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Thank You !


Thank you very much for choosing to read my book! I am aware that you could have chosen to read another
book instead, or spent your time entirely differently. So - thank you for spending your time with my book!




Additionally, double thank you if you opted to pay for this book - regardless of the amount you chose to pay!
Any amount is greatly appreciated :-)




I hope you will enjoy reading this book and will learn something from it!




All the best,




Jakob Jenkov
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Introduction to Peer-to-peer Networks


Peer-to-peer networks are networks of computers collaborating to both provide and consume some service.
Each computer (node) acts as both a client and server - both a consumer and provider of the service.




Since all nodes both consume and provide the service of the peer-to-peer network, the nodes are considered to be each other’s equals with regards to their role in the network. That is why the nodes are called “peers”. The nodes are each other’s peers (equals).




Peer-to-peer networks are self organizing - meaning they operate without any central organizing server(s).
They might use a central server or service to bootstrap the peer-to-peer network, but once bootstrapped the network runs autonomously.




The term Peer-to-Peer is often abbreviated P2P. This book uses that abbreviation throughout the book.




The abbreviation P2P does not mean “point-to-point”. While peers might communicate with each other using point-to-point communication, they can also communicate using indirect communication mechanisms - such as message routing via other peers.




Global Scale Self-Organizing Systems


The main differentiator between P2P networks and other types of distributed system is, that P2P networks are designed to
be highly self-organizing and function well at global scale. Let me elaborate a bit more on what that means.




P2P networks are designed run without any central organizing server(s) - and in some extremes - even without any central organizing organization.
In other words, P2P systems are designed to be as self-organizing as possible.




A highly self-organizing system enables cost-effective scalability via reduced operational costs. The more self-organizing a
system is, the less manual labor is needed to operate it. This enables small organizations to operate very large systems.




Additionally, self-organizing systems can enable collaborative computing. Collaborative computing means that each individual
or organization that uses the system also contributes compute resources towards the total system. For instance, a user running
peer software on their desktop computer will contribute part of the compute and network resources of that desktop computer
towards operating the total P2P system. Collaborative computing thus adds another form of cost-effective scalability in which
no central entity has to pay for supplying the hardware, network bandwidth - nor pay to operate the entire system.




Collaborative computing also enables autonomy. A group of individuals can collaborate to provide a service for each other mutually -
without having to rely on a central organization to provide that service.




Furthermore, P2P technologies are often designed to be able to function at global scale, meaning with millions or
even billions of peers participating in the same P2P network. This scalability unlocks an almost unlimited growth potential for
P2P based systems - without having to re-architect the system later on.





P2P Use Cases Drive P2P Technologies


There are several ways to structure P2P networks, as you will see later in this book. The way a P2P network is structured
is typically driven by the use case it is designed for.




For instance, the P2P implementations Chord, Kademlia, Pastry and Tapestry are designed to handle the use case of efficiently
locating any peer, or piece of content (data), in the network efficiently. These implementations thus have similar designs.




However, the designs of Chord, Kademlia, Pastry and Tapestry do not efficiently support broadcast and multicast among
the peers in the network. This means, that these P2P designs are not that useful for e.g. live streaming, or on-demand streaming
of highly popular content. Additionally, Chord, Kademlia, Pastry and Tapestry are also not designed to support geographically
local content efficiently - such as content from a local TV station.




To meet these use cases more efficiently I designed the Polymorph Polyring P2P topology which I will cover later in this book.
The Polymorph Polyring P2P topology looks different than Chord, Kademlia, Pastry and Tapestry exactly because its design is
driven by a different set of use cases.




While use cases drive technology - technology also drives use cases. New technological capabilities tend make the technology
applicable in use cases it was not originally intended for. The new use cases may in turn drive new technological capabilities - which are again applied to even newer use cases etc. This development is cyclic (or spiralled).




Due to the emergent nature of the evolution of technology - as we apply P2P technology in more and more cases -
I expect to see more and more advanced P2P technologies emerge. As they do - I will attempt to update this book.





The P2P Landscape Today


We don’t hear so much about P2P technology these days, but P2P technology is actually being used in a good deal of
scenarios:




Bitcoin and other popular crypto currency networks are probably the most popular use of P2P technology since Skype.
Many blockchain networks use some kind of P2P network underneath which enables the nodes in the
blockchain network to communicate.




The entire Web3 community is based on blockchain networks - which are running on top of P2P networks. This community is attempting
to create solutions to a variety of consumer problems.




IPFS - the Inter-Planetary File System project - is also based on a P2P network. This is a very interesting project,
which is still ongoing.




Distributed Hashtables (DHT) are used in distributed databases such as Cassandra and DynamoDB.
Such DHTs typically use some kind of P2P network or technology underneath the surface.




Some media broadcasting service providers have P2P technology at the edge of their technology stacks.




As you can see, while P2P technology was originally developed for consumer use cases,
P2P technology has quietly made its way into enterprise data centers too.





The P2P Internet - The Unfulfilled Potential


The underlying technologies of the Internet are designed from the ground up to be decentralized. Yet, most of the
popular Internet based or Internet enabled applications use a classical client-server based architecture. Why is that?
Why is P2P architecture not the default architecture?




