

Just Enough Raspberry Pi

 Malcolm Maclean

 This book is for sale at http://leanpub.com/jerpi

 This version was published on 2020-07-14

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

[image: Creative Commons by-nc-sa]

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

 Table of Contents

 	
 Introduction

 	Welcome!

 	What are we trying to do?

 	Who is this book for?

 	Where can I get more information?

 	The History of the Raspberry Pi

 	
 Raspberry Pi Versions

 	Version Comparison

 	
 Raspberry Pi Zero

 	USB Port

 	Video Out

 	USB Power Input Jack

 	MicroSD Flash Memory Card Slot

 	MIPI Camera Interface

 	Stereo and Composite Video Output

 	40 Pin Header

 	
 Raspberry Pi A+

 	USB Port

 	Video Out

 	USB Power Input Jack

 	MicroSD Flash Memory Card Slot

 	Stereo and Composite Video Output

 	40 Pin Header

 	
 Raspberry Pi B

 	USB Ports

 	HDMI Video Out

 	Composite Video Out

 	Ethernet Network Connection

 	USB Power Input Jack

 	SD Flash Memory Card Slot

 	Audio Output

 	26 Pin Header

 	
 Raspberry Pi B+, 2 B and 3 B

 	USB Ports

 	Video Out

 	Ethernet Network Connection

 	USB Power Input Jack

 	MicroSD Flash Memory Card Slot

 	Stereo and Composite Video Output

 	40 Pin Header

 	
 Raspberry Pi B 4

 	USB Ports

 	Video Out

 	Ethernet Network Connection

 	USB-C Power Input Jack

 	MicroSD Flash Memory Card Slot

 	Stereo and Composite Video Output

 	40 Pin Header

 	SD Card

 	Keyboard / Mouse

 	Video

 	Network

 	Power supply

 	Cases

 	
 Operating Systems

 	
 Sourcing and Setting Up

 	Downloading

 	Writing the Operating System image to the SD Card

 	
 Welcome to Raspbian (Debian Wheezy / Jessie)

 	Downloading

 	Installing Raspbian

 	The ‘Jessie Lite’ Command Line interface

 	GUI Desktop

 	
 Welcome to OpenELEC

 	Downloading

 	Installing OpenELEC

 	
 Welcome to Ubuntu

 	Downloading

 	Installing Ubuntu

 	
 Power Up the Pi

 	
 Static IP Address

 	The Netmask

 	Distinguish Dynamic from Static

 	Default Gateway

 	For Wheezy Edit the interfaces file

 	For Jessie Edit the dhcpcd.conf file

 	
 Remote access

 	Remote access via RealVNC

 	Remote access via SSH

 	
 Setting up a WiFi Network Connection

 	Instructions for Using Wheezy

 	Instructions for Using Jessie

 	Make the changes operative

 	
 External USB Storage

 	Preparing our storage

 	Mounting the drive

 	Auto-mounting on boot

 	
 Reconnecting to the network automatically

 	Let’s write a script

 	Lets run our script on a regular schedule

 	Let’s test it

 	
 Checking Operating System and Hardware

 	Operating System

 	Hardware

 	
 Configuring the Pi Zero W to work from scratch without a monitor

 	Get standard image

 	Configure the card

 	
 Turn the activity light on or off

 	Cut to the chase and just do it

 	The explanation of how it works

 	
 The Commands

 	apt-get

 	chmod

 	chown

 	fdisk

 	ifconfig

 	ls

 	mkdir

 Guide

 	
 Begin Reading

Introduction

Welcome!

Hi there. Congratulations on being interested enough in the process of learning about the Raspberry Pi to have gotten your hands on this book.

If you haven’t guessed already, this will be a journey of discovery for both of us. I have always enjoyed experimenting with computers and using them to know a bit more about what is happening in the physical environment. I know that this sort of effort has been done already by others, but I want to go provide a basic core for folks who are new to the topic to get them started.

Ambitious? Perhaps :-). But I’d like to think that if you’re reading this, perhaps I managed to make some headway. I dare say that like other books I have written (or are in the process of writing) it will remain a work in progress. They are living documents, open to feedback, comment, expansion, change and improvement. Please feel free to provide your thoughts on ways that I can improve things. Your input would be much appreciated.

You will find that I have typically eschewed a simple “Do this approach” for more of a story telling exercise. This means that some explanations are longer and more flowery than might be to everyone’s liking, but there you go, try to be brave :-)

I’m sure most authors try to be as accessible as possible. I’d like to do the same, but be warned… There’s a good chance that if you ask me a technical question I may not know the answer. So please be gentle with your emails :-).

Email: d3noobmail+rpi@gmail.com

What are we trying to do?

Put simply, we are going to examine the wonder that is the Raspberry Pi, work through some of the options available to us to use it and step through the processes to make that happen.

We’ll look at the history of how the Pi came to be and some of the versions available. We’ll examine the peripherals required to use it effectively and check out the operating system options to get us up and running. As part of the additional ‘cool factor’ we’ll add in some neat things that we can do with the device and there will be am explanation of the Linux commands that we will use as we go.

Who is this book for?

You!

Just by virtue of taking an interest and getting hold of a copy of this book you have demonstrated a desire to learn, to explore and to challenge yourself. That’s the most important criteria you will want to have when trying something new. Your experience level will come second place to a desire to learn.

Having said that, it may be useful to be comfortable using the Windows operating system (I’ll be using Windows 7 for the set-up of the devices since that would probably classify as (currently) the world’s most ubiquitous operating system), you should be aware of Linux as an alternative operating system, but you needn’t have tried it before. The best thing to remember is that before you learn anything new, it pretty much always appears indistinguishable from magic, but once you start having a play, the mystery quickly falls away.

Where can I get more information?

The Raspberry Pi as a concept has provided an extensible and practical framework for introducing people to the wonders of computing in the real world. At the same time there has been a boom of information available for people to use them. The following is a far from exhaustive list of sources, but from my own experience it represents a useful subset of knowledge.

 raspberrypi.org

 Google+

 reddit

 Google Groups

 Raspberry Pi Stack Exchange

The History of the Raspberry Pi

The story of the Raspberry Pi starts in 2006 at the University of Cambridge’s Computer Laboratory. Eben Upton, Rob Mullins, Jack Lang and Alan Mycroft became concerned at the decline in the volume and skills of students applying to study Computer Science. Typical student applicants did not have a history of hobby programming and tinkering with hardware. Instead they were starting with some web design experience, but little else.

They established that the way that children were interacting with computers had changed. There was more of a focus on working with Word and Excel and building web pages. Games consoles were replacing the traditional hobbyist computer platforms. The era when the Amiga, Apple II, ZX Spectrum and the ‘build your own’ approach was gone.
In 2006, Eben and the team began to design and prototype a platform that was cheap, simple and booted into a programming environment. Most of all, the aim was to inspire the next generation of computer enthusiasts to recover the joy of experimenting with computers.

Between 2006 and 2008, they developed prototypes based on the Atmel ATmega644 microcontroller. By 2008, processors designed for mobile devices were becoming affordable and powerful. This allowed the boards to support an graphical environment. They believed this would make the board more attractive for children looking for a programming-oriented device.

Eben, Rob, Jack and Alan, then teamed up with Pete Lomas, and David Braben to form the Raspberry Pi Foundation. The Foundation’s goal was to offer two versions of the board, priced at US$25 and US$35.

50 alpha boards were manufactured in August 2011. These were identical in function to what would become the model B. Assembly of twenty-five model B Beta boards occurred in December 2011. These used the same component layout as the eventual production boards.

 [image: Early Alpha Board (Credit: Paul Downey)]
 Early Alpha Board (Credit: Paul Downey)

Interest in the project increased. They were demonstrated booting Linux, playing a 1080p movie trailer and running benchmarking programs. During the first week of 2012, the first 10 boards were put up for auction on eBay. One was bought anonymously and donated to the museum at The Centre for Computing History in Suffolk, England. While the ten boards together raised over 16,000 Pounds (about $25,000 USD) the last to be auctioned (serial number No. 01) raised 3,500 Pounds by itself.

The Raspberry Pi Model B entered mass production with licensed manufacturing deals through element 14/Premier Farnell and RS Electronics. They started accepting orders for the model B on the 29th of February 2012. It was quickly apparent that they had identified a need in the marketplace. Servers struggled to cope with the load placed by watchers repeatedly refreshing their browsers. The official Raspberry Pi Twitter account reported that Premier Farnell sold out within few minutes of the initial launch. RS Components took over 100,000 pre orders on the first day of sales.

 [image: raspberrypi.org blog lights the fuse.]
 raspberrypi.org blog lights the fuse.

Within two years they had sold over two million units.

The lower cost model A went on sale for $25 on 4 February 2013. By that stage the Raspberry Pi was already a hit. Manufacturing of the model B hit 4000 units per day and the amount of on-board ram increased to 512MB.

The official Raspberry Pi blog reported that the three millionth Pi shipped in early May 2014. In July of that year they announced the Raspberry Pi Model B+, “the final evolution of the original Raspberry Pi. For the same price as the original Raspberry Pi model B, but incorporating numerous small improvements”. In November of the same year the even lower cost (US$20) A+ was announced. Like the A, it would have no Ethernet port, and just one USB port. But, like the B+, it would have lower power requirements, a micro-SD-card slot and 40-pin HAT compatible GPIO.

On 2 February 2015 the official Raspberry Pi blog announced that the Raspberry Pi 2 was available. It had the same form factor and connector layout as the Model B+. It had a 900 MHz quad-core ARMv7 Cortex-A7 CPU, twice the memory (for a total of 1 GB) and complete compatibility with the original generation of Raspberry Pis.

 [image: Raspberry Pi B+ and Raspberry Pi B2]
 Raspberry Pi B+ and Raspberry Pi B2

Following a meeting with Eric Schmidt (of Google fame) in 2013, Eben embarked on the design of a new form factor for the Pi. On the 26th of November 2015 the Pi Zero was released.

The Pi Zero is a significantly smaller version of a Pi with similar functionality but with a retail cost of $5. On release it sold out (20,000 units) World wide in 24 hours and a free copy was affixed to the cover of the MagPi magazine.

 [image: Raspberry Pi Zero]
 Raspberry Pi Zero

The Raspberry Pi 3 was released in February 2016. The most notable change being the inclusion of on-board WiFi and Bluetooth.

In February 2017 the Raspberry Pi Zero W was announced. This device had the same small form factor of the Pi Zero, but included the WiFi and Bluetooth functionality of the Raspberry Pi 3.

On Pi day (the 14th of March (Get it? 3-14?)) in 2018 the Raspberry Pi 3+ was announced. It included dual band WiFi, upgraded Bluetooth, Gigabit Ethernet and support for a future PoE card. The Ethernet speed was actually 300Mpbs since it still needs to operate on a USB2 bus. By this stage there had been over 9 million Raspberry Pi 3’s sold and 19 million Pi’s in total.

On the 24th of June 2019, the Raspberry Pi 4 was released.

 [image: Raspberry Pi 4]
 Raspberry Pi 4

This realised a true Gigabit Ethernet port and a combination of USB 2 and 3 ports. There was also a change in layout of the board with some ports being moved and it also included dual micro HDMI connectors. As well as this, the RPi 4 is available with a wide range of on-board RAM options. Power was now supplied via a USB C port.

