.1.9”, and the new one is “0.1.10”. Something was fixed in “0.1.9”, and patch number was increased by 1. In fact, you can replace “0.1.10” with “0.1.0”, and nothing serious should happen (except unfixed bugs, of course).

While improving functionality or introducing features, old versions do not have this functionality or features. What does it mean for Ruby?

Say, new version has “yeah” operator that prints “Oh, yeah!”. We use this new feature to create a program that works. But for some reason we roll back to the previous version. But the old Ruby doesn’t implement “yeah” and our program won’t work, we’re get—ting error now!

So to let others know that this version is new, and you can’t roll back, we increase the minor version (the number in the middle), and at the same time we drop the patch number to zero. For example, an app version will increase from “0.1.10” to “0.2.0”. New version will increase all the patches from the previous one. Since new version has new features, minor number was increased by 1.

If you look at Ruby, versions 2.3.3 and 2.5.1 differ by 2 minor releases. It means that we had 2.4.x, and later on some new features we release in 2.5.x. If you write a program that uses 2.5.x-specific language features, it won’t work on versions below this number, like 2.4.x, 2.3.x and so on.

Major version can be increased in the following cases:

 	When software is ready for production, major version can be increased from 0 to 1.

 	When breaking changes have been introduced, the version can be increased from 1 or above by 1.

Often developers say that this change “breaks backwards compatibility”: programs written with new Ruby most likely won’t work while executed with the previous version.

But that’s the worst case. When major version of Ruby is released, we often have instructions on how to upgrade already existing software to the new Ruby.

This raises some philosophical aspects of software development, especially when it comes to computer languages or frameworks. What would be your long-term release strategy?

 	Would you go fast, break things, and don’t look back?

 	Or would you be more conservative, support old versions, because there is plenty of already existing code out there, and nobody is going to rewrite it only because new language/framework has been released?

Many development teams try to find the balance. They’re open about what versions are maintained, which versions are LTS (have long-term support), which versions are EOL (end of life), which versions are in security maintenance phase (have only security bug fixes). Anyway, Ruby doesn’t stay still, companies have to upgrade their Ruby versions. Nobody wants to deal with EOL Ruby version, because it’s much easier to upgrade gradually over the time, step by step. And that’s why we, as programmers, are getting paid to do these upgrades (and our unit tests here come into play and help us a lot).

We’ve figured out the source of issues related to the Ruby language growing and getting more fun and performant. And businesses have reasonable questions: “okay, Ruby language exists in multiple versions. Some projects can be upgraded to the latest, some require more time and money. But the system Ruby is always the same! What would we do if we have two projects? One project requires new version, and another requires older Ruby. What if these two projects need to talk to each other (micro-service architecture), and we need to keep it running on the same computer?”

Solution to the problem is quite simple and little bit smart: we’ll create directories where we’ll keep all Ruby versions:

 	2.5.1

 	2.3.3

 	2.0.0

and so on. Every Ruby binary is going to be named as “ruby-2.5.1”, “ruby-2.3.3”, and so on. Instead of running “ruby app.rb”, we’ll be running “ruby-2.5.1 app.rb”. It’s that simple. But there is one more thing…

Besides “ruby”, there is also “gem” binary (type “which gem” to locate the binary, for system Ruby it should be in “/usr/bin/gem”). We use “gem” to install “gems” (libraries) available at RubyGems that were written by people like you and me from around the world. Being downloaded, these files live somewhere on your local filesystem.

Every gem has a parameter called “required_ruby_version”. So if you installed a gem for 2.5.1, there is a chance that this gem won’t work for 2.3.3. So along with directories for rubies, somehow we need to create directories for gems as well. Turns out that it’s impossible to have multiple Ruby versions?

It is possible. If we continued to experiment, we would find the way to keep multiple rubies on our filesystem, and all them would work seamlessly without a hassle. As you can imagine, this problem already existed a long time ago, when developers realized they need multiple rubies, and some way to switch between them. This is how Ruby Version Manager (RVM) was born.

RVM is not unique, the similar concepts with slightly different variations exist for other languages as well. There is NVM for Node.js, Node Version Manager. We’ll look closer into RVM, but the fundamentals are the same.

Installation. Instructions are available at RVM website and short summary explains what it is:

 RVM is a command-line tool which allows you to easily install, manage, and work with multiple ruby environments from interpreters to sets of gems.

You need to run these two commands to install RVM:

$ gpg --keyserver hkp://keys.gnupg.net --recv-keys 409B6B1796C275462A17\
03113804BB82D39DC0E3 7D2BAF1CF37B13E2069D6956105BD0E739499BDB
$ \curl -sSL https://get.rvm.io | bash -s stable

Installation log says:

Installing RVM to /Users/ro/.rvm/
	Adding rvm PATH line … /Users/ro/.bashrc /Users/ro/.zshrc.
	Adding rvm loading line to ... /Users/ro/.bash_profile /Users/ro/.zlog\
in.
Installation of RVM in /Users/ro/.rvm/ is almost complete:

 * To start using RVM you need to run `source /Users/ro/.rvm/scripts/r\
vm`
	in all your open shell windows, in rare cases you need to reopen all s\
hell windows.

It recommends to run “source /Users/ro/.rvm/scripts/rvm” (your path is probably different) if you want to use RVM right now without restarting a terminal. Now we can run RVM to see its version:

$ rvm -v
rvm 1.29.4 (latest) by Michal Papis, Piotr Kuczynski, Wayne E. Seguin [\
https://rvm.io]

Or help:

$ rvm --help

Usage:

	rvm [--debug][--trace][--nice] <command> <options>

 for example:

	rvm list 	# list installed interpreters
	rvm list known 	# list available interpreters
	rvm install <version> # install ruby interpreter
	rvm use <version> 	# switch to specified ruby interpreter
	rvm remove <version>	# remove ruby interpreter
	rvm get <version> 	# upgrade rvm: stable, master
...

RVM installer modified $PATH variable we mentioned above, and installed itself into “~/.rvm” directory (you can see what’s inside with “ls -lah ~/.rvm”). RVM has hijacked the $PATH, prefixing it with its own directories, and will feed you this or another Ruby language depending on certain circumstances. What what exactly are those circumstances that define which Ruby version is going to be used at the moment?

Here is the magic of RVM comes into play, and some people don’t like RVM because of this magic. RVM will replace the “cd” (change directory) command of your shell. When you change a directory, RVM tries to detect which Ruby needs to be used right now. The detection algorithm is rather simple and explained below, but RVM has two options when directory gets changed:

 	Silently (or almost silently) feed you the right Ruby version so you won’t notice anything.