In my opinions, the the following reputational and technological reasons have hampered the adoption of P2P technology:





	
The shady origin of P2P technology



	
The limited versatility of early P2P technologies



	
Lack of good documentation of P2P techniques



	
Web technologies are based on client-server architecture



	
Web technologies use a dumb client - smart server approach



	
P2P applications are harder to monetize



	
The P2P hype bubble burst








First of all, the first P2P applications that were released were file sharing applications such as Napster, Kazaa, Gnutella, BitTorrent etc. These applications were mostly used to share copyrighted material such as books (.pdf), movies (.mp4), songs (.mp3), games (executables) etc. - but could also be used to share Linux distributions.




While file sharing was an interesting use case from a technical perspective, file sharing was also often used to violate copyright law.
Therefore P2P technology has historically not been so well-regarded in the business and legal realms.




Second, the first P2P topologies had limited versatility - meaning they were good fits for the early use cases of file sharing, but
perhaps not great as a general purpose compute architecture. In other words, early P2P technologies were not great for all types of use cases.




Third, there has not been too many good books, tutorials, courses etc. explaining how P2P technology works. I have been following
P2P technology since 2006, and compared to other technologies - P2P is surprisingly vaguely covered. The few books, videos and articles
that cover P2P technology does so in a very academic language that can be hard to decipher for the uninitiated. Furthermore, they
can be hard to find.




Fourth, the most popular technology stack, “The Web”, is based on client-server architecture. The client (the web browser) connects to
a server (web server) to access content or functionality. The browsers and web servers communicate via the HTTP protocol.
HTTP has no concept of “peers”. Only clients and servers.




Fifth, the web uses a “dumb client - smart server” approach, where web browsers do not really provide any functionality by themselves.
All functionality of a web browser has to be realized via a web application downloaded from a web server.
Thus, it is not that easy to implement P2P-like functionality using web technology. After all, browsers cannot easily communicate directly
with each other. It’s not impossible to implement P2P applications using web technologies - but you have to do more work yourself
than if the web tech stacks were designed from the ground up to support P2P architecture.




Sixth, P2P applications might be harder to monetize than client-server based applications. In a client-server based application you can
naturally charge for the consumption of server resources. In a P2P based application, this is a lot harder, as you might not be providing
that many server resources. Then you only really have the software license - and that is only a revenue stream until someone makes a
free, open source version of your software.




Seventh, the P2P hype bubble burst a long time ago, and has not been re-inflated since. Many technologies (e.g. AI and blockchain) are
driven by evolutionary hype cycles in their early days. Each hype cycle is typically driven by the technology’s ability to efficiently
server a specific use case. As the technology evolves and can serve more and more use cases, more and more hype cycles occur, until
the technology is finally considered a stable part of the technology landscape.





The Future Potential of P2P


I believe P2P technology has a lot more potential than whas has been realized so far. Both in enterprise software, small business software
and consumer software. However, to realize this potential many of the problems mentioned in the previous section must be addressed.




First of all, knowledge about P2P techniques has to be made more accessible. I am trying to do that via this book, but also via
my P2P video playlist (on YouTube, Rumble, Odysee etc.) and via my P2P tutorials on jenkov.com .




Second, we need more implementations of P2P technology. There is already the LibP2P which implements Kademlia in JavaScript plus
a few other languages, but we need more than that. We may also need entire application platforms centered around P2P communication.




Third, we need to implement and test more P2P solutions. In the beginning - probably just for the fun of it. But those proof-of-concept
implementations can form the base for real deployments in the future.




It will definitely take some work - but I am bullish on the future of P2P technology!










A Brief History of P2P Technology


In this chapter I will try to provide a brief overview of the history of P2P technology.
You do not have to know this history to understand the rest of this book - but it may still help you understand
why the P2P technology space looks the way it does today.




The first P2P networks that I became aware of were the file sharing applications that started with Napster in 1999
and evolved into Kazaa, LimeWire, AudioGalaxy, BitTorrent, Azureus etc. Napster was not a pure P2P network -
but it kickstarted the development within this area. During this phase, P2P networks did not have a great reputation,
as file sharing was often used to violate copyright law.




In 2000 Gnutella was launched. Gnutella provided the first truly decentralized P2P application. Gnutella uses an
unstructured P2P topology. I will explain that in more detail later in this book.




In 2001 the Chord paper was published. This paper outlines Chord - a P2P topology capable of scaling to global scale
with logarithmic performance degradation. Chord uses a structured P2P topology - which makes it more efficient than
unstructured P2P topologies.




In 2001 also the Pastry paper was published. Pastry outlines a P2P topology that is similar to Chord in general structure,
but uses a different routing table design.




In 2002 the Kademlia paper was published. This paper outlines a variation of the Chord topology which uses XOR to measure
the distance between peer GUIDs. The use of XOR made the distance calculations simpler, made the references between
peers more symmetric and made the routing table implementation a bit simpler too (in my opinion at least).