As of the 10th of December 2019 there have been over 30 million Raspberry Pis (combined) sold.

It would be easy to consider the measurement of the success of the Raspberry Pi in the number of computer boards sold. Yet, this would most likely not be the opinion of those visionaries who began the journey to develop the boards. Their stated aim was to re-invigorate the desire of young people to experiment with computers and to have fun doing it. We can thus measure their success by the many projects, blogs and updated school curriculum’s that their efforts have produced.

Raspberry Pi Versions

In the words of the totally awesome Raspberry Pi foundation;

 The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a standard keyboard and mouse. It’s capable of doing everything you’d expect a desktop computer to do, from browsing the internet and playing high-definition video, to making spreadsheets, word-processing, playing games and learning how to program in languages like Scratch and Python.

 [image: The Raspberry Pi 4 Board]
 The Raspberry Pi 4 Board

There are (at time of writing) twelve different models on the market. The A, B, A+, B+, ‘model B 2’, ‘model B 3’, ‘model B 3+’, ‘model B 4’ (which I’m just going to call the B2, B3, B3+ and 4 respectively), ‘model A+’, ‘model A+ 3’ , the Zero and Zero W. A lot of projects will typically use either the the B2, B3, B3+ or the 4 for no reason other than they offer a good range of USB ports (4), 1024 - 4096 MB of RAM, an HMDI video connection (or two) and an Ethernet connection. For all intents and purposes either the B2, B3, B3+ or 4 can be used interchangeably for the projects depending on connectivity requirements as the B3, B3+ and 4 have WiFi and Bluetooth built in. For size limited situations or where lower power is an advantage, the Zero or Zero W is useful, although there is a need to cope with reduced connectivity options (a single micro USB connection) although the Zero W has WiFi and Bluetooth built in. Always aim to use the latest version of the Raspbian operating system (or at least one released on or after the 14th of March 2018). For best results browse the ‘Downloads’ page of raspberrypi.org.

Version Comparison

 [image:]

Raspberry Pi Zero

 [image: Raspberry Pi Zero]
 Raspberry Pi Zero

The Raspberry Pi Zero has been designed to scale to as small a size as practical while retaining the standard 40 pin GPIO header arrangement. It is 65 x 30 x 5mm and weighs 9g. Like the Models A, A+, B and B+ it is powered by a Broadcom BCM2835 ARM11.

To make the Zero as small as possible there have been some significant connectivity changes. There is a mini-HDMI connector with a single Micro-USB connector for peripherals and another dedicated to applying power. The other striking difference is that while the GPIO ports remain and are configured the same, the header pins themselves have not been soldered onto the board. These connector choices mean that the 5mm thickness provides ample opportunities for applications where thickness is an issue.

In May of 2016, a new version of the Pi Zero (ver 1.3) was announced that includes a camera port on one of the narrower edges.

At the end of February 2017 the Pi Zero W (‘W’ for Wireless) was released that added WiFi and Bluetooth connectivity. This is the model that would be recommended for a simple network enabled solution.

 [image: From left to right the Pi Zero v1.2, v1.3 and the Zero W v1.1]
 From left to right the Pi Zero v1.2, v1.3 and the Zero W v1.1

USB Port

It includes 1 x Micro-USB Port

 [image: Raspberry Pi Zero Micro-USB Port]
 Raspberry Pi Zero Micro-USB Port

Video Out

Integrated Videocore 4 graphics GPU capable of playing full 1080p HD video via a mini-HDMI video output connector. HDMI resolutions up to 1080p at 60fps are supported.

 [image: Raspberry Pi Zero mini-HDMI Video Output]
 Raspberry Pi Zero mini-HDMI Video Output

USB Power Input Jack

The board includes a 5V Micro-USB Power Input Jack.

 [image: Raspberry Pi Zero USB Power Input]
 Raspberry Pi Zero USB Power Input

MicroSD Flash Memory Card Slot

The Pi Zero includes a push-push microSD card socket. This is on the ‘topside ‘of the board unlike most of the other more standard models which locate the memory card socket on the ‘underside’.

 [image: Raspberry Pi Zero MicroSD Card Socket]
 Raspberry Pi Zero MicroSD Card Socket

MIPI Camera Interface

Versions of the Pi Zero from 1.3 onwards includes a fine-pitch FPC connector for connecting a camera. This is a different size connector to that used on the A and B, 2, 3 models. so just be aware that you will want a specific cable to ensure a satisfactory fit.

 [image: Raspberry Pi Zero Camera Connector (ver 1.3 onwards)]
 Raspberry Pi Zero Camera Connector (ver 1.3 onwards)

Stereo and Composite Video Output

The Zero does not include a connector for composite video out, but it does have two solder points where composite output could be soldered. There is no audio output available from the Zero other than via the mini HDMI connector, so this is not really a board designed for easy composite or audio output.

40 Pin Header

The Raspberry Pi Zero includes a 40-pin, 2.54mm header expansion slot (Which allows for peripheral connection and expansion boards).

 [image: Raspberry Pi Zero GPIO Connector]
 Raspberry Pi Zero GPIO Connector

Raspberry Pi A+

 [image: Raspberry Pi A+]
 Raspberry Pi A+

The model A+ of the Raspberry Pi is the most modern version of the lower-spec model of the Raspberry Pi line. It replaced the original Model A in November 2014. It is 65 x 56 x 10mm, weighs 23g and is powered by a Broadcom BCM2835 ARM11 700Mhz with 256MB RAM.

USB Port

It includes 1 x USB Port (with a maximum output of 1.2A)

 [image: Raspberry Pi A+ USB Port]
 Raspberry Pi A+ USB Port

Video Out

Integrated Videocore 4 graphics GPU capable of playing full 1080p HD video via a HDMI video output connector. HDMI standards rev 1.3 & 1.4 are supported with 14 HDMI resolutions from 640×350 to 1920×1200 plus various PAL and NTSC standards.

 [image: Raspberry Pi A+ HDMI Video Output]
 Raspberry Pi A+ HDMI Video Output

USB Power Input Jack

The board includes a 5V 2A Micro USB Power Input Jack.

 [image: Raspberry Pi A+ USB Power Input]
 Raspberry Pi A+ USB Power Input

MicroSD Flash Memory Card Slot

The A+ Raspberry Pi includes a push-push microSD card socket. This is on the ‘underside ‘of the board.

 [image: Raspberry Pi A+ MicroSD Card Socket]
 Raspberry Pi A+ MicroSD Card Socket

Stereo and Composite Video Output

The A+ includes a 4-pole (TRRS) type connector that can provide stereo sound if you plug in a standard headphone jack and composite video Output with stereo audio if you use a TRRS adapter.

 [image: Raspberry Pi A+ A/V Connector]
 Raspberry Pi A+ A/V Connector

40 Pin Header

The Raspberry Pi A+ includes a 40-pin, 2.54mm header expansion slot (Which allows for peripheral connection and expansion boards).

 [image: Raspberry Pi A+ GPIO Connector]
 Raspberry Pi A+ GPIO Connector

Raspberry Pi B

 [image: Raspberry Pi B]
 Raspberry Pi B

The model B of the Raspberry Pi is the precursor to the B+ variant of the Raspberry Pi line. It was replaced by the model B+ in July 2014. It is 85mm x 56mm (which does not include protruding connectors), weighs 45g and is powered by a Broadcom BCM2835 ARM11 700Mhz with 512MB RAM on variants supplied after October 2012 (Revision 2) or 256MB prior to that time (Revision 1).

USB Ports

It includes 2 x USB Ports (with a maximum output of 1.2A)

 [image: Raspberry Pi B USB Ports]
 Raspberry Pi B USB Ports

HDMI Video Out

Integrated Videocore 4 graphics GPU capable of playing full 1080p HD video via a HDMI video output connector. HDMI standards rev 1.3 & 1.4 are supported with 14 HDMI resolutions from 640×350 to 1920×1200 plus various PAL and NTSC standards.

 [image: Raspberry Pi B HDMI Video Output]
 Raspberry Pi B HDMI Video Output

Composite Video Out

An RCA Composite video connector capable of supplying either NTSC or PAL video.

 [image: Raspberry Pi B Composite Video Output]
 Raspberry Pi B Composite Video Output

Ethernet Network Connection

There is an integrated 10/100Mb Ethernet Port for network access.

 [image: Raspberry Pi B Ethernet Connector]
 Raspberry Pi B Ethernet Connector

USB Power Input Jack

The board includes a 5V 2A Micro USB Power Input Jack.

 [image: Raspberry Pi B Micro USB Power Input]
 Raspberry Pi B Micro USB Power Input

SD Flash Memory Card Slot

The B Raspberry Pi includes a full size SD/MMC/SDIO memory card slot. This is on the ‘underside ‘of the board.

 [image: Raspberry Pi B SD Card Socket]
 Raspberry Pi B SD Card Socket

When a full size SD card is fitted it protrudes some considerable distance from the edge of the board.

 [image: Raspberry Pi B with SD Card Fitted]
 Raspberry Pi B with SD Card Fitted

There are low profile adapters that will allow microSD cards to be used that avoid this overhang.

Audio Output

The B model includes a 3.5mm stereo jack connector for audio output.

 [image: Raspberry Pi B Audio Connector]
 Raspberry Pi B Audio Connector

26 Pin Header

The Raspberry Pi model B includes a 26-pin, 2.54mm header expansion slot (Which allows for peripheral connection and expansion boards).

 [image: Raspberry Pi B GPIO Connector]
 Raspberry Pi B GPIO Connector

Raspberry Pi B+, 2 B and 3 B

 [image: Raspberry Pi B 2]
 Raspberry Pi B 2

The model B+, 2 B and 3 B all share the same form factor and have been a consistent standard for the layout of connectors since the release of the B+ in July 2014. They 85 x 56 x 17mm, weighs 45g and are powered by Broadcom chipsets of varying speeds, numbers of cores and architectures (see the comparison chart for more details).

USB Ports

They include 4 x USB Ports (with a maximum output of 1.2A)

 [image: Raspberry Pi B 2 USB Ports]
 Raspberry Pi B 2 USB Ports

Video Out

Integrated Videocore 4 graphics GPU capable of playing full 1080p HD video via a HDMI video output connector. HDMI standards rev 1.3 & 1.4 are supported with 14 HDMI resolutions from 640Ã—350 to 1920Ã—1200 plus various PAL and NTSC standards.

 [image: Raspberry Pi B 2 HDMI Video Output]
 Raspberry Pi B 2 HDMI Video Output

Ethernet Network Connection

There is an integrated 10/100Mb Ethernet Port for network access.

 [image: Raspberry Pi B 2 Ethernet Connector]
 Raspberry Pi B 2 Ethernet Connector

USB Power Input Jack

The boards include a 5V 2A Micro USB Power Input Jack.

 [image: Raspberry Pi B 2 USB Power Input]
 Raspberry Pi B 2 USB Power Input

MicroSD Flash Memory Card Slot

There is a push-push microSD card socket. This is on the ‘underside ‘of the board.

 [image: Raspberry Pi B+ MicroSD Card Socket]
 Raspberry Pi B+ MicroSD Card Socket

Stereo and Composite Video Output

The B+, 2 B and 3 B includes a 4-pole (TRRS) type connector that can provide stereo sound if you plug in a standard headphone jack and composite video Output with stereo audio if you use a TRRS adapter.