 	Don’t do anything.

But how does RVM know what version do you need, what’s the logic? It is quite simple. There is convention in Ruby community that Ruby version for a project should be specified in “.ruby-version” dot-file right in the root directory of a project. This file has the semantic version, like “2.5.1”. When you change directories, RVM will read up this file, and will change the current version to the version that is needed. If the Ruby version hasn’t been downloaded yet, RVM will notify you, and show the command you need to run to download this specific Ruby version.

Why won’t we experiment with RVM? We’ll create test directory, write down “.ruby-version” file, then change directory to the parent and change into this directory again - you need this for RVM to trigger things. Because initially there won’t be any “.ruby-version” file. But before we do that, look at the current Ruby version:

$ ruby -v
ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-darwin17]

$ which ruby
/usr/local/bin/ruby

Now we can test the RVM magic:

$ mkdir rvm-test # create rvm-test
$ cd rvm-test # switch to rvm-test
$ echo "2.3.1" > .ruby-version # write down 2.3.1 to the file
$ cd .. # go to the parent directory
$ cd rvm-test # and back
Required ruby-2.3.1 is not installed.
To install do: 'rvm install "ruby-2.3.1"'

It worked! RVM said “ruby-2.3.1” isn’t installed, and suggested a command to install (other commands are available with “rvm --help”).

Let’s give it a try and run the command. RVM tries to find precompiled binary for your operating system:

Searching for binary rubies, this might take some time.
No binary rubies available for: osx/10.13/x86_64/ruby-2.3.1.

If file was not found, the source code will be downloaded from the official Ruby website and will get compiled on your computer - the same way we did before manually! So RVM is just a set of handy scripts, and it’s much easier to use than reinventing the wheel and do it yourself with “./configure” and “make”.

When everything’s done, we can check the version to make sure it’s installed and works:

$ ruby -v
ruby 2.3.1p112 (2016-04-26 revision 54768) [x86_64-darwin17]

$ which ruby
/Users/ro/.rvm/rubies/ruby-2.3.1/bin/ruby

These manipulations allowed RVM to override the default Ruby with the Ruby specified in “.ruby-version”:

Before:

 	Version: “ruby 2.5.1p57”

 	Path: “/usr/local/bin/ruby”

After:

 	Version: “ruby 2.3.1p112”

 	Path: “/Users/ro/.rvm/rubies/ruby-2.3.1/bin/ruby”

Keep in mind that the old file “/usr/local/bin/ruby” still exists, we just modified environment variables. And all of that was done automatically, while changing directory (“cd”).

As you might already noticed, having “.ruby-version” is crucial for RVM and similar tools to work without issues. This also allows to avoid questions in a team, like “Which Ruby version should I use for the project?”, everyone knows where to look. It’s convention and a good practice.

We’ve installed specific Ruby version knowing how RVM internals work. But can you install and use a Ruby language binary of specific version without that trick with creating the file? Yes, it’s possible. There are few commands available:

 	“rvm list known” - shows the list of rubies available to install. We need MRI (Matz’s Ruby Interpreter) releases.

 	“rvm install ...” - install specific version of Ruby runtime.

$ rvm install 2.5.1
Searching for binary rubies, this might take some time.
No binary rubies available for: osx/10.12/x86_64/ruby-2.5.1.
Continuing with compilation. Please read 'rvm help mount' to get more i\
nformation on binary rubies.
...

We’re installing Ruby 2.5.1 above. Debugging info says that there is no precompiled binary for our operating system and we’re about to download and compile from the source code.

RVM did the search for Ruby based on the following features:

 	
osx - type of the operating system, “osx” for macOS (legacy name for macOS), Linux, Windows, and so on.

 	
10.12 - version of operating system.

 	
x86_64 - CPU architecture.

 	
ruby-2.5.1 - Ruby version.

If you multiply the number of supported operating systems by the number of different versions for these operating systems, then by the number of CPU architectures, and then by the number of Ruby versions you’ll get the number of Ruby binaries that RVM needs to keep on its servers.

But why there is a need for that? Downloading Ruby binary takes seconds, while compilation takes much more time and less eco-friendly. Imagine how many computers need to consume electricity for a significant amount of time to get exactly the same binary! This could be optimized, and thanks to RVM for keeping at least some of the Ruby binaries.

From a “consumer” perspective, we don’t need to know too much about these details. What we wanted to do is to understand how to install and use RVM without a dot-file. We know how to install certain version of Ruby (“rvm install 2.5.1”), but how do we use it?

Imagine we have multiple versions: 1, 2, 3. If there is no any “.ruby-version” in current directory, somehow we need to pick the version we want to use. For that purpose we have RVM “use” sub-command, with a clear syntax:

$ rvm use 2.5.1
Using /Users/ro/.rvm/gems/ruby-2.5.1
$ ruby -v
ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-darwin16]
$ rvm use 2.3.1
Using /Users/ro/.rvm/gems/ruby-2.3.1
$ ruby -v
ruby 2.3.1p112 (2016-04-26 revision 54768) [x86_64-darwin16]

To see all the rubies installed in your system use “list” sub-command, like:

$ rvm list
 ruby-2.3.1 [x86_64]
 ruby-2.4.2 [x86_64]
 * ruby-2.5.0 [x86_64]
=> ruby-2.5.1 [x86_64]

=> - current
=* - current && default
* - default

RVM also has “default” version concept. In other words, the version that you currently prefer when no configuration is specified. You can enable default version with the following commands:

$ rvm alias create default 2.5.1
Creating alias default for ruby-2.5.1.....
$ rvm use default
Using /Users/ro/.rvm/gems/ruby-2.5.1

You can now “rvm use default” to use 2.5.1. You can create as many aliases as you want. In practice you probably won’t need to use this feature very often.

Our quick introduction to RVM is over. You might hear the definition “gemset” in some docs or while talking to your team. It’s not used that often at the moment, because latest versions of Bundler solved the problem RVM gemsets used to solve in the past. But so you know, gemsets are sets of gems, RVM allows you to keep the certain set of gems for the same Ruby version.

You don’t need to remember all the RVM settings, but knowing how it works is always useful. Without that knowledge RVM looks magical, but it’s a standard practice today. There are some other tools for other languages:

 	NVM - Node.js version manager

 	VirtualEnv - the similar version manager, but for Python

 	Version managers for Golang, Elixir, Java, and so on.