Skype was launched in 2003 by the creators of Kazaa, and it completely changed the perception of P2P networks.
Skype provided free chat and voice calls to millions of Internet users, at a time where international calls on normal phone subscriptions were very expensive! Not only was Skype the first legit P2P based application to be released - it also worked remarkably well despite the very high number of users for that time.




I remember the hype around Skype and P2P at the time of Skype’s release. The future of the Internet would surely belong to P2P based technology!




In 2004 the Tapestry paper was published. Tapestry outlined a P2P topology similar to Chord, Kademlia and Pastry - but with some differences.




Hamachi was launched in 2004 - which provided a PC remote access platform based on P2P architecture.




Joost was launched in 2007 the founders of Skype. Joost was an attempt to create a P2P based video streaming platform.
However, Joost never really took off the way Skype did - and in 2008 they pivoted away from P2P towards a
more web-centric architecture.




Bitcoin was launched in 2008. Bitcoin is a blockchain based crypto currency which uses P2P based communication underneath
to enable the nodes in the blockchain network to communicate. Since Bitcoin’s launch a lot of other crypto currencies have been launched,
many with some kind of P2P technology used for communication among the participating nodes.




Also in 2008 the Cassandra database was first released. Cassandra provides a distributed hashtable based database.
Distributed hashtables tend to use P2P technology underneath to enable the communication and coordination between the nodes in the distributed hashtable.




The crypto currency technology space has since morphed into the Web3 technology space - which attempts to provide a variety of
functionality based on blockchain networks. This space uses a lot of P2P technology under the surface.




Space Monkey was launched in 2011. Space Monkey was a P2P based storage and backup application.
Space Monkey was later acquired by Vivint - who have since then discontinued the Space Monkey backup system.




IPFS was launched in 2015. IPFS is an abbreviation for InterPlanetary File System. IPFS is an attempt to create one big distributed file system
with the potential to scale to multiple planets (should we ever get off planet Earth!).




LBRY was also launched in 2015. LBRY provides a P2P based file, video and audio sharing platform with a built-in crypto currency
to enable payments for the content accessed.




In 2021 I published the first design draft of my Polymorph Polyring P2P topology. This topology uses a different structure than Chord, Kademlia,
Pastry and Tapestry and is designed to enable efficient P2P based broadcast and multicast, as well as geographically aligned topology,
asymmetric scalability etc.




I have probably forgotten some P2P projects in the above account - but I still believe it contains the major developments within the
P2P technology space.




The hype for P2P technology was definitely greatest in the early 2000’es and probably peaked with the release of Skype. Since
then P2P seems have found a limited number of uses cases it could effectively applied to - and it has proved harder to monetize
than traditional client-server based applications. And thus - the P2P hype has slowly died out.




P2P technology has not died out though. It is still being used in a slowly growing set of use cases.









P2P Network Definition


A P2P network is two or more computers connected via a network, collaborating
to solve some common problem, each computer acting as both
a client of, and server to, other computers in the P2P network.




Each peer contributes the following resources to the collaboration towards
solving the common problem:





	
Compute



	
Memory



	
Storage



	
Network








By Compute I mean CPU or GPU compute power. By Memory I mean RAM.
By Storage I mean disk space or other types of permanent storage.
By Network I mean Internet or local network bandwidth.




Pure vs. Hybrid P2P Networks


There are two overall types of P2P networks:





	
Pure P2P networks



	
Hybrid P2P networks








A pure P2P network is a P2P network where all the peers provide compute, memory, storage and network resources. Thus, there are only the peers. There are no other computers as part of the system.




The following diagram illustrates a pure P2P network:



[image: A pure P2P network. All resources are provided by the peers in the network.]Figure 1. A pure P2P network. All resources are provided by the peers in the network.


A hybrid P2P network is a P2P network where parts of the resources may be provided
by computers that are not themselves peers. For instance, a common hybrid P2P network topology might have the peers themselves provide compute, memory and storage, but have some centrally managed servers provide the networking (message routing) between the peers.




The following diagram illustrates a hybrid P2P network where part of the network resources are provided by a central routing fabric:



[image: A hybrid P2P network. Only some of the resources are provided by the peers in the network.]Figure 2. A hybrid P2P network. Only some of the resources are provided by the peers in the network.


Such a design with a centrally managed message routing fabric will be easier to get off the ground - as new peers will know what central servers to connect to - to connect to the P2P network.




The centralized fabric may also offer storage, e.g. to store messages for peers that are momentarily offline, or for a Distributed Hashtable (DHT) enabling peers to lookup various values.




The centralized fabric could also offer various compute functionality for the peers, which might be easier to locate in the central fabric than in the individual peers.










P2P Network Topologies


For peers in a P2P network to be able to communicate, they need to organise themselves to some degree. At the very least, a peer needs to know about
one other peer in the network. Typically, a peer will know multiple other peers
in the network, as this makes the network more robust - for reasons I will get
into later.




There are three categories of peer organization in P2P networks:





	
Unstructured P2P topologies



	
Structured P2P topologies



	
Hybrid P2P topologies








Each of these categories contain different peer organizations known as
P2P topologies. Each of these categories and the topologies within them
will be explored in more detail in the following sections.