 [image: Raspberry Pi B+ A/V Connector]
 Raspberry Pi B+ A/V Connector

40 Pin Header

The Raspberry Pi B+, 2 B and 3 B includes a 40-pin, 2.54mm header expansion slot (Which allows for peripheral connection and expansion boards).

 [image: Raspberry Pi B+ GPIO Connector]
 Raspberry Pi B+ GPIO Connector

Raspberry Pi B 4

 [image: Raspberry Pi B 4]
 Raspberry Pi B 4

The model B 4 has the same sized circuit board as the B, B+, 2 and 3 but there are some significant connector changes (types and locations). In terms of capability, this version saw something of a major improvement with Gigabit Ethernet, dual displays and USB 3. It also sees a change in power connector with a USB C connection instead of a Micro USB. This change is mirrored by an increase in the minimum recommended power supply being increased to 3A.
As well, the version of Bluetooth was increased to v5.

When it was first released in mid June 2019, options for 1, 2 and 4GB of memory were available. However, in May 2020, the 1GB version was discontinued and an 8GB version added.

USB Ports

The USB and Ethernet ports have been swapped around. While there are still four ports, two are USB 2 and the other two are USB 3. This enables options for connecting high speed data transfer devices for the first time. The USB 3 ports are easily identified by the blue locator stub.

 [image: Raspberry Pi B 4 USB Ports]
 Raspberry Pi B 4 USB Ports

Video Out

The full sized HDMI connector of the previous versions has been replaced by dual micro-HDMI connectors. This allows the board to output dual displays running at 30 frames per second and 4K resolution. These new connectors are HDMI revision 2.0 compliant.

All of this is made possible via the integrated VideoCore 6 graphics GPU rnning at 500MHz.

 [image: Raspberry Pi B 4 micro-HDMI Video Connectors]
 Raspberry Pi B 4 micro-HDMI Video Connectors

Ethernet Network Connection

As mentioned earlier, this is the first Raspberry Pi board that supports Gigabit Ethernet for network access.

 [image: Raspberry Pi B 4 Ethernet Connector]
 Raspberry Pi B 4 Ethernet Connector

USB-C Power Input Jack

The board includes a 5V, USB-C input jack for power. The use of a power supply capable of delivering 3A (15W) is recommended.

 [image: Raspberry Pi B USB-C Power Input]
 Raspberry Pi B USB-C Power Input

MicroSD Flash Memory Card Slot

There is a push-push microSD card socket. This is on the ‘underside ‘of the board.

 [image: Raspberry Pi B 4 MicroSD Card Socket]
 Raspberry Pi B 4 MicroSD Card Socket

Stereo and Composite Video Output

The B 4 included the same 4-pole (TRRS) type connector as the B+, 2 B and 3 B . This can provide stereo sound if you plug in a standard headphone jack and composite video output with stereo audio if you use a TRRS adapter.

 [image: Raspberry Pi B 4 A/V Connector]
 Raspberry Pi B 4 A/V Connector

40 Pin Header

The Raspberry Pi B 4 still utilises the 40-pin, 2.54mm header for peripheral connection and expansion boards. But that header now includes an additional 4× UART, 4× SPI, and 4× I2C connectors.

SD Card

The Raspberry Pi needs to store the Operating System and working files on a MicroSD card (actually a MicroSD card for the A+, B+ B2, B3 and Zero models and a full size SD card if you’re using an A or B model).

 [image: MicroSD Card]
 MicroSD Card

The MicroSD card receptacle is on the rear of the board and is of a ‘push-push’ type which means that you push the card in to insert it and then to remove it, give it a small push and it will spring out.

 [image: MicroSD Card Positioning]
 MicroSD Card Positioning

This is the equivalent of a hard drive for a regular computer, but we’re going for a minimal effect. We will want to use a minimum of an 8GB card (smaller is possible, but 8 is recommended). Also try to select a higher speed card if possible (class 10 or similar) as it is anticipated that this should speed things up a bit.

Keyboard / Mouse

While we will be making the effort to access our system via a remote computer, we will need a keyboard and a mouse for the initial set-up. Because the B+, B2 and B3 models of the Pi have 4 x USB ports, there is plenty of space for us to connect wired USB devices.

 [image: Wired Keyboard and Mouse]
 Wired Keyboard and Mouse

A wireless combination would most likely be recognised without any problem and would only take up a single USB port, but if we will build towards a remote capacity for using the Pi (using it headless, without a keyboard / mouse / display), the nicety of a wireless connection is not strictly required.

 [image: Wireless Keyboard and Mouse]
 Wireless Keyboard and Mouse

Video

The Raspberry Pi comes with an HDMI port ready to go which means that any monitor or TV with an HDMI connection should be able to connect easily.

 [image: HDMI Connected Monitor]
 HDMI Connected Monitor

Because this is kind of a hobby thing you might want to consider utilising an older computer monitor with a DVI or 15 pin D connector. If you want to go this way you will need an adapter to convert the connection.

 [image: VGA to HDMI Adapter]
 VGA to HDMI Adapter

Network

The B+, B2 and B3 models of the Raspberry Pi have a standard RJ45 network connector on the board ready to go. In a domestic installation this is most likely easiest to connect into a home ADSL modem or router.

 [image: HDMI Connected Monitor]
 HDMI Connected Monitor

This ‘hard-wired’ connection is great for a simple start, but we will work through using a wireless solution later in the book.

Power supply

The Pi can be powered up in a few ways. The simplest is to use the micro USB port to connect from a standard USB charging cable. You probably have a few around the house already for phones or tablets.

 [image: Power Supply Connection]
 Power Supply Connection

It is worth knowing that depending on what use we wish to put our Raspberry Pi to we might want to pay a certain amount of attention to the amount of current that our power supply can supply. The A+, B+ and Zero models will function adequately with a 700mA supply, but with the version 2 and 3 models of the Pi, or if we want to look towards using multiple wireless devices or supplying sensors that demand increased power, we should consider a supply that is capable of an output up to 2.5A.

Cases

We should get ourselves a simple case to sit the Pi out of the dust and detritus that’s floating about. There are a wide range of options to select from. These range from cheap but effective to more costly than the Pi itself (not hard) and looking fancy.

You could use a simple plastic case that can be brought for a few dollars;

 [image: Simple ABS plastic case]
 Simple ABS plastic case

At the high end of the market is a high quality aviation grade anodized aluminium case from ebay seller sauliakasas This will cost you more than the Pi itself, but it is a beautiful case;

 [image: High quality aviation grade anodized aluminium case]
 High quality aviation grade anodized aluminium case

Or nylon stand-offs to create a simple but flexible stack o’ Pi;

 [image: Multi Pi case using Nylon stand-offs]
 Multi Pi case using Nylon stand-offs

You could look at the stylish Flirc Raspberry Pi Case which is very popular with media centre distributions;

 [image: Flirc media centre case]
 Flirc media centre case

For a sense of style, a very practical design and a warm glow from knowing that you’re supporting a worthy cause, you could go no further than the official Raspberry Pi case that includes removable side-plates and loads of different types of access. All for the paltry sum of about $9.

 [image: Official Raspberry Pi case]
 Official Raspberry Pi case

Likewise for the Pi Zero, the official case is very practical and includes three different lids to accommodate a solid finish or ones with cut-outs to suit GPIO pins or a camera. It even includes a short camera cable to suit.

 [image: Official Raspberry Pi Zero case]
 Official Raspberry Pi Zero case

Operating Systems

An operating system is software that manages computer hardware and software resources for computer applications. For example Microsoft Windows could be the operating system that will allow the browser application Firefox to run on our desktop computer.

Variations on the Linux operating system are the most popular on our Raspberry Pi. We will examine several different Linux distributions that are designed to work in different ways.

Linux is a computer operating system that is can be distributed as free and open-source software. The defining component of Linux is the Linux kernel, an operating system kernel first released on 5 October 1991 by Linus Torvalds.

Linux was originally developed as a free operating system for Intel x86-based personal computers. It has since been made available to a huge range of computer hardware platforms and is a leading operating system on servers, mainframe computers and supercomputers. Linux also runs on embedded systems, which are devices whose operating system is typically built into the firmware and is highly tailored to the system; this includes mobile phones, tablet computers, network routers, facility automation controls, televisions and video game consoles. Android, the most widely used operating system for tablets and smart-phones, is built on top of the Linux kernel. In our case we will be using a version of Linux that is assembled to run on the ARM CPU architecture used in the Raspberry Pi.

The development of Linux is one of the most prominent examples of free and open-source software collaboration. Typically, Linux is packaged in a form known as a Linux distribution, for both desktop and server use. Popular mainstream Linux distributions include Debian, Ubuntu and the commercial Red Hat Enterprise Linux. Linux distributions include the Linux kernel, supporting utilities and libraries and usually a large amount of application software to carry out the distribution’s intended use.

A distribution intended to run as a server may omit all graphical desktop environments from the standard install, and instead include other software to set up and operate a solution stack such as LAMP (Linux, Apache, MySQL and PHP). Because Linux is freely re-distributable, anyone may create a distribution for any intended use.

Sourcing and Setting Up

On our desktop machine we are going to download the image (*.img) files for each distribution and write it onto a MicroSD card. This will then be installed into the Raspberry Pi.

Downloading

We should always try to download our image files from the authoritative source and we can normally do so in a couple of different ways. We can download via bit torrent or directly as a zip file, but whatever method is used we should eventually be left with an ‘img’ file for our distribution.

To ensure that the projects we work on can be used with the full range of Raspberry Pi models (especially the B2) we need to make sure that the versions of the image files we download are from 2015-01-13 or later. Earlier downloads will not support the more modern CPU of the B2.

Writing the Operating System image to the SD Card

Once we have an image file we need to get it onto our SD card.

We will work through an example using Windows 7, but for guidance on other options (Linux or Mac OS) raspberrypi.org has some great descriptions of the processes here.

We will use the Open Source utility Win32DiskImager which is available from sourceforge. This program allows us to install our disk image onto our SD card. Download and install Win32DiskImager.

You will need an SD card reader capable of accepting your MicroSD card (you may require an adapter or have a reader built into your desktop or laptop). Place the card in the reader and you should see a drive letter appear in Windows Explorer that corresponds with the SD card.

 [image: Removable Drive]
 Removable Drive

 In the screenshot above the removable drive has the letter ‘D’. The letter that appears on your system may be different. It is important that you use the correct drive letter for YOUR system.

Start the Win32 Disk Imager program.

 [image: Win32 Disk Imager]
 Win32 Disk Imager

Select the correct drive letter for your SD card (make sure it’s the right one) and the disk image file that you downloaded. Then select ‘Write’ and the disk imager will write the image to the SD card. It can vary a little, but it should only take about 3-4 minutes with a class 10 SD card.

 [image: Win32 Disk Imager]
 Win32 Disk Imager

Once the process is finished exit the disk imager and eject the card from the computer and we’re done.

Welcome to Raspbian (Debian Wheezy / Jessie)

The Raspbian Linux distribution is based on Debian Linux. There have been two different editions published. ‘Wheezy’ and ‘Jessie’. Debian is a widely used Linux distribution that allows Raspbian users to leverage a huge quantity of community based experience in using and configuring software. The Wheezy edition is the earlier of the two and was been the stock edition from the inception of the Raspberry Pi till the end of 2015. From that point Jessie has become the default distribution used. Be aware that they can operate differently when being used from the command line. Instructions for both are included in the book, but Jessie is the default.