Software developers often deal with multiple languages at the same project. For example, Ruby programmers often use JavaScript and Golang. Setting up multiple versions managers takes time, let alone you need to remember command line options for each of them. Fortunately, there is an open source tool (with GPL-compatible license) that lets you to manage multiple runtime versions with a single command line-interface! The tool is asdf-vm and has more than 50 plugins for programming languages and other environments.

Testing Ruby programs

What is software testing? The definition is quite broad, therefore there is plenty of testing methodologies exist.

Imagine a hardware engineer just built the radio from a set of components, and wants to understand if it works or not. She’ll probably use so called smoke testing, when you turn on and off the power supply quickly to see if there isn’t any smoke, to find out there is no fundamental failures. If there is no any smoke, one can proceed to “happy path” testing, turning on the radio, and trying to tune it in to some radio station to check if there is any sound.

There can be other tests before the radio goes for production. For example, load testing to measure the electricity consumption. The radio probably should be power-efficient, so people won’t need to change batteries every day. Even if the radio works, and there is a sound, battery drain problem can be a marketing failure, and the product won’t succeed.

Some tests can involve assembly testing, so it works as expected over extended period of time when it is installed inside of a truck or any other vehicle. The number and depth of these tests depend on requirements. Are we just building pocket radio or military-grade radio? Answers to this fundamental questions define the product quality, and define the testing methodologies we’re going to use.

The same is true in software testing. There are numerous of testing methodologies, like manual testing, automated testing, unit testing, integration, load, and so on. It takes a lot of time to get familiar with all of these concepts, each methodology is probably represented by hundreds of books. We’ll take a look into the most popular tests software developers face on their day-to-day basis: unit tests. What are unit tests and why there is a need for them?

About 30 years ago almost nobody was looking at software testing like at something important. Programs were made in text editors, and folks used to just run them (or send to their clients on floppy disks, CD-ROMs and later through Internet). In case of an error or incorrect behavior programmers used to fix the software and ship the new release. Normally, these releases included a set of bug fixes.

However, complexity of software products was increasing. The number of developers in a teams was increasing. Often a small change could introduce a bug. For sure, some number of these bugs used to get caught by manual testing (or testers). However, it was not enough.

The question of identifying bugs on early stages has emerged. If there is a software module, or critical unit, is it possible to make it fool-proof, so it will be harder to break? It’s like in real life, morning routine says to double check the iron and stove are off before you go to work. You are almost certain that these are off, but the price to verify that is almost nothing compared to the damage it can cause in case something is not right.

The same is true for programming:

 	Instead of checking the iron or gas stove, we double check software units of the same program.

 	Instead of checking it only once, programmers run automated checks after every change.

Will you agree that it’s much easier? Software developers change their programs, run tests, and make sure that everything works as expected. If something breaks, one can fix it right away, without shipping a software to end users and releasing broken version to production. So identifying bugs is a matter of seconds or minutes (for example, running 500 automated tests normally takes a couple of minutes), not days.

For a relatively simple project, for every 100 changes we’ll run 500 tests for each, which gives about 50 thousand test runs. As you can imagine, it’s much harder to introduce bugs having tests culture on a project in place, and software quality improves dramatically. However, unit-testing is not free.

Engineers need to write these tests. While writing tests isn’t hard, it requires time, and businesses need to invest time and money into tests. Good tests require the knowledge of testing frameworks, testing methodologies, and some experience writing these tests.

At the same time it’s not possible to cover absolutely everything with tests. Ten if...else statements in your program are 2 (number of possible branches for each statement) in the power of 10 (number of statements) code flow combinations, 1024 total for such a small number of conditions.

Some programs use “code coverage” term, represented in percentage. You can hear something like “the code coverage for our project is 80%”, which is often something to be proud about. The question though is how this number was calculated. Yes, some modules can be covered with tests pretty extensively. But even with 100% coverage, the number of possible ways of how a real-life program can be executed is much more than the number of tests (assuming the program has at least a thousand lines of code).

Also, developers often create tests as soon as they write some code. But on initial stages, the software design often isn’t fixed. Programmers do experiment as artists do multiple sketches before in putting the final details to a landscape drawing. Making design final at the first attempt is close to impossible. And good amount of unit tests fix application design at the stage when it is still fresh.

With removing unnecessary code one needs to remove related tests. From a business perspective you are doubling your expenses while getting rid of something you’ve spent money on.

With all these cons, unit testing is no question practice that greatly improved software quality. Businesses understand the value, and heavily invest in building reliable software solutions. Unit testing is a standard, and there is no any software frameworks that don’t come with built-in test tools today. In the next chapter we’ll take a closer look into popular testing framework for Ruby called “Rspec”.

Rspec

According to The Ruby Toolbox website, Rspec is the most popular testing library for Ruby:

 [image: Ruby testing frameworks, Rspec is the most popular]
 Ruby testing frameworks, Rspec is the most popular

Some folks from Ruby community don’t like it though:

 RSpec offends me aesthetically with no discernible benefit for its added complexity over test/unit.

 DHH on Twitter

It’s actually a matter of preference, the question is quite controversial. To some degree DHH is right, RSpec often emphasizes the smart, not simple way of writing tests. It feels like a sports car changing lanes fast on a highway, but at the end result is about the same.

The Rspec configuration can take up some time, the good news is that Rspec has completed its maturing phase, and configuration is rather simple, and for almost every question there is an answer you can search online.

In reality, the readability (and developer happiness) of tests solely depends on a team. A development tool is not the first factor here. There is no such tool that solves all the problems, and any tool can be misused. The question is more about balance and producing simple and readable tests rather than smart tests.

Rspec is based on its own DSL - domain-specific language. Read it as “language extensions”. Rspec introduces few new keywords, like “describe”, “let”, “it”, “before”, “after” and so on. We haven’t covered any DSL in this book before, so let’s just assume it’s a new language syntax that you need to be familiar with.

We are going to install and configure Rspec from scratch. Let’s start with a latest Ruby, type “rvm list known” to get the list of available rubies for download. We need “MRI” flavor (Matz’s Ruby Interpreter - classic Ruby developed by Yukihiro Matsumoto). Once you get the version, type the command to install:

$ rvm install 2.7.0

Or any other version without “-preview” suffix. Then let’s create a directory and fix the Ruby version for this directory:

$ mkdir rspec_demo
$ cd rspec_demo
$ echo "2.7.0" > .ruby-version

Make sure you have the version you expect:

$ ruby -v
ruby 2.7.0p0 (2019-12-25 revision 647ee6f091) [x86_64-darwin16]

If the version is different, do cd-trick. Change directory to one level up and switch back, that’s how some Ruby version managers work, they hijack your “cd” command:

$ cd ..
$ cd rspec_demo

In previous chapters we were using “gem install...” command to download and use Ruby libraries from Internet. Once a library gets downloaded, it will be located somewhere on the disk, and programs can use it. However, it’s nice if we can keep a list of dependencies somewhere. Like “hey, here is our program, but it depends on this, this and this, you must download these libraries, so the program works file”.