Unstructured P2P Topologies


Unstructured P2P topologies are topologies where there is no particular system in what other peers in the network a given peer knows. Here are a few known unstructured P2P topologies:





	
Gnutella



	
Dandelion








Gnutella and Dandelion will be explored in their own chapters later in this book.





Structured P2P Topologies


Structured P2P topologies are topologies where there is a system to what other
peers in the network a given peer knows. Here are a few known structured
P2P topologies:





	
Grid



	
Tree



	
Monoring



	
Polyring








I don’t know of any concrete examples that use a Grid or Tree topology, except
perhaps CAN (Content Addressable Network). I also don’t believe they are the most
advantageous topologies - but they should be mentioned anyways.




Examples of Monoring topologies are





	
Chord



	
Kademlia



	
Pastry



	
Tapestry








My own P2P topology called Polymorph Polyring P2P Topology is an example of a polyring topology.





Hybrid P2P Topologies


Hybrid P2P topologies are topologies that are a mix of P2P topology
and non-P2P toplogy. Examples of hybrid P2P topologies are:





	
Star Topology (AKA Hub and Spoke Topology)



	
Fabric Topology



	
Distributed Hashtable (DHT) and NoSQL Database Topology














Starting a P2P Project


Before I get into the various different ways to structure a P2P network, I would
like to explore a reasonably easy way to start a P2P project.




A P2P based application typically consists of two parts that needs to be implemented.




The first part is the application’s functionality itself. For instance, in a P2P based chat application this part would be the part where the user can find and register other users as connections, send and receive chat messages etc.




The second part is the P2P network management part. This part is about how a peer can
join a P2P network, how the peers manage their routing tables, how they communicate
etc.




Both of these two parts can require a significant effort to implement.




I have a feeling that many P2P application ideas never got off the ground because
the developers did not know how to implement the P2P network management part -
or because they felt it would be a huge task to implement.




Defer the P2P Network Implementation


My suggestion is, that you start with the application functionality part, and
defer the implementation of the P2P network management part until later.
Doing so will enable you to get the application MVP up and running much faster,
so you can test if potential end users would be interesting in that functionality.





Start With a Star Topology


To make the application peers able to communicate, you can start with a simple
star topology. A star topology is a simple client-server topology where a central
server functions as a router of messages between the clients connected to it.




A star topology is reasonably easy to implement while still offering the peer
applications the illusion of communicating as if they were communicating via
a pure P2P network.




I will explain star topology later in this book, in the section about
hybrid P2P topologies.




With a star topology you can focus on getting the appliation functionality
right, before you spend more energy on the interconnection part - the P2P part.





Evolve Towards a Pure P2P Topology


From the star topology you can evolve towards a more pure P2P topology
at a speed that suits your project.




The first step can be to change from a single router (server) to multiple
routers, and have these routers connect to each other so they can route
messages between each other.




After that, you can evolve towards erecting a fully pure P2P topology around
your central set of routers.










Polymorph Polyring P2P Topology


The Polymorph Polyring P2P topology is a P2P topology that I have created for my Polymorph project.
This project is an exploration of new ideas in software design and architecture. I will not bore you too
much with my Polymorph project but a brief introduction is necessary to understand the context in
which my Polymorph Polyring P2P topology was designed.




Project Polymorph - Polymorphic Computing Explored


My Polymorph project is exploring what I call Polymorphic Computing. I define Polymorphic Computing like this:




Polymorphic Computing is achieved via a compute platform that is able to adapt to different use cases - ideally at runtime - but at minimum at design time.




Polymorphic computing is achieved via Polymorphic Design and Architecture. The purpose of polymorphic design and architecture is to make the compute platform as versatile as possible. This means designing for as many known, relevant use cases as possible.




A nice side effect of polymorphic design and architecture is that it tends to better enable emergent behaviour of its users,
meaning it enables its users to use the polymorphic compute platform for use cases it was not explicitly
designed to handle.




In other words, Polymorphic Computing enables a compute platform to “shape shift” to serve different use cases.
The more use cases it can serve, the more polymorphic the platform is.




Polymorphic computing is mostly useful in platforms that are to serve many different use cases.
Applications serving specific requirements will usually not need to adapt to other use cases than
those specified for the application. However, an application may use a polymorphic compute platform
internally, or run on top of a polymorphic compute platform.




The output from my Polymorph project will be a mix of standards (data formats, protocols, designs, architectures etc.) and implementations. Many of these standards and implementations will be open - but there will probably
be a small, moderately commercial part too. Time will tell where the exact balance lands, but
the commercial part will not make any sense without the open parts, so it cannot end up as a fully commercial
project.




I won’t take more of your time with Project Polymorph. I will be writing more about Polymorph in a separate book soon.





Polymorph Polyring P2P Topology Design Goals


As part of my Polymorph project I have been exploring new, flexible network communication mechanisms.
One of these communication mechanisms is the Polymorph Polyring P2P topology.




In the beginning of my Polymorph project I was mostly focused on media use cases. Additionally, I
have been interested in P2P technology for many years - so I wanted to explore the possibilty
of supporting traditional media use cases via a P2P topology.