Downloading

The best place to source the latest version of the Raspbian Operating System is to go to the raspberrypi.org page; http://www.raspberrypi.org/downloads/.

 [image: Raspbian Download]
 Raspbian Download

You can download via bit torrent or directly as a zip file, but whatever the method you should eventually be left with an ‘img’ file for Raspbian.

To ensure that the projects we work on can be used with either the B+ or B2 models we need to make sure that the version of Raspbian we download is from 2015-01-13 or later. Earlier downloads will not support the more modern CPU of the B2.

 [image: Image File]
 Image File

Installing Raspbian

Make sure that you’ve completed the previous section on downloading and loading the image file and have a Raspbian disk image written to a MicroSD card. Insert the card into the slot on the Raspberry Pi and turn on the power.

You will see a range of information scrolling up the screen before eventually being presented with one of three screens;

 	If you are using Wheezy you should be presented with the Raspberry Pi Software Configuration Tool.

 	If you are using the full Jessie distribution we will go straight to a GUI desktop

 	If you have installed the ‘lite’ Jessie edition you will go to a login prompt.

The ‘Jessie Lite’ Command Line interface

If you have installed Jessie Lite, when you first boot up the process should automatically re-size the root file system to make full use of the space available on your SD card. If this isn’t the case, no need to worry as the facility to do it can be accessed from the Raspberry Pi configuration tool.

Once the reboot is complete (if it occurs) you will be presented with the console prompt to log on;

Raspbian GNU/Linux 7 raspberrypi tty1

raspberrypi login:

The default username and password is:

Username: pi

Password: raspberry

Enter the username and password.

Congratulations, you have a working Raspberry Pi and are ready to start getting into the thick of things!

Firstly we’ll do a bit of house keeping.

Raspberry Pi Software Configuration Tool

As mentioned earlier, if we weren’t prompted to use the Raspberry Pi Software Configuration Tool we should run it now to enable full use of the storage on the SD card and changes in the locale and keyboard configuration as well as enabling ssh (more on that later). This can be done by running the following command;

sudo raspi-config

 [image: Raspberry Pi Software Configuration Tool]
 Raspberry Pi Software Configuration Tool

Use the up and down arrow keys to move the highlighted section to the selection you want to make then press tab to highlight the <Select> option (or <Finish> if you’ve finished).

If you didn’t see the file system expanded on the SD card on first boot, select ‘7 Advanced Options’;

 [image: Advanced Options]
 Advanced Options

Then ‘A2 Expand Filesystem’;

 [image: Expand Filesystem]
 Expand Filesystem

Once selected there will be a dialogue box that will tell us that the changes will be enabled on the next boot.

 [image: Reboot Time]
 Reboot Time

Once this has been completed we can continue to configure other options safe in the knowledge that when we reboot the Pi we will have the use of the full capacity of the SD card.

While we are here it would probably be a good idea to change the settings for our operating system to reflect our location for the purposes of having the correct time, language and WiFi regulations. These can all be located via selection ‘4 Localisation Options’ on the main menu.

 [image: Select Localisation Options]
 Select Localisation Options

Select this and work through any changes that are required for your installation based on geography.

 [image: Localisation Options]
 Localisation Options

The last main menu item that is worth considering is to enable remote access via ssh. This will allow us to access the Raspberry Pi on our local network via a desktop computer or laptop, removing the need to have a keyboard and monitor connected directly to the Pi. More on the options available here are in the Remote Access section. To enable this select ‘5 Interfacing Options’ from the main menu.

 [image: Interfacing Options]
 Interfacing Options

From here we select ‘P2 SSH’

 [image: Enabling ssh]
 Enabling ssh

ssh used to be enabled by default, but doing so presents a potential security concern, so it has been disabled by default as of the end of 2016.

Once you exit out of the raspi-config menu system, if you have made a few changes, there is a probability that you will be asked if you want to re-boot the Pi. That’s a pretty good idea.

Once the reboot is complete you will be presented with the console prompt to log on again;

Software Updates

After configuring our Pi we’ll want to make sure that we have the latest software for our system. This is a useful thing to do as it allows any additional improvements to the software we will be using to be enhanced or security of the operating system to be improved. This is probably a good time to mention that we will need to have an Internet connection available.

Type in the following line which will find the latest lists of available software;

sudo apt-get update

You should see a list of text scroll up while the Pi is downloading the latest information.

Then we want to upgrade our software to latest versions from those lists using;

sudo apt-get upgrade

The Pi should tell you the lists of packages that it has identified as suitable for an upgrade and along with the amount of data that will be downloaded and the space that will be used on the system. It will then ask you to confirm that you want to go ahead. Tell it ‘Y’ and we will see another list of details as it heads off downloading software and installing it.

(The sudo portion of the command makes sure that you will have the permission required to run the apt-get process.

GUI Desktop

If you have installed Raspbian Jessie with Pixel, when you first boot up the software should automatically re-size the root file system to make full use of the space available on your SD card. It will show a short screen telling you that it has done it and that it is rebooting for the changes to take effect. Once the reboot is complete you should find yourself successfully logged into the ‘Pixel’ graphical desktop.

 [image: Raspbian Desktop]
 Raspbian Desktop

Running a GUI environment is a burden to the computer. It takes a certain degree of computing effort to maintain the graphical interface, so as a matter of course we should only use a desktop GUI when absolutely necessary.

Welcome to OpenELEC

OpenELEC is an operating system built around Kodi. Kodi is a free and open source (GPL) software media center for playing videos, music, pictures and games. It was formerly known as XBMC and is widely regarded as a leading project in the media player world.

 [image: OpenELEC]
 OpenELEC

OpenELEC operates as a Home Theatre and, is designed to be as lightweight as possible in terms of size, complexity and ease of use. Because of it’s simplicity, it is capable of operating on platforms such as the Raspberry Pi and providing excellent value for money. This also means that we can install our media centre in a very small space and it can be totally silent.

Downloading

The best place to source the latest version of the OpenELEC Operating System is to go to the raspberrypi.tv page; http://openelec.tv/get-openelec. There are a range of different types of computers that the operating system is configured for and part way down the page we will come across seperate download options for either the classic Raspberry Pi models (A, A+, B and B+) or the newer Raspberry Pi 2 Model B.

 [image: OpenELEC Download]
 OpenELEC Download

We can also select between a stable version of the software (for the more conservative amongst us) or the latest ‘Beta’ version which may have more cutting edge features, but may not have been tested as fully. Either way it’s a safe bet since the download is free :-). There is also the option to download an ‘Update file’ or an ‘image’. The ‘Update file’ is available to allow people to manually update existing installations. The ‘image’ file is for new instals. Since this will be the first time that we’re installing the software we will want to go for the ‘image’ file.

 [image: OpenELEC Download Options]
 OpenELEC Download Options

the file we download is compressed (zipped) so we will want to use our favourite unzipping program to extract the contents and then we should be left with our ‘img’ file.

 [image: Image File]
 Image File

Installing OpenELEC

Make sure that you’ve completed the previous section on downloading and loading the image file and have a OpenELEC disk image written to a MicroSD card. Insert the card into the slot on the Raspberry Pi and turn on the power.

The system will automatically resize the amount of storage space that it uses on the MicroSD card to use the available capacity and then it will reboot.

Once it reboots we will be presented with a series of screens that allow us to configure the install ready for use.

 	Firstly we select the language

 	Then the hostname which is the name that the device will identify itself with on the network when configuring things like file sharing services.

 	Then it will let us know what networks the Pi is connected to so that we can select one for streaming content like YouTube and for updating the operating system.

 	Then we are asked what sharing and remote access options we would like to use. SSH is probably unnecessary for new users, but Samba may be useful for those who want to share their content from their OpenELEC box onto their home network

 	Finally we have a thank you page that will lead us to the interface itself.

That’s it! You’re installed and ready to start exploring OpenELEC and enjoying one of the best media center applications available.

To make a start using OpenELEC, you can follow your nose and simply see what happens with the various set up options availabel or even (heaven forbid) read the extensive help pages available on the Kodi Wiki.

 [image: Kodi Wiki]
 Kodi Wiki

Welcome to Ubuntu

Ubuntu is one of, if not the, largest deployed Linux based desktop operating systems in the world. Linux is at the heart of Ubuntu and makes it possible to create secure, powerful and versatile operating systems.

Ubuntu is available in a number of different flavours, each coming with its own desktop environment. Ubuntu MATE takes the Ubuntu base operating system and adds the MATE Desktop. The MATE Desktop Environment is the continuation of another desktop called GNOME 2. It includes a file manager which can connect you to your local and networked files, a text editor, calculator, archive manager, image viewer, document viewer, system monitor and terminal. All of which are highly customisable and managed via a control centre.

But wait… There’s more…

While the MATE Desktop provides the essential user interfaces to control and use a computer, Ubuntu MATE adds a collection of additional applications to turn your computer into a truly powerful workstation. These include The Firefox web browser, the Thunderbird email client, the LibreOffice productivity suite that is Microsoft Office compatible, Rhythmbox for playing and organising music, Shotwell for organising your digital photos and VLC for playing multimedia. All of these applications are Open Source and freely available for you to use.

 [image: Ubuntu MATE]
 Ubuntu MATE

There is a small catch….

The price of being able to run a desktop operating system that can provide access to the same set of applications and a similar experience to a far larger and more expensive computer is that we can’t use the slightly older Raspberry Pi 1 machines (the A, A+, B and B+). Only the Raspberry Pi 2 with its ARMv7-based BCM2709 processor is able to run the software. The good news is that it does a pretty good job!

It’s a really good idea to use a Class 10 MicroSD card that will provide a much faster access to the data and thus improve the user experience.

 [image: MicroSD Card]
 MicroSD Card

We will also want to use a card that is 8GB or larger so that we have some space for the operating system to store a little bit of information. Technically it will survive on 4GB, but don’t cut it short if you don’t need to.

Downloading

The best place to source the latest version of the Ubuntu MATE Operating System is to go to the ubuntu-mate.org page; https://ubuntu-mate.org/raspberry-pi/. There are a range of different download locations and the option to use Bit Torrent (which is a useful option to reduce stress on the servers kindly provided by those who support the project).

 [image: Ubuntu MATE Download]
 Ubuntu MATE Download

The file we download is compressed (zipped) so we will want to use our favourite unzipping program to extract the contents and then we should be left with our ‘img’ file.

 [image: Image File]
 Image File

Installing Ubuntu

Make sure that you’ve completed the previous section on downloading and loading the image file and have a Ubuntu MATE disk image written to a MicroSD card. Insert the card into the slot on the Raspberry Pi 2 and turn on the power.

Initially there will be some scrolling text with a slight pause for 15 seconds or so before a splash screen appears;

 [image: Splash Screen]
 Splash Screen

This will stay on the screen for about 20 seconds until we are presented with a screen where we can select the language we will use.

Then we select our location which will determine the time on our system as well as the default locale settings;

 [image: Where are you?]
 Where are you?

Then we select the keyboard layout. The system should be clever enough at this stage to know from your language and locale settings to make an educated guess, but because there are a wide range of keyboard options irrespective of your location or language, we get to choose :-).