“Gemfile” is such mechanism. It’s just a list of libraries, with some features. For example, you can specify a source, or you can stick to particular version of a library. Imagine new versions gets released, and API (the way you use the library) changes. You still want your old program to work, right? Let’s create new “Gemfile”:

$ bundle init

Here is how default “Gemfile” looks like:

frozen_string_literal: true

source "https://rubygems.org"

git_source(:github) {|repo_name| "https://github.com/#{repo_name}" }

gem "rails"

Looks a bit scary, but at the moment we need only one line that defines a place where to look for gems. We’ll keep the “source ...” line and add “rspec” dependency. So here is how your “Gemfile” should look like:

source "https://rubygems.org"
gem "rspec"

And we can run “bundle”. Basically this command will execute “gem install ...” for every gem located in “Gemfile” (we have only one at the moment):

$ bundle
Fetching gem metadata from https://rubygems.org/...
Resolving dependencies...
...
Fetching rspec 3.9.0
Installing rspec 3.9.0
Bundle complete! 1 Gemfile dependency, 7 gems now installed.
Use `bundle info [gemname]` to see where a bundled gem is installed.

If you “ls” in the directory, you’ll see “Gemfile.lock” which was created automatically. You’re not supposed to modify this file with your code editor, it gets updated automatically by “bundle” command if needed. Lock-file locks your application to specific version of library, so the app will work forever. Imagine in 30 years from now you’ll need to execute the same program. Your “Gemfile.lock” comes into play and says: “I don’t care which year it is now, and I don’t care about any newly released software, I need to download these versions from Internet”. Unless you explicitly update your dependencies, you’ll stick to the specific version of Rspec (or any other library).

You should have three files in your directory: “.ruby-version”, “Gemfile”, and “Gemfile.lock”. Type “ls -a” to get the full list. Yes, you need to specify “-a” (all) parameter, so the list has hidden (dot) files as well, including “.ruby-version”.

If you type “gem which rspec” you’ll see the path where exactly Rspec has been downloaded. It’s outside your project, and it is understandable, because you might want to use it in other project on the same computer.

“rspec --help” says that we need to “rspec --init” to initialize the project:

$ rspec --init
 create .rspec
 create spec/spec_helper.rb

We have two more files, “.rspec” and “spec_helper.rb”, and one “spec” directory. Simply put, “spec” is specification, or “test”. Developers often use words “spec” and “test” interchangeably.

”.spec_helper.rb” is quite lengthy, about one hundred lines, but it is mostly comments. It’s auxiliary file that aims to provide a way to tune Rspec to your needs. We’ll skip doing any adjustments for now. Look at the file structure of our newly created project:

 [image: List of files]
 List of files

Whoa, we haven’t done anything yet, and we’ve gotten five files, including two dot-files! We have one snake case file (snake_case, where words delimiter is underscore), and one kebab case file (kebab-case, where words delimiter is dash). We have files with extension, and files without extension. Well, the world is not perfect, and the world of software development is never perfect. There are always trade offs and imperfections.

It’s time to write something meaningful now and covering it with tests. And here we have to add a note about important question: what do you do first?

 	Do you write tests first? (TDD, Test Driven Development)

 	Or do you write code first?

The answer is not easy. There were many controversial debates about what is actually better. In our case we already have some code, so we’ll start with writing code first:

def total_weight(options={})
 a = options[:soccer_ball_count] || 0
 b = options[:tennis_ball_count] || 0
 c = options[:golf_ball_count] || 0
 (a * 410) + (b * 58) + (c * 45) + 29
end

x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
count: 1)

It’s example from previous chapters where we calculate order shipping weight. We just do basic multiplications above, like multiplying the number of soccer balls (“a” variable) by the weight of one soccer ball in grams (410), adding it to the weights of tennis balls, and golf balls. And the 29 is the weight of a shipping box.

Method works perfectly fine, but why do we want to cover the method with tests? To answer this question, let’s try to imagine what could go wrong here.

First, it is about money. Code should be reliable when it comes to calculating costs. A programmer, in a year or two, might want to improve the code by adding new features. For example, adding support for baseball balls. It would be nice if we keep things under control and have ability at least to run the method and compare result with expectations.

Second, somebody can decide that “|| 0” is redundant. It can be true, because the following code works okay (try to run it):

def total_weight(options={})
 a = options[:soccer_ball_count]
 b = options[:tennis_ball_count]
 c = options[:golf_ball_count]
 (a * 410) + (b * 58) + (c * 45) + 29
end

x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2, golf_ball_\
count: 1)

But it works only when you specify all parameters to “total_weight” function. When you omit the parameter, the code throws an exception:

$ pry
...
x = total_weight(soccer_ball_count: 3, tennis_ball_count: 2)
NoMethodError: undefined method `*' for nil:NilClass
from (pry):12:in `total_weight'

A good test will prevent this error.

Third, imagine a more sophisticated scenario. Like if the total weight is more than a certain threshold, we might need a different kind of box. Or two boxes. Or we want to add a gift weight once we have two or more tennis balls in the cart.

With limited resources (say you only have one hour while coding on a train), you can skip test files and just test the method manually with Pry. But will you agree that sharing your code is better when you have a test that checks that the code works fine, so anyone can run all tests with one single command and ensure everything is in place!

We’ll create “lib” directory and two files “shipment.rb” and “app.rb” the following way:

 [image: Adding more files to the project]
 Adding more files to the project

Here is the “app.rb”:

require './lib/shipment'

x = Shipment.total_weight(soccer_ball_count: 3, tennis_ball_count: 2, g\
olf_ball_count: 1)
puts x

“lib/shipment.rb” has the method we discussed above plus the module wrapper:

module Shipment
 module_function

 def total_weight(options={})
 a = options[:soccer_ball_count] || 0
 b = options[:tennis_ball_count] || 0
 c = options[:golf_ball_count] || 0
 (a * 410) + (b * 58) + (c * 45) + 29
 end
end

The similar way we could have created a class instead of a module, and define the method as “def self.totalweight”, but it’s not recommended to create a class without intent to create its instance.