It turns out that the most popular P2P topologies at the time, the ring topologies, were not great at supporting
media use cases such as broadcast and multicast used in live-streaming or on-demand streaming.




Additionally, the P2P ring topologies were also not great at supporting geographically aligned topologies.
For instance, if a local TV station broadcasts content relevant to its local area,
there is a high probability that many of the consumers of that content will be located within the
same geographical area as the local TV station. It would be desirable to keep the content within
the same geographical area on the network too.




P2P tree topologies support traditional media use cases better - both in terms of supporting broadcast
and multicast and when it comes to supporting geographically aligned topologies. Tree topologies
have some robustness issues though, leading to a higher risk of network partitioning.
Thus, I set out to find a P2P topology that had the efficiency and flexibility of a tree topology
combined with the robustness of a ring topology. Actually, I wasn’t as clear-minded about it when
I started - but looking back that is what I was actually doing.




I published the first design of the Polyring topology back in 2021. Since then I have
expanded the focus of my Polymorph project from only media use cases to as many use cases as I could think of.
With this focus expansion I also started looking at edge computing topologies as well as client-server communication
and hybrids between the three (P2P, edge and client-server).




So far, the original Polyring topology seems able to support all three styles of communication (P2P, edge and client-server),
as well as many hybrids in between. I have had to make a small change in the design of the Polyring peer routing tables
to support dynamic hashing for distributed hashtables (DHTs) on top of the Polyring topology. Other than that,
the Polyring topology is pretty much the same as its first design.





The Polyring Topology


The Polyring topology consists of multiple rings of peers connected in a hierarchy of rings.
At the center of the polyring topology is the center ring. The center ring consists of a set
of peers.



[image: A Simple Polyring Topology With Only a Center Ring]Figure 3. A Simple Polyring Topology With Only a Center Ring


Each peer in the center ring can have one subring attached to it. Each subring also consists
of a set of peers. Each peer in a subring can again have a subring attached to it. Each peer
in any subring at any level can have a subring of peers attached to it.



[image: A Polyring Topology With Twp Subrings]Figure 4. A Polyring Topology With Two Subrings


The center ring with peers and subrings attached recursively forms a hierarchy of rings with
the center ring at the top of the hierarchy. There is no limit to how many layers of subrings
a polyring topology can contain.




All peers within the same ring know each other - meaning the can communicate directly.
All peers within a ring also knows their parent peer - meaning the peer they are a subring of (if any).




As mentioned earlier, the polyring topology is a mix of both the tree and ring topologies.
Indeed, a polyring is very similar to a Tree topology with the modification that all
sibling peers know each other and can communicate directly. In a classical Tree topology
(or data structure) the siblings (children of the same parent) typically do not know
about each other.





Peer GUIDs


Peers in a polyring use GUIDs to organize themselves. Each peer has a unique GUID. The size of the GUIDs are dynamic.
Peers in the central ring have a single-number GUID. For each ring away from the central ring a peer is located,
one more number is added to its GUID. Here is a diagram showing how peer GUIDs are assigned to peers in a polyring:



[image: Peers in a polyring with peer GUIDs]Figure 5. Peers in a polyring with peer GUIDs



Routing Between Peers


When peers in a P2P network communicate they can do so either directly or indirectly.




If the peers communicate directly they will typically do that by sending messages directly to each other via UDP,
or by opening a TCP / TSL connection directly between each other.




If the peers communicate indirectly, they will send messages to each other via other peers in the network.




Direct communication has the following benefits:





	
If exchanging large amounts of data, no other peers in the network are burdened by the data exchange.



	
No other peer can spy on the communication.








Indirect communication has the following benefits:





	
If you only have to send a single message you don’t have to lookup the IP address of the peer first, and then send the message. You can just send the message and have it routed to the peer. This means just one round trip between the communicating peers.



	
You don’t want to know the IP address of the receiving peer.



	
The receiving peer might not be online when you send the message. The message can then be stored for later by intermediate peers.



	
You are sending a multicast or broadcast where the message needs to be replicated to multiple peers.








The Polymorph Polyring P2P topology has been specifically designed to support indirect communication - meaning routing of messages between peers.
The polyring is especially designed for efficient multicast, broadcast and caching of messages in the network.
That makes the polyring useful for media use cases such as on-demand streaming, live-cast, broadcast etc.




Here is a diagram illustrating the path messages would be routed via, from one peer to another in an
example polyring topology:



[image: Routing between two peers in a polyring]Figure 6. Routing between two peers in a polyring


Routing is pretty easy in a polyring. A message can only be routed in three directions:





	
To a sibling (horizontally)



	
To a child in a subring (down)



	
To the parent of the subring (up)








Determining which of these directions to route a message in is done by comparing the GUID of the destination peer
with the GUID of the routing peer.



[image: Polyring routing algorithm]Figure 7. Polyring routing algorithm


Note, that peers in the central ring of a polyring are considered to have a common parent - even if no parent might be present.
In practice, you might have a “ring leader” parent running which organizes the central ring, but which may not have an explicit GUID itself (to avoid making GUIDs that one number longer unnecessarily).





Topology Shaping


The Polymorph Polyring topology enables you to shape the topology for your specific use case. You can shape:





	
The size of each ring. No rings need to have the same size - meaning the same number of peers.