 [image: Keyboard layout]
 Keyboard layout

Then we get to enter our user details. The computer will kindly let you know how good it considers your password to be (in other words, the more difficult to guess, the better it thinks it will be).

 [image: Who are you?]
 Who are you?

Once our user is set up the computer will configure itself based on our selections and apply the changes it needs to make to the installation. This will take something like 8 minutes and then we’re up and running!

 [image: Ubuntu MATE]
 Ubuntu MATE

Power Up the Pi

Once we have been able to setup up the Raspberry for use, we could well find ourselves thinking ‘How can I do xxxxx?’. The following is a list of interesting things we can do to extend our Pi a little. All are written on the assumption that they are being done with the Raspbian operating system installed. There are some variations depending whether we are using the ‘Wheezy’ or ‘Jessie’ distribution of Raspbian. If you’re trying to decide which to download and use, go for Jessie. It’s the later and therefore the best supported version. There is a slight disadvantage in that there are fewer tutorials written up for it online, but that will change over time.

Static IP Address

Enabling remote access is a really useful thing. To do so we will want to assign our Raspberry Pi a static IP address.

An Internet Protocol address (IP address) is a numerical label assigned to each device (e.g., computer, printer) participating in a computer network that uses the Internet Protocol for communication.

There is a strong likelihood that our Raspberry Pi already has an IP address and it should appear a few lines above the ‘login’ prompt when you first boot up;

My IP address is 10.1.1.25

Raspbian GNU/Linux 7 raspberrypi tty1

raspberrypi login:

The My IP address... part may appear just above or around 15 lines above the login line, depending on whether we’re using the ‘Wheezy’ or ‘Jessie’ version of Debian. In this example the IP address 10.1.1.25 belongs to the Raspberry Pi.

This address will probably be a ‘dynamic’ IP address and could change each time the Pi is booted. For the purposes of using the Raspberry Pi as a web platform a database or with remote access we need to set a fixed IP address.

This description of setting up a static IP address makes the assumption that we have a device running on the network that is assigning IP addresses as required. This sounds like kind of a big deal, but in fact it is a very common service to be running on even a small home network and it will be running on the ADSL modem or similar. This function is run as a service called DHCP (Dynamic Host Configuration Protocol). You will need to have access to this device for the purposes of knowing what the allowable ranges are for a static IP address. The most likely place to find a DHCP service running in a normal domestic situation would be an an ADSL modem or router.

The Netmask

A common feature for home modems and routers that run DHCP devices is to allow the user to set up the range of allowable network addresses that can exist on the network. At a higher level you should be able to set a ‘netmask’ which will do the job for you. A netmask looks similar to an IP address, but it allows you to specify the range of addresses for ‘hosts’ (in our case computers) that can be connected to the network.

A very common netmask is 255.255.255.0 which means that the network in question can have any one of the combinations where the final number in the IP address varies. In other words with a netmask of 255.255.255.0 the IP addresses available for devices on the network 10.1.1.x range from 10.1.1.0 to 10.1.1.255 or in other words any one of 256 unique addresses.

CIDR Notation

An alternative to specifying a netmask in the format of ‘255.255.255.0’ is to use a system called Classless Inter-Domain Routing, or CIDR. The concept is that you can add a specification in the IP address itself that indicates the number of significant bits that make up the netmask.

For example, we could designate the IP address 10.1.1.17 as associated with the netmask 255.255.255.0 by using the CIDR notation of 10.1.1.17/24. This means that the first 24 bits of the IP address given are considered significant for the network routing.

Using CIDR notation allows us to do some very clever things to organise our network, but at the same time it can have the effect of freaking people out by introducing a pretty complex topic when all they want to do is get their network going :-). So for the sake of this explanation we can assume that if we wanted to specify an IP address and a netmask, it could be accomplished by either specifying each seperatly (IP address = 10.1.1.17 and netmask = 255.255.255.0) or in CIDR format (10.1.1.1/24)

Distinguish Dynamic from Static

The other service that our DHCP server will allow is the setting of a range of addresses that can be assigned dynamically. In other words we will be able to declare that the range from 10.1.1.20 to 10.1.1.255 can be dynamically assigned which leaves 10.1.1.0 to 10.1.1.19 which can be set as static addresses.

You might also be able to reserve an IP address on your modem / router. To do this you will need to know what the MAC (or hardware address) of the Raspberry Pi is. To find the hardware address on the Raspberry Pi type;

ifconfig -a

(For more information on the ifconfig command check out the Linux commands section)

This will produce an output which will look a little like the following;

eth0 Link encap:Ethernet HWaddr 00:08:C7:1B:8C:02
 inet addr:10.1.1.26 Bcast:10.1.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:53 errors:0 dropped:0 overruns:0 frame:0
 TX packets:44 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:4911 (4.7 KiB) TX bytes:4792 (4.6 KiB)

The figures 00:08:C7:1B:8C:02 are the Hardware or MAC address.

Because there are a huge range of different DHCP servers being run on different home networks, I will have to leave you with those descriptions and the advice to consult your devices manual to help you find an IP address that can be assigned as a static address. Make sure that the assigned number has not already been taken by another device. In a perfect World we would hold a list of any devices which have static addresses so that our Pi’s address does not clash with any other device.

 Be aware that if you don’t have a section of your IP address range set aside for static addresses you run the risk of having the DHCP service unwittingly assign a device that wants a dynamic address with the same value that you have already assigned for your Raspberry Pi. Such a conflict is not a good thing.

For the sake of the upcoming projects we will assume that the address 10.1.1.17 is available.

Default Gateway

Before we start configuring we will need to find out what the default gateway is for our network. A default gateway is an IP address that a device (typically a router) will use when it is asked to go to an address that it doesn’t immediately recognise. This would most commonly occur when a computer on a home network wants to contact a computer on the Internet. The default gateway is therefore typically the address of the modem / router on your home network.

We can check to find out what our default gateway is from Windows by going to the command prompt (Start > Accessories > Command Prompt) and typing;

ipconfig

This should present a range of information including a section that looks a little like the following;

Ethernet adapter Local Area Connection:

 IPv4 Address. : 10.1.1.15
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.1.1.1

The default router gateway is therefore ‘10.1.1.1’.

For Wheezy Edit the interfaces file

 The following section is for setting the static address for the Pi if we’re running Wheezy. An explanation for changes required if running Jessie is in the next section.

On the Raspberry Pi at the command line we are going to start up a text editor and edit the file that holds the configuration details for the network connections.

The file is /etc/network/interfaces. That is to say it’s the interfaces file which is in the network directory which is in the etc directory which is in the root ((/) directory.

To edit this file we are going to type in the following command;

sudo nano /etc/network/interfaces

 The sudo portion of the command makes sure that you will have the permission required to edit the interfaces file, nano is the name of the text editor and /etc/network/interfaces is telling the computer which file to edit.

The nano file editor will start and show the contents of the interfaces file which should look a little like the following;

auto lo
iface lo inet loopback

iface eth0 inet manual

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

We are going to change the line that tells the network interface to use eth0 (iface eth0 inet manual) to use our static address that we decided on earlier (10.1.1.17) along with information on the netmask to use and the default gateway. So replace the line…

iface eth0 inet manual

… with the following lines (and don’t forget to put YOUR address, netmask and gateway in the file, not necessarily the ones below);

iface eth0 inet static
address 10.1.1.17
netmask 255.255.255.0
gateway 10.1.1.1

Once you have finished press ctrl-x to tell nano you’re finished and it will prompt you to confirm saving the file. Check your changes over and then press ‘y’ to save the file (if it’s correct). It will then prompt you for the file-name to save the file as. Press return to accept the default of the current name and you’re done!

To allow the changes to become operative we can type in;

sudo reboot

This will reboot the Raspberry Pi and we should see the (by now familiar) scroll of text and when it finishes rebooting you should see;

My IP address is 10.1.1.17

Raspbian GNU/Linux 7 raspberrypi tty1

raspberrypi login:

Which tells us that the changes have been successful (bearing in mind that the IP address above should be the one you have chosen, not necessarily the one we have been using as an example).

For Jessie Edit the dhcpcd.conf file

 The following section is for setting the static address for the Pi if we’re running Jessie. An explanation for changes required if running Wheezy is in the previous section.

On the Raspberry Pi at the command line we are going to start up a text editor and edit the file that holds the configuration details for the network connections.

The file is /etc/dhcpcd.conf. That is to say it’s the dhcpcd.conf file which is in the etc directory which is in the root (/) directory.

To edit this file we are going to type in the following command;

sudo nano /etc/dhcpcd.conf

 The sudo portion of the command makes sure that you will have the permission required to edit the dhcpcd.conf file, nano is the name of the text editor and /etc/dhcpcd.conf is telling the computer which file to edit.

The nano file editor will start and show the contents of the dhcpcd.conf file which should look a little like the following;

 A sample configuration for dhcpcd.
See dhcpcd.conf(5) for details.

Allow users of this group to interact with dhcpcd via the control socket.
#controlgroup wheel

Inform the DHCP server of our hostname for DDNS.
hostname

Use the hardware address of the interface for the Client ID.
clientid
or
Use the same DUID + IAID as set in DHCPv6 for DHCPv4 ClientID per RFC4361.
#duid

Persist interface configuration when dhcpcd exits.
persistent

Rapid commit support.
Safe to enable by default because it requires the equivalent option set
on the server to actually work.
option rapid_commit

A list of options to request from the DHCP server.
option domain_name_servers, domain_name, domain_search, host_name
option classless_static_routes
Most distributions have NTP support.
option ntp_servers
Respect the network MTU.
Some interface drivers reset when changing the MTU so disabled by default.
#option interface_mtu

A ServerID is required by RFC2131.
require dhcp_server_identifier

Generate Stable Private IPv6 Addresses instead of hardware based ones
slaac private

A hook script is provided to lookup the hostname if not set by the DHCP
server, but it should not be run by default.
nohook lookup-hostname

We are going to add the information that tells the network interface to use eth0 at our static address that we decided on earlier (10.1.1.17) along with information on the netmask to use (in CIDR format) and the default gateway of our router. To do this we will add the following lines to the end of the information in the dhcpcd.conf file;

Custom static IP address for eth0.
interface eth0
static ip_address=10.1.1.17/24
static routers=10.1.1.1
static domain_name_servers=10.1.1.1

Here we can see the IP address and netmask (static ip_address=10.1.1.17/24), the gateway address for our router (static routers=10.1.1.1) and the address where the computer can also find DNS information (static domain_name_servers=10.1.1.1).

 In a simplistic explanation, the Domain Name System (DNS) makes sure that the Internet can find resources easily based on a naming convention.

Once you have finished press ctrl-x to tell nano you’re finished and it will prompt you to confirm saving the file. Check your changes over and then press ‘y’ to save the file (if it’s correct). It will then prompt you for the file-name to save the file as. Press return to accept the default of the current name and you’re done!

To allow the changes to become operative we can type in;

sudo reboot

This will reboot the Raspberry Pi and we should see the (by now familiar) scroll of text and when it finishes rebooting you should see;

My IP address is 10.1.1.17

Raspbian GNU/Linux 7 raspberrypi tty1

raspberrypi login:

Which tells us that the changes have been successful (bearing in mind that the IP address above should be the one you have chosen, not necessarily the one we have been using as an example).