Once you run “app.rb”, you’ll see the total shipping weight:

$ ruby app.rb
1420

So we’ve split the program into two units:

 	The actual logic in “shipment.rb” (should be tested)

 	And the entry point in “app.rb” (untested, and it’s okay)

We’ll create a test for the first unit. Add “shipment_spec.rb” to the “spec” directory:

 [image: Adding shipment_spec.rb]
 Adding shipment_spec.rb

With the following code:

require './lib/shipment'

describe Shipment do
 it 'should work without options' do
 expect(Shipment.total_weight).to eq(29)
 end
end

And run tests with “rspec” command. Below we use “d” (documentation) format option, so the output is more verbose:

$ rspec -f d

Shipment
 should work without options

Finished in 0.00154 seconds (files took 0.09464 seconds to load)
1 example, 0 failures

It says “1 example, 0 failures”, great result, you did it! Was it your first Rspec test?

But what was this Rspec weird syntax about? Let’s look closer:

Require the unit, so we have something to test
require './lib/shipment'

Describing "Shipment" within a block, letting Rspec know
that we're going to test "Shipment" class or module
describe Shipment do

 # Syntax to say almost in plain English:
 # "It should work without options"
 # "it" is Rspec keyword (DSL) that accepts block
 it 'should work without options' do

 # Syntax to say almost in plain English:
 # "Expect shipment total weight to equal 29"
 expect(Shipment.total_weight).to eq(29)
 end
end

The code looks a little bit magical and friendly at the same time. We were using plain English instructions, like “it should work”, “expect shipment total weight to equal…”.

We will add one more test to our test suite:

require './lib/shipment'

describe Shipment do
 it 'should work without options' do
 expect(Shipment.total_weight).to eq(29)
 end

 it 'should calculate shipment with only one item' do
 expect(Shipment.total_weight(soccer_ball_count: 1)).to eq(439)
 expect(Shipment.total_weight(tennis_ball_count: 1)).to eq(87)
 expect(Shipment.total_weight(golf_ball_count: 1)).to eq(74)
 end
end

Result:

$ rspec -f d

Shipment
 should work without options
 should calculate shipment with only one item

Finished in 0.00156 seconds (files took 0.09641 seconds to load)
2 examples, 0 failures

The second test checks executes the code and checks the outcome to equal to certain values plus shipping cost. Readability can be slightly improved if we specify the final numbers the following way:

expect(Shipment.total_weight(soccer_ball_count: 1)).to eq(410 + 29)
expect(Shipment.total_weight(tennis_ball_count: 1)).to eq(58 + 29)
expect(Shipment.total_weight(golf_ball_count: 1)).to eq(45 + 29)

You might have already noticed the pattern here:

expect(something).to eq(some_value)

which can be written with “be” keyword as well:

expect(something).to be(some_value)

We gonna cover difference between “eq” and “be” in a bit. The pattern itself looks like a plain English sentence: “Son, when you go to school, I expect you to be a good boy”. Rspec DSL for this english sentence would look like:

expect(son).to be(a_good_boy)

or

expect(son).not_to be(a_bad_boy)

Without Rspec DSL the program might look like:

if son != a_good_boy
 panic
end

But Rspec provides the way to represent it in a more elegant (from Rspec point of view) way. There is, of course, “if...else” statement under the hood. But in tests we use more declarative way of writing code, we express our expectations, we don’t say “if”, “then”, “else”, and so on. So mommy doesn’t tell what to do (“listen to the teacher”, “don’t fight”), she sets expectations (“be a good boy”). In other words, spec is specification that the code needs to follow.

Expressions like “expect(son).to” and “expect(son).not_to” are expectations, and “eq(...)” and “be(...)” are matchers. There are quite a few matchers for Rspec. Expectations might look like in-place expressions or code blocks.

Examples of expectations with expressions:

expect(son).to be(a_good_boy)
expect(soccer_ball_weight).to eq(410)
expect(Shipment.total_weight(soccer_ball_count: 1)).to eq(439)

Expressions are:

 	son

 	soccer_ball_weight

 	Shipment.total_weight(soccer_ball_count: 1)

Blocks are used together with corresponding matchers. The benefits of providing a block is that code execution is not happening right away and feed the result to Rspec for comparison. We feed the block to Rspec -the code that can be executed. Rspec decides when to execute this code. This approach is little bit more flexible, because Rspec can execute code and measure something.

Imagine you want to test a water bucket. One way of testing it is to compare the reading at the bottom to the value you expect. Another way to test it is to fill the bucket with the certain amount of water to check if the bucket handle works as expected and it is not loose.

This syntax in Rspec looks little bit clunky:

expect { Shipment.total_weight(ford_trucks: 100) }.to raise_error
expect { some_order.add(item) }.to change { order.item_count }.by(1)

Blocks are:

 	{ Shipment.total_weight(ford_trucks: 100) }

 	{ some_order.add(item) }

And matchers are:

 	raise_error

 	
change { order.item_count }.by(1) (yes, matcher actually accepts another block and does method chaining after that)

Good news is that it is pretty much the most complicated part about Rspec. Looking at how others test their code often helps. So we encourage you to look at how your team mates do their Rspec expectations and ask questions! Also, the full list of built-in matchers looks like something worth looking at.

In this chapter we won’t be able to cover all Rspec aspects, but knowing the difference between “eq” and “be” is important.

“Be” means “to be exactly this”. While “eq” means “equal to, you don’t have to be exactly this, just equal is fine”.

For example, “Om” sign tattoos are all equal, but not exactly the same.

 [image: Google search for Om sign tattoos]
 Google search for Om sign tattoos

Someone would say:

expect(boyfriend_tattoo).to eq(:om_sign)

But not:

expect(boyfriend_tattoo).to be(om_sign)

However, if someone is missing, the expectation can be used with “be” keyword:

expect(missing_person_tattoo).to be(om_sign)

Because in this case we compare tattoo to the actual photo of the tattoo we have.

Same with Ruby objects. Everything is an object in Ruby. There can be equal “a” and “b” variables, but these can be independent objects located in different parts of computer memory:

$ pry
> a = "XXX"
> b = "XXX"
> a == b
 => true
> a.__id__ == b.__id__
 => false

Let’s add one more test case for our Ruby program:

 it 'should calculate shipment with multiple items' do
 expect(
 Shipment.total_weight(soccer_ball_count: 3, tennis_ball_count: 2,\
 golf_ball_count: 1)
).to eq(1420)
 end

(There is no any code blocks here, only expression because we’ve just added some new lines for readability)

Result:

$ rspec -f d

Shipment
 should work without options
 should calculate shipment with only one item
 should calculate shipment with multiple items

Finished in 0.00291 seconds (files took 0.19016 seconds to load)
3 examples, 0 failures

It all works fine. Note that we were only dealing with a static method above. Once you have object(s) to test, it will get more interesting!