	
The depth of rings. You can have as many layers of rings as you want.








A polyring does not have to be symmetric in any way. You can have a big center ring and small subrings. Or,
you can have one big subring and multiple small subrings at the same depth level. Or, you can have many layers of subrings
on one side of the center ring, and very big, more flat subrings on other sides of the center ring.
Here is a diagram of an asymmetrically shaped polyring topology:



[image: Asymmetrically shaped polyring]Figure 8. Asymmetrically shaped polyring


The polyring topology shaping flexibility makes it possible to create a geographically aligned topology.
For instance, peers in the central ring could represent countries. Their subrings could represent regions
within those countries. The region rings’s subrings could represent cities, and their subrings neighbourhoods etc.




The polyring topology also enables you to create hybrids of P2P, edge and client-server topologies.
This can be useful for media use cases, where you might have content stored on central servers,
with frequently accessed content cached at edge locations, and super-popular content delivered the last distance
via P2P.





Side Rings


The larger a polyring becomes, meaning the more peers it contains, the longer the average distance between
peers in the polyring becomes. This means, that messages routed between peers need to be routed through more
peers on average to reach their destination.




At a certain polyring size it can become inefficient for the peers to have heavy communication between
them via that polyring. The messages would have to pass through too many peers on the way from peer A to peer B.




A solution to this problem is to create a side ring. A side ring is a new polyring dedicated to a special purpose.
This purpose can be the communication between two peers, communication between multiple peers
or broadcast or multicast to peers.



[image: Polyring With a Side Ring]Figure 9. Polyring With a Side Ring


The diagram above illustrates a polyring where the peers in orange color want to communicate. Instead of communicating
directly, they join a side ring and communicate via that ring. The side ring only has a single peer in its central ring.
The orange peers can communicate via this central peer if they are not able to communicate directly. The peers with
dashed lines are just illustrating that it is possible for more peers to join such a side ring if the situation requires it.




Two peers that find each other via the main polyring can decide to start a side ring and communicate via that side ring.
This reduces the load on the main polyring - and enables more efficient communication via the smaller, more narrowly focused side ring.




Once the peers no longer need the side ring it can be shut down again.










Uniring P2P Topologies


Uniring P2P topologies are P2P topologies that organize all the peers in the network into a single ring structure.
It is called a ring structure because the peers have a 1-dimensional GUID - and the highest GUID is considered
neighbour of the lowest GUID - thus forming a ring of GUIDs. The following diagram illustrates a simple uniring
topology with 4 peers, with the GUIDs 0, 1, 2 and 3:



[image: A Simple Polyring Topology With Only a Center Ring]Figure 10. A Simple Uniring Topology With 4 Peers


Each peer in a uniring has a routing table with references to a set of other peers in the network. The different uniring
topologies differ in how they structure their routing tables - but there are some similarities too - which I will cover in
this chapter.




As a minimum, each peer needs to have its nearest neighbour referenced in their routing table.
By “nearest neighbour” I mean the peer with the GUID closest to their own - either up or down in value.
For instance, the nearest neighbour of the peer with GUID 1 would be either the peer with GUID 0 or GUID 2.
Since the GUID space wraps around 0 (which is why its called a “ring”) - the nearest neighbours of
the peer with GUID 0 would be the peers with GUIDs 3 and 1.




With just one of their nearest neighbours referenced in their routing table, it is actually possible to
find any single peer in the ring - or route a message to any single peer in the ring.




The lookup algorithm would look similar to this:



[image: Uniring Peer Lookup Algorithm]Figure 11. Uniring Peer Lookup Algorithm


First the source peer looks for the peer with the nearest GUID in its own routing table.
If that is not the destination peer - the source peer contacts that peer and asks it for the nearest
peer it knows to the destination peer. This continues until either the destination peer is found,
or a peer replies that it does not know any peers nearer to the destination peer than itself.




Routing a message to a destination peer would follow a similar algorithm. Each peer would route
the message to the nearest peer to the destination peer it knows. This would continue until either the message
reaches the destination peer, or a peer does not know any other peers closer to the destination peer





	
in which case the routing of that message is considered failed.








Uniring Routing Tables


If each peer only has a their nearest neighbour in their routing tables, finding a specific peer in
the network will take longer, the more peers are in the network. In fact, with N peers in the network,
on average it will take N/2 iterations to find a given peer. This is not very efficient,
and does not scale very well as the number of peers in the network grows.




Additionally, with only a single peer in the routing table - the network is vulnerable to network partioning.
If one or more peers fail, or leave the network without telling any other peers about it, the network might
partition into two or more separate networks. This makes it impossible to find peers in another partition of
the network.




As a remedy, peers keep more than one other peer in their routing tables. Exactly which other peers
each peer has in its routing table is where the different uniring implementations differs. There
are some similarities though. They all tend to have peers in their routing tables with GUIDs that
are exponentially further and further away from themselves - based on the distance between their GUIDs.
This principle is illustrated here:



[image: Uniring Peer Routing Table]Figure 12. Uniring Peer Routing Table


The peers in this diagram all have peers in their routing tables that are 1, 2, 4 and 8 peers away
measured by the distance (difference) in their GUIDs. The arrows in the diagram point to peers
being referenced by the peer the arrows point from.