Remote access

To allow us to work on our Raspberry Pi from our normal desktop we can give ourselves the ability to connect to the Pi from another computer. The will mean that we don’t need to have the keyboard / mouse or video connected to the Raspberry Pi and we can physically place it somewhere else and still work on it without problem. This process is called ‘remotely accessing’ our computer .

To do this we need to install an application on our windows desktop which will act as a ‘client’ in the process and have software on our Raspberry Pi to act as the ‘server’. There are a couple of different ways that we can accomplish this task. One way is to give us access to the Pi desktop GUI from a remote computer (so we can use the Raspberry Pi desktop in the same way that we could when working connected with mouse, keyboard and monitor) using a program called RealVNC and the other way is to get access to the command line (where all we do is type in our commands (like when we first log into the Pi using Jessie Lite)) via what’s called SSH access.

 You don’t need to install both of these methods of remote access (or either if you want to keep using the Pi from its own keyboard, mouse and screen) but using one or the other would be a neat thing to allow you to put the Raspberry Pi in a location completely separate from your immediate location.

Which you choose to use depends on how you feel about using the device. If you’re more comfortable with a GUI environment, then RealVNC will be the solution. This has the disadvantage of using more computing resources on the Raspberry Pi so if you are considering working it fairly hard, then SSH access may be a better option.

Remote access via RealVNC

 Remember, this is if you want to access a desktop GUI on the Raspberry Pi remotely. If your Pi isn’t running a GUI desktop then SSH access is what you want to do.

The software we will install is called RealVNC. It is free for non-commercial use (on up to 5 remote computers) and implements a service called Virtual Network Computing. The description here is for a local network connection, not via a cloud service. We need to set up the VNC Viewer app on the client (the Windows desktop machine), but the server (the Raspberry Pi) already has it installed (unless you are using a pre-2017 version of Raspbian).

 The Client-Server model

 The ‘client-server’ model of computing is a very common term. It refers to a distribution of tasks or workload between computers to allow an application or service to operate. In this case the provider of the service (the server) is the Raspberry Pi and the user of the service (the client) is the Windows machine.

Setting up the Client (Windows)

To install RealVNC for windows, go to the RealVNC downloads page and select the appropriate version for your operating system.

The installation process is really simple and will leave you with a viewer window ready to go.

 [image: RealVNC Set-up]
 RealVNC Set-up

At this point we will work on setting up the Raspberry Pi!

Setting up the Server (Raspberry Pi)

VNC Connect is included with Raspbian by default but you still have to enable it.

From the desktop GUI select ‘Menu’ > ‘Preferences’ > ‘Raspberry Pi Configuration’;

 [image: RealVNC Icon]
 RealVNC Icon

Then select the ‘Interfaces’ tab and make sure VNC is set to Enabled before clicking on ‘OK’;

 [image: RealVNC Icon]
 RealVNC Icon

You can also enable remote access via the command line buy running sudo raspi-config. Then select ‘5 Interfacing Options’ from the main menu.

 [image: Interfacing Options]
 Interfacing Options

From here we select ‘P3 VNC’

 [image: Enabling VNC]
 Enabling VNC

Either way that you enable it, VNC will now start automatically every-time the Pi starts.

 Be Warned. I’m not going to make any claims about the security of this type of connection. We’re only using it for the convenience and because we should arguably be more interested in learning about using computers on a home network than being worried about whether or not we will be ‘hacked’. Make no expectations of security for this connection or the data on the Raspberry Pi, but don’t let that stop you using it.

At this point we will have a RealVNC icon on our task bar.

 [image: RealVNC Icon]
 RealVNC Icon

If we click on the icon it will show us the details required for the connection and in particular, the IP address of the Pi (10.1.1.30 in this example, but your address will most likely be quite different).

 [image: VNC Server Details]
 VNC Server Details

Connecting with RealVNC

Once you have your Pi’s IP address, enter it in the VNC Viewers window and press return.

A dialogue box will start up advising that the connection process is under way.

 [image: VNC Warning]
 VNC Warning

You will receive a warning saying that the computer hasn’t seen this server before and are we sure this is correct?

 [image: VNC Warning]
 VNC Warning

Assuming that it is, click continue.

 [image: VNC Warning]
 VNC Warning

To authenticate the connection, enter your username and password (here the default user ‘pi’ is being used (the default password is ‘raspberry’)). Click on ‘OK and the connection will be made.

A window will open showing the graphical desktop.

 [image: Desktop GUI]
 Desktop GUI

Take a moment to interact with the connection and confirm that everything is working as anticipated.

Remote access via SSH

Secure Shell (SSH) is a network protocol that allows secure data communication, remote command-line login, remote command execution, and other secure network services between two networked computers. It connects, via a secure channel over an insecure network, a server and a client running SSH server and SSH client programs, respectively (there’s the client-server model again).

In our case the SSH program on the server is running sshd and on the Windows machine we will use a program called ‘PuTTY’.

Setting up the Server (Raspberry Pi)

SSH is already installed on Raspbian, but it needs to be enabled before it can be used.

To check that it is there and working type the following from the command line;

/etc/init.d/ssh status

The Pi should respond with the message that the program sshd is active (running).

pi@raspberrypi:~ $ /etc/init.d/ssh status
● ssh.service - OpenBSD Secure Shell server
 Loaded: loaded (/lib/systemd/system/ssh.service; enabled)
 Active: active (running) since Tue 2017-04-25 03:30:16 UTC; 1h 28min ago
 Main PID: 2135 (sshd)
 CGroup: /system.slice/ssh.service
 └─2135 /usr/sbin/sshd -D

If it isn’t, run the following command;

sudo raspi-config

 [image: Raspberry Pi Software Configuration Tool]
 Raspberry Pi Software Configuration Tool

Use the up and down arrow keys to move the highlighted section to the selection you want to make then press tab to highlight the <Select> option (or <Finish> if you’ve finished).

To enable SSH select ‘5 Interfacing Options’ from the main menu.

 [image: Interfacing Options]
 Interfacing Options

From here we select ‘P2 SSH’

 [image: Enabling ssh]
 Enabling ssh

And we should be done!

Setting up the Client (Windows)

The client software we will use is called ‘Putty’. It is open source and available for download from here.

On the download page there are a range of options available for use. The best option for us is most likely under the ‘For Windows on Intel x86’ heading and we should just download the ‘putty.exe’ program.

Save the file somewhere logical as it is a stand-alone program that will run when you double click on it (you can make life easier by placing a short-cut on the desktop).

Once we have the file saved, run the program by double clicking on it and it will start without problem.

The first thing we will set-up for our connection is the way that the program recognises how the mouse works. In the ‘Window’ Category on the left of the PuTTY Configuration box, click on the ‘Selection’ option. On this page we want to change the ‘Action of mouse’ option from the default of ‘Compromise (Middle extends, Right paste)’ to ‘Windows (Middle extends, Right brings up menu)’. This keeps the standard Windows mouse actions the same when you use PuTTY.

 [image: PuTTY Selection Set-up]
 PuTTY Selection Set-up

Now select the ‘Session’ Category on the left hand menu. Here we want to enter our static IP address that we set up earlier (10.1.1.8 in the example that we have been following, but use your one) and because we would like to access this connection on a frequent basis we can enter a name for it as a saved session (In the scree-shot below it is imaginatively called ‘Raspberry Pi’). Then click on ‘Save’.

 [image: PuTTY Session Set-up]
 PuTTY Session Set-up

Now we can select our raspberry Pi Session (per the screen-shot above) and click on the ‘Open’ button.

The first thing you will be greeted with is a window asking if you trust the host that you’re trying to connect to.

 [image: PuTTY Session Connection]
 PuTTY Session Connection

In this case it is a pretty safe bet to click on the ‘Yes’ button to confirm that we know and trust the connection.

Once this is done, a new terminal window will be shown with a prompt to login as: . Here we can enter our user name (‘pi’) and then our password (if it’s still the default it is ‘raspberry’).

 [image: PuTTY Session Connected]
 PuTTY Session Connected

There you have it. A command line connection via SSH. Well done.

As I mentioned at the end of the section on remotely accessing the Raspberry Pi’s GUI, if this is the first time that you’ve done something like this it can be a very liberating feeling. To complete the feeling of freedom let’s set up a wireless network connection.

Setting up a WiFi Network Connection

Our set-up of the Raspberry Pi will allow us to carry out all the (computer interface) interactions via a remote desktop. However, the Raspberry Pi is making that remote connection via a fixed network cable. It could be argued that the minimum number of connections that we need to run to our machine the better. The most obvious solution to this conundrum is to enable a wireless connection.

It should be noted that enabling a wireless network will not be a requirement for everyone and as such, I would only recommend it if you need to. It means that you will need to purchase a USB WiFi dongle and correctly configure it which as it turns out can be something of an exercise. In my own experience, I found that choosing the right wireless adapter was the key to making the job simple enough to be able to recommend it to new users. Not all WiFi adapters are well supported and if you are unfamiliar with the process of installing drivers or compiling code, then I would recommend that you opt for an adapter that is supported and will work ‘out of the box’. There is an excellent page on elinux.org which lists different adapters and their requirements. I eventually opted for the Edimax EW-7811Un which literally ‘just worked’ and I would recommend it to others for it’s ease of use and relatively low cost (approximately $15 US).

 [image: Edimax WiFi USB Adapter]
 Edimax WiFi USB Adapter

 Bearing in mind that we are going to be adjusting our network connection, it is highly recommended that the following configuration changes take place with the keyboard / mouse and monitor connected to the Raspberry Pi (I.e. not via a remote desktop connection).

To install the wireless adapter we should start with the Pi powered off and install it into a convenient USB connection. When we turn the power on we will see the normal range of messages scroll by, but if we’re observant we will note that there are a few additional lines concerning a USB device. These lines will most likely scroll past, but once the device has finished powering up and we have logged in we can type in…

dmesg

… which will show us a range of messages about drivers that are loaded to support discovered hardware.

Somewhere in that list (hopefully towards the end) will be a series of messages that describe the USB connectors and what is connected to them. In particular we could see a group that looks a little like the following;

[3.382731] usb 1-1.2: new high-speed USB device number 4 using dwc_otg
[3.494250] usb 1-1.2: New USB device found, idVendor=7392, idProduct=7811
[3.507749] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[3.520230] usb 1-1.2: Product: 802.11n WLAN Adapter
[3.542690] usb 1-1.2: Manufacturer: Realtek
[3.560641] usb 1-1.2: SerialNumber: 00345767831a5e

That is our USB adapter which is plugged into USB slot 2 (which is the ‘2’ in usb 1-1.2:). The manufacturer is listed as ‘Realtek’ as this is the manufacturer of the chip-set in the adapter that Edimax uses.

Instructions for Using Wheezy

 If you’re using Debian Wheezy, the following instructions will get you up and running

In the same way that we would edit the /etc/network/interfaces file to set up a static IP address we will now edit it with the command…

sudo nano /etc/network/interfaces

This time we will edit the interfaces file so that it looks like the following;

auto lo

iface lo inet loopback
iface eth0 inet manual

allow-hotplug wlan0
auto wlan

iface wlan0 inet static
 address 10.1.1.17
 netmask 255.255.255.0
 gateway 10.1.1.1
 wpa-ssid "homenetwork"
 wpa-psk "h0mepassw0rd"

Here we have reverted the eth0 interface (the wired network connection) to have it’s network connection assigned dynamically (iface eth0 inet manual).