It’s impossible to cover Rspec with one chapter, but there are few good books out there (for example, Everyday Rspec). The best advice we can give is to think about how would you test the code as you write it.

 Exercise 1

 Change 1420 above to 1421, run tests and see what happens.

 Exercise 2

 Your fellow programmer has changed the function so now it raises an exception if you provide no parameters to the method:

module Shipment
 module_function

 def total_weight(options={})
	raise "Can't calculate weight with empty options" if options.empty?
	a = options[:soccer_ball_count] || 0
	b = options[:tennis_ball_count] || 0
	c = options[:golf_ball_count] || 0
	(a * 410) + (b * 58) + (c * 45) + 29
 end
end

Add a test that passes no options to “total_weight” method and checks if exception gets raised.

Final words

We’ve covered only some aspects of software development and Ruby language. You did exercises and established a foundation for a confident future. Don’t stop! Use your chance! Being programmer is a constant learning process. You don’t need to move fast, you just need to move forward.

Knowledge represented in this book is the process of filtering out tons of information. You definitely have the competitive advantage over folks who haven’t read the book yet. Don’t worry if you missed some concepts, keep on learning and re-read the book in a few months, so you will uncover what’s been hidden from your eyes. Information often comes in layers, and every time your picture becomes more clear and precise.

We wish you the very best of luck in your programming career!

Notes

1Linux Mint Cinnamon is free Ubuntu Linux based operating system, recommended by book authors as the most friendly and intuitive.↩

2However, some definitions begin natural numbers with 0. This situation is strange because mathematics is normally a very precise science and there is normally broad agreement about such definitions.↩

3We hope you’re yoga-mantras-smoothie-falafel person and don’t drink alcohol?↩

4“No time” is technically incorrect, text was simplified for readability. Correct reading is “better time” or “logarithmic time”. Scanning of an array is linear operation, and it takes 1,000,000 iterations (worst case) to find the element in 1,000,000 array. However, “binary search” takes logarithmic time and allows to find element in almost 20 (!) iterations for 1,000,000 items array.↩

5Lookup by index is just accessing array by index, like arr[4] to get the fifth element.↩

6https://docs.oracle.com/javase/7/docs/api/java/util/Dictionary.html↩

7User Interface↩

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_bug.png

OEBPS/images/078-diagram.png
Robot
@x
@y
right()
left()
up ()
down ()
label()
Dog
Human
up ()
label() left()
label()

OEBPS/images/075-diagram-01.png
Car

@state

initialize()
open()
how_are_you()

OEBPS/images/075-diagram-02.png
Car

@state

initialize()
state()
open()
how_are_you()

OEBPS/images/075-diagram-03.png
Car

@state

initialize()
state()
open()
close()
how_are_you()

OEBPS/images/075-diagram-04.png
Car

@state

initialize()

cover.jpeg
' g . . S e .

4 nw ow ' ooy |
Roman Pushkin

RUBY IS FOR FUN

OEBPS/images/066-array.png
0010100

OEBPS/images/066-hash.png

OEBPS/images/074-drawing.png
20

10

OEBPS/images/074-drawing-2.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/065-poster.png
Data Structure Time Complexity

Search Insertion Deletion

Array
Stack

Singly-Linked List
Doubly-Linked List

Skip List

I > >
<
IIIIg(_12
(0]
2 &
D

Hash Table

OEBPS/images/086-jetbrains-toolbox.png
JetBrains

- Toolbox

Tools 5 Projects

whats new in ZUZ1.2.2

RubyMine
2021.3 EAP
v Manually Installed

Rider

172.41441873
What's new in 2021.2.1

g WebStorm

181.5087.27
What's new in 2021.2.2

v Available
IntelliJ IDEA Community Edition
= The most intelligent Java IDE

‘ Android Studio by Google
An IDE for Android app development

PyCharm Professional
The full-stack Python IDE

| —

Search

Update :

Update :
Install
Install

Install

OEBPS/images/087-protected-area.png
=

@00 < > @M @ ocahost:as67 ¢

=N

Protected area

Machines took over the world. You are John Connor and must save the planet. Access
protected area. You only know username ("admin").

Username: []

Password: []

OEBPS/images/087-inspect.png
Back

Reload

Save As...

Print...

Cast...

Translate to English

View Page Source

Speech

OEBPS/images/087-chrome-dev-tools.png
[App

& C @ localhost:4567

Machines took over the world. You are John Connor and must save the planet. Access

protected area. You only know username ("admin").

Username:
lements onsole ources etwol erformance lemol ication ecuri » :
® El it C I St Network Perf Memory Applicati Securi PX
Styles Computed Event Listeners >
<html lang="en"> —
» <head>..</head> Filter :hov .cls +‘
v <body> element.style {
v<div> ¥
<hl>Protected area</hl> i i
> <divonc/dive * { tacit-css.min.css:1
b border:» 0;
“or= X . o . . border-collapse: separate;
v<form actlo?: /login® method="post"> border-spacing: » 0;
> <div>.</div> box-sizing: border-box
» <div>.</div> margin:» 0;
» <div>.</div> == $0 max-width: 100%;
outline: » 0;

</form>
padding: » 0;
html body div form div vertical-align: baseline;

OEBPS/images/080-diagram-02.png
Player

@x
Qy

right()
left()
up()
down ()
label()

!

Robot

Dog

label()

up()
left()
label()

label()

OEBPS/images/086-ide-debug.png
[XN J book — app.rb
[book o R R 4L
[Proj..v = = & — &l apprb
> [l book ~/work/book 1 def random_pow
> Il External Libraries 2 pow(rand(1..10))
a " Scratches and Consoles 3 end
g 4
g
& 5 def pow(x)
& 6 @
I 7 end
8
9 puts random_pow
10
pow
ligDebug: Threads & Variables Console G W b & + 1t @ 7% :
1t
0> x
J
=> 2
o P
2 -
5 o> x 2
U: i => 0
[
8 o> |
.§
< 0O
*
A Missing In Actions © Problems _ i= TODO Terminal P Git

1a
1 F

¥ ¥ >

L i

Ja10|dx3 aseqeleq ((()

@ Event Log

|IZ] Gemfile found in the project: Project for each Gemfile can be created. // Configure... (a minute ago) 111 LF UTF-8 2 spaces P master Im 0* (1]

OEBPS/images/086-start-debugging.png
Run Tools Git Window Help @

» Run 'app' ~R

Debug 'app' D)
Run 'app' with Coverage

@ Profile 'app' with 'RbSpy profiler' >

» Run... ~XR

#% Attach to Process... X {Fs5

Edit Configurations...