Uniring Implementations


There are several different uniring topology implementations. Here are some of the most commonly known
uniring implementations:





	
Chord



	
Kademlia



	
Tapestry



	
Pastry








The main difference between these uniring implementations are how their routing tables are structured.
Each of these unring implementations will be covered in their own chapters later in this book.










Chord


Chord is a uniring P2P topology. The original Chord paper was published in 2001. The original Chord paper can be found here:




https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf




In practice we don’t hear much about Chord anymore - because in 2002 the Kademlia paper was published. Kademlia is very similar to Chord, but uses a different distance function (explained later) that is easier to calculate than Chord’s,and which is more uniform too. However, to understand Kademlia we need to understand Chord.




Additionally, Chord is interesting from a historical perspective, as it is the first structured P2P topology to be published.




The Chord Routing Table and Distance Function


The Chord P2P topology is a uniring topology that uses exponential distance referencing in its routing table.




To recap, exponential distance referencing means that the routing table contains references to peers with GUIDs that are exponentially longer and longer distances away from the GUID of the peer owning the routing table. The exponential distance referencing principle is illustrated here:



[image: Exponential GUID Distance Referencing]Figure 13. Exponential GUID Distance Referencing


The Chord Distance Function


The way Chord calculates the distance between two GUIDs is by calculating the absolute (positive) numerical distance between the GUID of the referencing peer and the GUID of the referenced peer. The numerical distance is interpreted as the numerical distance between the peer GUIDs around the uniring. Here is how that is calculated:




If the referencing peer’s GUID is numerically smaller than the referenced peer’s GUID, meaning the referencing peer GUID is located “earlier” in the uniring than the referenced peer GUID, you simply subtract the referencing GUID from the referenced GUID, like this:



1 Gf = Referencing peer GUID (from GUID)
2 Gt = Referenced peer GUID (to GUID)
3 
4 dist(Gf, Gt) =  Gt - Gf





Thus, if the referencing peer’s GUID is 3 and the referenced peer’s GUID is 13, the distance from 3 to 13 is



1 dist(3, 13) =  13 - 3 = 10





This distance calculation is illustrated in a Chord uniring here:



[image: Chord Distance Function - Forward Distance in Uniring]Figure 14. Chord Distance Function - Forward Distance in Uniring


If the referencing peer’s GUID is numerically larger than the referenced peer’s GUID, meaning the referencing peer GUID is located “later” in the uniring GUID space than the referenced peer, the distance between the referencing peer GUID and the referenced peer GUID is calculated forward around the uniring GUID space. Here is how that is calculated:



1 Gf = Referencing peer GUID (from GUID)
2 Gt = Referenced peer GUID (to GUID)
3 Gmax = Maximum possible numerical GUID value
4 
5 dist(Gf, Gt) =  Gmax - Gf + Gt + 1





First, the distance from the referencing peer’s GUID to the maximal possible GUID in the uniring is calculated (Gmax - Gf). The the distance from the maximal possible GUID to the referenced GUID is added (Gt + 1).




Thus, if the referencing peer’s GUID is 12 and the referenced peer’s GUID is 4, and the maximum possible GUID in the ring is 15 (GUID’s going from 0 to 15), then the distance from 12 to 4 is



1 dist(12, 4) =  15 - 12 + 4 + 1  =  3 + 4 + 1  =  8 





This distance calculation is illustrated in a Chord uniring here:



[image: Chord Distance Function - Forward Distance Around a Uniring]Figure 15. Chord Distance Function - Forward Distance Around a Uniring


Note, how the distance between two peer GUIDs depends on which peer is referencing, and which peer is referenced. The distance between the same two peers is not uniform. For instance, the distance from 3 to 8 is



1 dist(3, 8) =   8 - 3 = 5





whereas the distance from 8 to 3 in a uniring with maximum GUID being 15 is



1 dist(8, 3) =   15 - 8 + 3 + 1 = 7 + 3 + 1 = 11






The Chord Routing Table


As mentioned earlier, the Chord routing table contains references to peers with GUIDs
that are exponentially longer distance away from its own GUID.




Ideally, the routing table contains references to peers with GUIDs that are a distance
of 1, 2, 4, 8, 16, 32 etc. away from its own GUID - calculated as explained in the previous section.




How many entries the routing table contains depends on the bit-length of the GUIDs. The
routing table will contain 1 entry for each bit in the GUIDs. For instance,
if the GUIDs are 8 bits long - the routing table will contain 8 entries.




For example, if GUID length is 8 bits - ideally the routing table
will contain references to peers with GUIDs that are a distance of 1, 2, 4, 8, 16, 32, 64 and 128
away from its own GUID. Thus, if the peer’s GUID is 13, then its routing table will contain
references to peers with GUIDs 13 + 1 (= 14), 13 + 2 (= 15), 13 + 4 (= 17), 13 + 8 (= 21), 13 + 16 (= 29), 13 + 32 (= 45), 13 + 64 (= 77) and 13 + 128 (= 141).