Instructions for Using Jessie

 If you’re using Debian Jessie, the following instructions will get you up and running

If we’re using Debian Jessie, we need to edit two files. The first is the file wpa_supplicant/wpa_supplicant.conf at /etc/wpa_supplicant/wpa_supplicant.conf. This looks like the following;

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

Use the nano command as follows;

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

We need to add the ssid (the wireless network name) and the password for the wifi network here so that the file looks as follows (using your ssid and password of course);

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
 ssid="homenetwork"
 psk="h0mepassw0rd"
}

 If you’re not sure about the name (ssid) of your network, a simple test would be to use a phone or tablet to see what WiFi connection it is using (assuming that you are using your own WiFi connection).

In the same way that we would edit the /etc/dhcpcd.conf file to set up a static IP address for our physical connection (eth0) we will now edit it with the command…

sudo nano /etc/dhcpcd.conf

This time we will add the details for the wlan0 connection to the end of the file. Those details (assuming we will use the 10.1.1.17 IP address) should look like the following;

Custom static IP address for wlan0.
interface wlan0
static ip_address=10.1.1.17/24
static routers=10.1.1.1
static domain_name_servers=10.1.1.1

 What we should also do (if you haven’t already is remove the section for the eth0 connection so that it reverts to a dynamic address (assuming that the wifi IP address is the one we want fixed.

Our wireless lan (wlan0) is now designated to be a static IP address (with the details that we had previously assigned to our wired connection) and we have added the ‘ssid’ (the network name) of the network that we are going to connect to and the password for the network.

Make the changes operative

To allow the changes to become operative we can type in;

sudo reboot

Once we have rebooted, we can check the status of our network interfaces by typing in;

ifconfig

This will display the configuration for our wired Ethernet port, our ‘Local Loopback’ (which is a fancy way of saying a network connection for the machine that you’re using, that doesn’t require an actual network (ignore it in the mean time)) and the wlan0 connection which should look a little like this;

wlan0 Link encap:Ethernet HWaddr 80:1f:02:f4:21:85
 inet addr:10.1.1.17 Bcast:10.1.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:213 errors:0 dropped:90 overruns:0 frame:0
 TX packets:54 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:88729 (86.6 KiB) TX bytes:6467 (6.3 KiB)

This would indicate that our wireless connection has been assigned the static address that we were looking for (10.1.1.17).

We should be able to test our connection by connecting to the Pi via SSH and ‘PuTTY’ on the Windows desktop.

In theory you are now the proud owner of a computer that can be operated entirely separate from all connections except power.

External USB Storage

Because the Raspberry Pi uses a MicroSD card as its primary method for storing data and holding the operating system, this can be slightly limiting in terms of volumes available or we could want a storage area to place backup information on the Pi.

To overcome these limitations in a simple way we can add additional storage via a USB stick. To do this via the GUI would be a relatively simple task, but to make a USB drive usable in a persistent way (to make sure we have full control of the process) we will manage the set-up via the command line.

The following guide will be carried out using Raspbian Jessie.

To make the space available on a USB drive available we need to ‘mount’ the storage onto our file system. Think of this as a similar process to adding an extension to your house. To make the extension accessible we need to add it so that it meets the current house’s structure at some point. In our case we will mount our new storage in the /mnt directory. This is one of the places that is traditionally used for mounting additional storage on Linux systems.

Before we make a start it is good practice to ensure that we have updated our systems operating system and packages using apt-get update and apt-get upgrade as follows;

sudo apt-get update
sudo apt-get upgrade

Preparing our storage

 What we are going to walk through is a process whereby we are adding storage volume to our Pi. The data on the USB drive may be deleted (depending on the file system type). This is a process to add extra space, rather than plugging in a device to share some data.

The first thing we need to do is to plug in our USB drive. We need to find out what device name is has been assigned so that we can mount it properly. To do this we can run the fdisk command to list out the various partitions that the operating system can see.

sudo fdisk -l

In the listing that follows we should be able to identify the device we are wanting to mount by factoring in a bit of knowledge of the type of device it is. In the case here the device was labelled as a 32GB drive. The obvious candidate is the following (from the sudo fdisk -l command);

Disk /dev/sda: 29.5 GiB, 31614566400 bytes, 61747200 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc3072e18

Device Boot Start End Sectors Size Id Type
/dev/sda1 96 61747199 61747104 29.5G c W95 FAT32 (LBA)

We can see that the 29.5GB partition is designated as device /dev/sda1. But more interestingly, the device type is formatted as W95 FAT32 (LBA). This is where we put out thinking caps on a bit as we need to understand that not all file systems are created equally. In particular the W95 FAT32 (LBA) type (which is very popular on USB sticks) does not support permissions and will not make a good candidate for a file system. Therefore we will format the sda1 partition with a new file system. In this particular case we will use the ‘ext4’ file system.

The first step in preparing our storage is to change the formatting on the device using the fdisk command. We can start the interactive process as follows;

sudo fdisk /dev/sda

That will provide a warning that the process will start, but that they will only become operative when we write the changes to disk;

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): t

From our previous use of fdisk we know that the device /dev/sda has only a single partition (sda1). Therefore when we select t to change the device type it automatically selects partition 1 and asks for the hex code of the type to change to. At this point we could also list all the possible types, but if we want to examine our options, feel free to check them out in the fdisk section, or alternatively we can just select the hex code for the ‘Linux’ type which is ‘83’;

Selected partition 1
Hex code (type L to list all codes): 83

If you have created or modified any DOS 6.x partitions, please
see the fdisk documentation for additional information.
Changed type of partition 'W95 FAT32 (LBA)' to 'Linux'.

Once done and if we’re completely happy we can write the changes to disk;

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Re-reading the partition table failed.: Device or resource busy

The kernel still uses the old table. The new table will be used at the next
reboot or after you run partprobe(8) or kpartx(8).

We will get a message that while the changes have been made in the file system table, in order for them to become operative the system needs to be rebooted (and the file systems loaded);

sudo reboot

Once the system has rebooted and we’re logged in as the ‘pi’ user again we can use the mkfs command to change the file system on the /dev/sda1 partition. We specify the type of file system when executing the command and in this case we are going to apply the ‘ext4’ file system. This is one of the later file systems and while it could be successfully argued that it might be imperfect for a USB flash drive it might be good for a USB removable hard drive. Whatever the case, it is not a bad option;

sudo mkfs -t ext4 /dev/sda1

We will get a warning that the partition already has a file system;

mke2fs 1.42.12 (29-Aug-2014)
/dev/sda1 contains a vfat file system labelled 'SP UFD U2'
Proceed anyway? (y,n)y

Be aware that this destroys the data on the USB drive and if we had something on the drive that we wanted to retain, this would be the last opportunity to stop;

Creating filesystem with 7718388 4k blocks and 1933312 inodes
Filesystem UUID: 61222dc4-b10b-482c
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
 4096000

Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information:

…and after a short while…

Writing superblocks and filesystem accounting information: done

The information above also includes a vital piece of data that we are going to want later when we make the drive automatically mount when we boot the Pi. Namely the Filesystem UUID. Above it is listed as ‘61222dc4-b10b-482c’ (the value may be longer or shorter than this one). Make a note of it for later use.

Mounting the drive

The storage that is associated with the partition /dev/sda1 will be the device that we will mount onto our mount point. For the purposes of the exercise we will create a directory called /mnt/usbdata which will be the mount point. We will want to do this as an administrative user (the ‘pi’ user doesn’t have sufficient permissions), so we will use the sudo prefix while executing the mkdir (make directory) command like so;

sudo mkdir /mnt/usbdata

If we list the contents of the /mnt directory with ls -l we can see the results of our directory creation efforts;

ls - /mnt

Which will show us the contents of the /mnt directory something like this;

total 4
drwxr-xr-x 2 root root 4096 Feb 27 14:13 usbdata

Now we can mount the device to the directory /mnt/usbdata using the mount command as follows;

sudo mount /dev/sda1 /mnt/usbdata

The permissions for the /mnt/usbdata directory need to be altered to allow our user ‘pi’ to have ownership of it with the command chown and we have to set the permissions for the directory so that the owner (‘pi’) and the owning group (also called ‘pi’) have full access. We use the change mode command (chmod to do this). We will set the access rights for all others to ‘read’ and ‘execute’. The commands are as follows;

sudo chown pi:pi /mnt/usbdata
sudo chmod 775 /mnt/usbdata

To ensure that the default permission settings for the ‘pi’ user and group is set for all future files in our directory we can use the setfacl command (set file access control lists) as follows;

sudo setfacl -Rdm u:pi:rwx,g:pi:rwx /mnt/usbdata

If we execute the ls -l /mnt command again we can see the changes we’re applied (the + symbol is as a result of the access control list being applied);

total 4
drwxrwxr-x+ 2 pi pi 4096 Feb 27 14:13 usbdata

At this point we have successfully mounted the drive and we can use it as a brand new extension to our storage. The only problem will be when we reboot the Pi it will no longer be mounted and we would need to go through the mounting procedure again. The next section will fix that

Auto-mounting on boot

To mount the drive automatically on boot we are going to edit the /etc/fstab file and include a command to mount the drive that will be read every time the system boots up.

sudo nano /etc/fstab

There are several different ways that this portion of the setup can go. Because we have gone through the process of assigning appropriate defaults for our directory in terms of permissions and users we should be able to simply add the appropriate mounting information to the bottom of our fstab file. This is the point when we recall the UUID that we recorded from earlier (61222dc4-b10b-482c). Remember: You need to add YOUR UUID, not this one.

So add the following line to the end of the file;

UUID=61222dc4-b10b-482c /mnt/usbdata ext4 nofail,defaults 0 0

It tells the computer that the device with the UUID of 61222dc4-b10b-482c is to be mounted to the directory /mnt/usbdata with an ext4 file system. We could have specified the device partition (/dev/sda1) but that could mean that a different device could be plugged in that would be recognised and mounted at that position. The nofail reference means that it will not report errors if the computer fails to recognise the drive when booting up (i.e. if it isn’t plugged in) and the defaults settings picks up the user and permissions settings that we have already specified.

We should now have a consistent setup for mounting extra storage in the form of a USB storage device.

Reconnecting to the network automatically

I have found with experience that in spite of my best intentions, sometimes when setting up a Raspberry Pi to maintain a WiFi connection, if it disconnects for whatever reason it may not reconnect automatically.

To solve this problem we’re going to write a short script that automatically reconnects our Pi to a WiFi network. The script will check to see if the Pi is connected to our local network and, if it’s off-line, will restart the wireless network interface. We’ll use a cron job to schedule the execution of this script at a regular interval.

Let’s write a script

First, we’ll need to check if the Pi is connected to the network. This is where we’ll try to ping an IP address on our local network (perhaps our gateway address?). If the ping command succeeds in getting a response from the IP address, we have network connectivity. If the command fails, we’ll turn off our wireless interface (wlan0) and then turn it back on (yes, the timeless solution of turning it off and on).