OEBPS/images/086-rubymine-settings.png
WDTULES File Edit View Navigate Code Refactor Run Tools VCS Window Help (|

~ About RubyMine L o Preferences
| il A [Languages & Frameworks > Ruby SDK and Gems
‘ Preferences... 3, Appearance & Behavior + = B
f Services > |Keymap ruby-2.0.0-p648

Hide RubyMine seH |Editor R)

Hide Others X %H Plugins 3"’:”’:

Show All Version Control : efault

) RVM: ruby-2.4.2
Quit RubyMine Q ProjectStructure RVM: ruby-2.3.1

» Build, Execution, Deployment

Languages & Frameworks

)

JavaScript
Ruby SDK and Gems
Schemas and DTDs

M [l

i}

Cucumber

OEBPS/images/079-diagram.png
MyModule

@x
Qy

right()
left()
up()
down ()
label()

Robot

label()

H

Dog

up()
left()
label()

label()

OEBPS/images/080-diagram.png
¢ Bird

f

¢ Duck

¢ Cuckoo ¢ Ostrich

OEBPS/images/014-sysinfo-terminal.png
[NON] 7 ro — ro@loft — ~ — -zsh — 79x8

Last login: Tue Dec 18 18:08:37 on ttys002

| roloft JSECIEE

Filesystem Size Used Avail Capacity iused ifree %iused Mounted on
/dev/diskl 46561 199Gi 266Gi 43% 2824643 4292142636 0% /

devfs 182Ki 182Ki 0Bi 100% 628 0 100% /dev

map —hosts 0Bi 0Bi 0Bi 100% 0 0 100% /net

map auto_home 0Bi 0Bi 0Bi 100% 0 @ 100% /home

| ro@loft JM

OEBPS/images/014-sysinfo.png
n

012-far.png

012-mc.png

Name

2.1 -alpha
Information
Computer name

loft

ééQ-cmd-exe.ini

012-far-mac.png

013-sort-order.png
013-tree.png

User name ro
O
Total bytes 499 055 067 136
Free bytes 284 272 103 424
Serial number 0100-0004
Memory
Memory load 99%
Total memory 15 455 535 104
Free memory 276 107 264

On branch master
Your branch is up-to-date with 'origi
nothing to commit, working tree clean

126

ng ro staff 7745 15/12/18 17:29

Folder description file is absent

7 271 bytes in
¥ f

OEBPS/images/016-raw-file.png
rk/rubyisfo -/app.rb 3 Co i
0000000000: 70 75 74 73 20 22 48 65 | 6C 6C 6F 22 OA puts "Hello"®m

OEBPS/images/012-mc.png
me [mint@mint-virtual-machine]:/hom
" al H
[eft File Command Options Right
e e
‘N Name Name
/bin /sbin
/boot /stv.
/cdrom /sys
/dev /tmp
Jetc Jusr
/home Jvar
/lib @initrd. ing
/liboa evnlinuz
/lost+found
/media
/mnt
Jopt
/proc
/root
/run

/cdron SUB-DIR drwxr-xr-x SUB-DIR drwxr-xr-x
L 13720/116 (12%) ' b——n—————— 13720/116 (12%) -

OEBPS/images/091-testing-frameworks.png
rspec

minitest

test-unit

OEBPS/images/012-far-mac.png
- /Users/ro g

n Name Name] Name Name
.. .local
Guest .android .mitmproxy
ro .ansible .mono
Shared .arduino-create .multirust
.localized .atom .ngrok
.blockstack .node-gyp
.bundle .npm
.cache .nuget
.cargo .nvm
.config .oh-my-zsh
.Cups .omnisharp
.data .oracle_jre_usage
.dlv .pry.d
.docker .rubies
.dotnet .rustup
.ethash .rvm
.gem .solargraph
.gnupg .sonic-pi
.. root 12/12/16 17:38|f{|.. ro staff Up 16/12/18 12:46

bytes in 1 file

5 357 605 bytes in 46 files

OEBPS/images/091-files.png
v RSPEC_DEMO
[spec
@ spec_helper.rb
I .rspec
I .ruby-version
B Gemfile
@ Gemfile.lock

OEBPS/images/013-tree.png

OEBPS/images/091-files2.png
v RSPEC_DEMO
[lib

@ shipment.rb
[spec

@ spec_helper.rb

I .rspec
I .ruby-version

| @ app.rb I

P Gemfile
@ Gemfile.lock

OEBPS/images/013-sort-order.png
[NON] [2] Downloads

< g Bomom =y % 6| o
Favorites Yesterday J N_ame [
i Rub Ll oq W ‘d
@ Riee bl Application
E AllMy Files Previous 7 Days Date Last Opened
. . | Wi Date Added
& iCloud Drive R Date Modified
:/-\: Applications @ 2018-08-21 A Date Created
3 Desktop = Grammarway] Size
= FpammaTMKai Tags
M Documents
= [pammartuka { None

o Downloads

Previous 30 Days

OEBPS/images/087-charles-proxy.png
@ Charles File Edit View Proxy

Tools Window Help ¥ WO

:
[JON J

L structure TS

« https://www.charlesproxy.com
= https://p09-caldav.icloud.com
% https://twitter.com
https://contacts.google.com
https://getpocket.cdn.mozilla.net
https://0.docs.google.com
v @ http://localhost:4567

B login

o/
% https://play.google.com
« https://secure.screenhero.com
« https://clients4.google.com
% https://17.client-channel.google.com
https://ssl.gstatic.com
% https://docs.google.com
https://abs.twimg.com

&

vVvyvYyvyYYyvyy
®

&

(12

vVvyVvyvVvyvyTvyy

v

Charles 4.2.6 - Session 1 *

» © & e ZJACHNv fir | ¥
Overview m Summary Chart Notes

POST /login HTTP/1.1

Host: localhost:4567

Content-Length: 30

Cache-Control: max-age=0

Origin: http://localhost:4567

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;
Referer: http://localhost:4567/

Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.9,de;q=0.8,ru;q=0.7

Cookie:
rack.session=BAh7CEkiD3NIc3Npb25faWQGOgZFVEKIRTgxY2YwZjkwYjQ2NzIkOTNjNDdh?
Connection: keep-alive

username=admin&password=123456

Headers Cookies Text Hex Form Raw

OEBPS/images/009-run.png
Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you.

cmd.exe

OK

Cancel

Browse...