If there are no peers in the Chord uniring with the exact ideal GUIDs, then the peer will reference
the nearest peer to the ideal peer in the uniring instead. Whether this is the peer with the nearest GUID to the ideal GUID - before or after the nearest GUID - is up to you to decide.




Here is an example routing table for the peer with GUID 13, referencing the nearest GUID after the ideal GUID, if no peer is online with the ideal GUID:






	Ideal GUID
	Actual GUID
	Peer IP + Port





	14 (13 + 1)
	14
	123.123.123.14 : 1234



	15 (13 + 2)
	15
	123.123.123.15 : 1234



	17 (13 + 4)
	18
	123.123.123.18 : 1234



	21 (13 + 8)
	23
	123.123.123.23 : 1234



	29 (13 + 16)
	29
	123.123.123.29 : 1234



	45 (13 + 32)
	48
	123.123.123.48 : 1234



	77 (13 + 64)
	77
	123.123.123.77 : 1234



	141 (13 + 128)
	147
	123.123.123.147 : 1234






Note: The last number in the referenced peers’ IP addresses in the routing table matches
their GUID - in this particular example. This is NOT a requirement though. This is just something
I did for the sake of the example. The IP address of a peer does not have to have any connection
to its GUID.






Peer Lookup


To find a peer with a specific GUID, or the peer with the nearest GUID after the target GUID, in a Chord uniring, you follow the same simple algorithm as explained in the chapter “Uniring P2P Topologies”:




First you look in your own routing table, and find the peer with the nearest GUID to the target GUID.
This must be the nearest GUID before the the target GUID, not after.




Second, you contact the peer with the nearest GUID and ask it for the nearest peer it knows to the
target GUID. Again, this will be the nearest GUID before the target GUID, not after.




This process repeats until you have either found the desired peer, or some peer responds that it
does not know any peers closer to the target GUID than itself - meaning lookup was not successful.





GUID Assignment


The original Chord paper suggests using peer GUIDs of 160 bits. However, you can use any bit-size for
GUIDs, as long as it is big enough to hold all the peers you expect to be part of the P2P Network.




The original Chord paper also suggests that each peer generates a GUID randomly - to reduce the probability
that their GUID clashes with some other peer’s GUID. The larger the GUID bit-size is, the lower the probability is that a randomly generated GUID clashes (is the same as) some other peer’s GUID.




GUID Spoofing


The fact that each peer assigns its own GUID autonomously opens up the risk for GUID spoofing.
GUID spoofing Means that a malicious peer deliberately pretends to have the same GUID as another peer in the
Network. That way, messages or connections that were meant for another peer might get hijacked by the malicious peer.




In the Polymorph Polyring topology it is the ring leader of each ring / nested ring that assigns GUIDs, so it is a lot harder to spoof the GUID of another peer. All peers in a ring will get the peer information of that ring from the ring leader - not from other peers. Thus, if the ring leader is not compromised, spoofing the GUIDs of other peers is not really possible.











Kademlia


Kademlia is a uniring P2P topology that is very similar to Chord. The original Kademlia paper was published in 2002.
You can find the Kademlia paper here:




https://www.scs.stanford.edu/~dm/home/papers/kpos.pdf




The biggest difference between Kademlia and Chord is that Kademlia uses XOR as distance function instead of Chord’s “absolute distance forward around the ring” function. Using XOR as distance function has a few advantages compared
to Chord’s distance function:





	
XOR is easier to calculate. Just XOR the bytes of the GUID with each other, one by one.



	
XOR is a uniform function. Thus, dist(a, b) = dist(b, a). This is not the case with Chord’s distance function.








Using XOR as distance function also means, that if peer a has b in its routing table, then there is a high probability that b should also have a in its routing table. Thus, if the peers have open connections to each other, they could potentially reuse the connections for two-way communication. This would make less sense in a Chord P2P Network.




The Kademlia Routing Table and Distance Function


Just like in the Chord routing table, the Kademlia routing table contains references to peers with GUIDs that
are exponentially longer and longer distances away from the GUID of the peer owning the routing table.
The distance is just calculated using the XOR function instead.




Here is an example Kademlia routing table for a peer with GUID 13 - in a uniring with GUIDs going from
0 to 15 (4 bit GUID size). To make it easier to see how the XOR distance is calculated,
the GUIDs are also shown in binary ( 4 bits ). 13 in binary is 1101.




Here is the Kademlia routing table:






	Kademlia Ideal GUID





	1101 xor 0001 (13 xor 1) = 1100 (12)



	1101 xor 0010 (13 xor 2) = 1111 (15)



	1101 xor 0100 (13 xor 4) = 1001 ( 9)



	1101 xor 1000 (13 xor 8) = 0101 ( 7)






Here is how the same routing table would look in Chord:






	Chord Ideal GUID





	14 (13 + 1)



	15 (13 + 2)



	17 (13 + 4)



	5 (13 + 8 = 21, 21 - (15 + 1) = 5)






Here are both routing tables illustrated:



[image: Chord and Kademlia Routing Tables]Figure 16. Chord and Kademlia Routing Tables
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