OEBPS/images/087-welcome-admin.png
o000 < [@ localhost:4567

c) EEN

Welcome, admin

Congratulations, student! You saved the planet!
logout

OEBPS/images/009-cmd-exe.png
C:\WINDOWS\system32\cmd.exe

Microsoft Windows [Version 10.0.17763.973] ~
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\admin>_

OEBPS/images/088-windows.png
5
"
)
)
-
]
o]

All Appiications ® rom
B o 34] Visuaistudio Code
8 chrome Apps
i
B e
® ofice
PA rogramming
sound video
) Adminsttion
B reieences
M Places

B Recent Files

11 items, Free space: 1.4 GB

2 /0 O 2002 3
[

—
e

OEBPS/images/012-far.png
Downloads
guitar
Intel
maildrop

Perflogs
Program Files
Program Files (x86)

Projects

services

c:\>
1] 2 El
Far.exe#{*32]:138572

temp
tma
tools
Users
windows
work

temp
tma
Drive
i fixed [111246 | 23.83 6
D: fixed 0.91 T | 580.78 G
I+ BD-ROM 2.25 6 e
0 NetBox
 network
© Process list
| temporary
Del,hift+Del, F3,F4,Fo
5 7. g 9 10| 11]
«161206[64] 1/1 [+] NUM PRIl 91x22 (5999) 15H 128144/138572 100%

OEBPS/images/089-ruby-binary.png
H _ PAGEZERO
(¢]

.
__stubs __TEXT
® aé
__stub_helper __ TEXT

S
__cstring __TEXT

__unwind_info __ TEXT
L __nl_symbol_pt
__data

__LINKEDIT

OEBPS/images/087-dock-it.png
Application ~ Security » : X

ompute

yle {

> 0;
collap

spacin

ing: b
> 0;

th: 10

H'H
A

/ :

Dockside & IO H O

Show console drawer Esc
Open file ®BP
Search #BXF
More tools | 4
Settings F1
Shortcuts

Help | 4

OEBPS/images/087-network-tab.png
Wrong username or password, please ty again

OEBPS/images/087-query-params.png
Name X Headers Preview Response Cookies Timing

[Jlegin ~ General
Request URL: http: //localhost:4567/Login
Request Mothod: POST
Status Code: ® 200 0K
Remote Address: [::1]:4567

Referrer Policy: no-referrer-hen-doungrade

> Response Headers (8)

> Request Headers (13)

vFormData viewsouce view URL encoded
username: adnin

password: 123456

kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

 var bc = document.getElementById('book-columns').style;
 bc.width = (window.innerWidth * 2) + 'px !important';
 bc.height = window.innerHeight + 'px !important';
 bc.marginTop = '0px !important';
 bc.webkitColumnWidth = window.innerWidth + 'px !important';
 bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+ window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */

function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}

OEBPS/images/064-03.png
Things To Do

8 Eat donut

Go to gym

Call mom

show completed

oD

OEBPS/images/064-04.png
Online banking

Client: Mark Zuck
Balance: $123.45

List of transactions:

show deposits

@

Description

McDonalds
Selling ads
Selling user data
Lawyer

Lunch with friends

Type

withdrawal
deposit
deposit
withdrawal

withdrawal

Amount
40

1000

300

200

300

OEBPS/images/leanpub_equation_0.png
55 4
% 4% % 3% % 2% x 11

OEBPS/images/048-phone-keyboard.png

OEBPS/images/051-rails-blank-present.png
[nil]

{
{temp: nil}
0
5

true

false
false
false
false
false
false
false
false
false
false

nil?

true (if condition) empty? (string, array, or hash)

false
false
true
true
true
true
true
true
true
true
true

true
false
true
false
true
false

blank?

true
true
false
true
true
true
false
true
false
false
false

present? (!blank?)
false
false
true
false
false
false
true
false
true
true
true

OEBPS/images/064-01.png
Things To Do

8 Eat donut

show completed

@

OEBPS/images/064-02.png
Things To Do

v

Eat donut

Go to gym

show completed

oD

OEBPS/images/016-nano.png
[NON] © ro — nano app.rb — nano — nano app.rb — 80x24

GNU nano 2.0.6 File: app.rb

¢ Get Help Q¥ WriteOut QI8 Read File Prev Page @{ Cut Text [# Cur Pos
R Exit B Justify By Where Is Next Page UnCut Textgll To Spell

OEBPS/images/016-vscode.png
@ Code File Edit Selection View Go Debug Terminal Window Help

V. N } 015.txt — manuscript
B 012.txt B 015.t >shell —————

Shell Surviva pocker: Attach Shell
. Shell Command: Install 'code' command in PATH ————
The first step fi
Shell Command: Uninstall 'code' command from PATH
Create directory Terminal: Allow Workspace Shell Configuration

. Terminal: Disallow Workspace Shell Configuration

OEBPS/images/046-tic-tac-toe.png

OEBPS/images/047-awesome-print.png
 ® © @ ' ro—pry — pry — pry TMPDIR=/var/folders/yn/xmfkcjg663ifrhys_2...
(EOEE® -~ cat > ~/.pryrc

require 'awesome_print'

AwesomePrint.pry!

| ro0loft SENNELIS

[[1] pry(main)> arr = [[e, @, 1], [nil, @, nill, [1, nil, 1]]

[

[el [
[e]
[1]
[2]

[e]
[1]
[2]

[e]
[1]
[2]

]
[2] pry(main)> [

OEBPS/images/091-files3.png
v RSPEC_DEMO
[lib
@ shipment.rb
[spec
| @ shipment_spec.rb I
@ spec_helper.rb
I .rspec
I .ruby-version
@ app.rb
B Gemfile
@ Gemfile.lock

OEBPS/images/091-tattoo.png
gl om sign tattoo X

2 Al (&) Images Q) Shopping B News [2] Videos i More Settings

About 27,900,000 results (0.58 seconds)

Images for om sign tattoo

. & 4 787,
. mandala tribal ;;,’,, lotus flower L small y_,.’ tiny = 3372 simple
| | y Y

v

v

wr

Q

Tools

v