The script looks a little like this;

#!/bin/bash

The IP address of our gateway on our local router
GATEWAY=10.1.1.1

Send two pings, with the output going to /dev/null
ping -c2 ${GATEWAY} > /dev/null

Check to see if the returned value from ping ($?)
is not 0 and then act to restart wlan0 if necessary
if [$? != 0]
then
 # Restart wlan0 (the wireless interface)
 ifconfig wlan0 down
 ifconfig wlan0 up
fi

Use nano to create the script, name it something like wifistart.sh, and save it in /usr/local/bin. We also need to make sure it’s executable by running chmod (using sudo) as follows;

sudo chmod +x /usr/local/bin/wifistart.sh

Lets run our script on a regular schedule

To make our WiFi checking script run automatically, we’ll schedule a cron job using crontab;

crontab -e

… and add this line to the bottom:

*/5 * * * * /usr/bin/sudo -H /usr/local/bin/wifistart.sh >> /dev/null 2>&1

This runs the script every 5 minutes with sudo permissions, writing its output to /dev/null so it doesn’t spam syslog.

Let’s test it

To test that the script works as expected, we will want to take down the wlan0 interface and wait for the script to bring it back up. Before taking down wlan0, we might want to adjust the interval in crontab to 1 minute. And fair warning, when we disconnect wlan0, we will lose that network interface, so we will need to either have a local keyboard / monitor connected, have another network interface set up or be really comfortable that we’ve got everything set up right first time.

To take down wlan0 to confirm the script works, run:

ifdown --force wlan0

After waiting for 5 (or 1) minutes, we could try ssh-ing back into the Raspberry Pi or if we’re keen we could have a ping command running on another server checking the interface to show when it stops and when it (hopefully) starts again. Assuming everything works, our Pi should reconnect seamlessly.

Checking Operating System and Hardware

As we work with our Raspberry Pis and put them into good use, there is a possibility that we might lose track of what Operating System (OS) is installed or indeed what version of Raspberry Pi is being used. The good news is that we can check this out remotely with these simple commands.

Operating System

This check is carried out from the command line while logged into the Pi and lets us check the file os-release which has a wealth of information.

cat /etc/os-release

For an installation of Raspbian ‘Jessie’ the returned information might look as follows;

pi@raspberrypi:~ $ cat /etc/os-release
PRETTY_NAME="Raspbian GNU/Linux 8 (jessie)"
NAME="Raspbian GNU/Linux"
VERSION_ID="8"
VERSION="8 (jessie)"
ID=raspbian
ID_LIKE=debian
HOME_URL="http://www.raspbian.org/"
SUPPORT_URL="http://www.raspbian.org/RaspbianForums"
BUG_REPORT_URL="http://www.raspbian.org/RaspbianBugs"

For Raspbian ‘Buster’ the returned information might look as follows;

pi@raspberrypi:~ $ cat /etc/os-release
PRETTY_NAME="Raspbian GNU/Linux 10 (buster)"
NAME="Raspbian GNU/Linux"
VERSION_ID="10"
VERSION="10 (buster)"
VERSION_CODENAME=buster
ID=raspbian
ID_LIKE=debian
HOME_URL="http://www.raspbian.org/"
SUPPORT_URL="http://www.raspbian.org/RaspbianForums"
BUG_REPORT_URL="http://www.raspbian.org/RaspbianBugs"

Conversely, if we’re looking for more Debian specific information (remembering that Raspbian is derived from Debian) we can use the following command;

cat /etc/debian_version

For Raspbian ‘Jessie’ the returned information might look as follows;

8.0

For Raspbian ‘Buster’ the returned information might look as follows;

10.3

Hardware

Each hardware version of the Raspberry Pi can be determined by the hardware revision code in the cpuinfo file. We can check this by executing the following command from the command line;

cat /proc/cpuinfo | grep Revision

If we run that command on a Pi 2 Model B v1.1 board the following will be returned;

Revision : a01041

The Revision code for each board can be checked against a look-up table that details the various versions. The following table has been sourced from the good folks at elinux.org.

 	Revision
 	Release Date
 	Model
 	PCB Revision
 	Memory
 	Notes

 	Beta
 	Q1 2012
 	B (Beta)
 	?
 	256 MB
 	Beta Board

 	0002
 	Q1 2012
 	B
 	1.0
 	256 MB
 	Nil

 	0003
 	Q3 2012
 	B (ECN0001)
 	1.0
 	256 MB
 	Fuses mod and D14 removed

 	0004
 	Q3 2012
 	B
 	2.0
 	256 MB
 	(Mfg by Sony)

 	0005
 	Q4 2012
 	B
 	2.0
 	256 MB
 	(Mfg by Qisda)

 	0006
 	Q4 2012
 	B
 	2.0
 	256 MB
 	(Mfg by Egoman)

 	0007
 	Q1 2013
 	A
 	2.0
 	256 MB
 	(Mfg by Egoman)

 	0008
 	Q1 2013
 	A
 	2.0
 	256 MB
 	(Mfg by Sony)

 	0009
 	Q1 2013
 	A
 	2.0
 	256 MB
 	(Mfg by Qisda)

 	000d
 	Q4 2012
 	B
 	2.0
 	512 MB
 	(Mfg by Egoman)

 	000e
 	Q4 2012
 	B
 	2.0
 	512 MB
 	(Mfg by Sony)

 	000f
 	Q4 2012
 	B
 	2.0
 	512 MB
 	(Mfg by Qisda)

 	0010
 	Q3 2014
 	B+
 	1.0
 	512 MB
 	(Mfg by Sony)

 	0011
 	Q2 2014
 	Compute Module
 	1.0
 	512 MB
 	(Mfg by Sony)

 	0012
 	Q4 2014
 	A+
 	1.1
 	256 MB
 	(Mfg by Sony)

 	0013
 	Q1 2015
 	B+
 	1.2
 	512 MB
 	(Mfg by Embest)

 	0014
 	Q2 2014
 	Compute Module
 	1.0
 	512 MB
 	(Mfg by Embest)

 	0015
 	?
 	A+
 	1.1
 	256 MB / 512 MB
 	(Mfg by Embest)

 	a01040
 	Unknown
 	2 Model B
 	1.0
 	1 GB
 	Unknown

 	a01041
 	Q1 2015
 	2 Model B
 	1.1
 	1 GB
 	(Mfg by Sony)

 	a21041
 	Q1 2015
 	2 Model B
 	1.1
 	1 GB
 	(Mfg by Embest)

 	a22042
 	Q3 2016
 	2 Model B (with BCM2837)
 	1.2
 	1 GB
 	(Mfg by Embest)

 	900021
 	Q3 2016
 	A+
 	1.1
 	512 MB
 	(Mfg by Sony)

 	900092
 	Q4 2015
 	Zero
 	1.2
 	512 MB
 	(Mfg by Sony)

 	900093
 	Q2 2016
 	Zero
 	1.3
 	512 MB
 	(Mfg by Sony)

 	920093
 	Q4 2016?
 	Zero
 	1.3
 	512 MB
 	(Mfg by Embest)

 	a02082
 	Q1 2016
 	3 Model B
 	1.2
 	1 GB
 	(Mfg by Sony)

 	a22082
 	Q1 2016
 	3 Model B
 	1.2
 	1 GB
 	(Mfg by Embest)

 	a32082
 	Q4 2016
 	3 Model B
 	1.2
 	1 GB
 	(Mfg by Sony Japan)

 	a020d3
 	Q1 2018
 	3 Model B+
 	1.3
 	1 GB
 	(Mfg by Sony)

 	9020e0
 	Q4 2018
 	3 Model A+
 	1.0
 	512 MB
 	(Mfg by Sony)

 	a02100
 	Q1 2019
 	Compute Module 3+
 	1.0
 	1 GB
 	(Mfg by Sony)

 	a03111
 	Q2 2019
 	4 Model B
 	1.1
 	1 GB
 	(Mfg by Sony)

 	b03111
 	Q2 2019
 	4 Model B
 	1.1
 	2 GB
 	(Mfg by Sony)

 	c03111
 	Q2 2019
 	4 Model B
 	1.1
 	4 GB
 	(Mfg by Sony)

To get the information above in a simple way, later versions of Raspbian can access the information by running the following command;

 ~
cat /proc/device-tree/model

This will output something similar to the following for a Raspberry Pi 3;

Raspberry Pi 3 Model B Rev 1.2

Configuring the Pi Zero W to work from scratch without a monitor

 Be aware that if you’re editing a file under Windows, that it may be using new-line characters for Windows. This needs to be changed so that the file uses Unix/Linux new line characters.

Get standard image

Install the disk image onto a microSD card using Disk Imager in much the same way that we have done previously.

Configure the card

Enable ssh by creating a new file on the microSD card called ssh. Simply right click on the folder and go ‘Create new text document’. The file will have the suffix .txt, but this won’t matter. This allows ssh to be enabled on first boot.

Create a file called wpa_supplicant.conf on the microSD card in the directory that opens by default on Windows explorer (this is the ‘boot’ directory). This should have the contents below (using your own information for SSID and password);

 Again , the file needs to use Unix/Linux new line characters, so make sure that whatever editor you use that it is supporting this mode.

country=US
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
 ssid="your-network-ssid"
 scan_ssid=1
 psk="your-wifi-password"
 key_mgmt=WPA-PSK
}

Once this is complete, insert the microSD card into the Pi and power it up.

It will take 30 seconds or so to resize the card and get an IP address assigned to it. Once that much time has passed by you can ssh into your Pi.

If this is the only Raspberry Pi on your network you can ssh in using the following command;

ssh pi@raspberrypi.local

 If there is more than one Pi on the network then a number will be added to the address in the form of raspberrypi-NUMBER.local. Where NUMBER with be a number representing the order in which the devices arrived on the network.

If you have more than one Pi on the network, it can be a bit confusing to determine which one you have ssh-d into. To confirm you could toggle the activity light on and off.

We need to be root to execute the command (just using sudo in front of the command won’t be enough). Switch to the root user by typing the following

sudo -i

 This will switch to the root user and the -i option will acquire the root user’s environment.

The command prompt will indicate that we are now the root user thusly;

root@raspberrypi:~#

Then we can turn the LED on by writing a ‘1’ to the ‘led0’ brightness file with the following command;

echo 1 >/sys/class/leds/led0/brightness

If we want to turn it off we write a ‘0’ like so;

echo 0 >/sys/class/leds/led0/brightness

Just keep an eye on your Pi and when you see the LED turning off and on you know that you’re on the right one :-).

Turn the activity light on or off

The main board on the Raspberry Pi has power and activity LEDs to indicate when power has been applied (red) and when the on-board SD card is being accessed (green). These are situated on the opposite end of the board to the Ethernet connector on the B models. They can however be on different sides of the display ribbon connector depending on which B model.

 [image: LED Positions]
 LED Positions

Embarrassingly, I have found that when running multiple Raspberry Pi’s I have forgotten which ones are running which software or operating system (This is what I get for writing books on monitoring, Ghost, ownCloud etc). This is exacerbated by mounting the Pis in an open stack configuration similar to the following (Imagine it as a slightly higher stack).

 [image: Stack o Pi]
 Stack o Pi

What to do then when faced with a stack o’ Pi and difficulty in telling which is which?

The good news is that we can log into each and force the activity LED to illuminate and hence identify each device.

Cut to the chase and just do it

The first thing we need to do is to set the trigger for the activity LED to GPIO mode;

echo gpio | sudo tee /sys/class/leds/led0/trigger

Then we can turn the LED on by writing a ‘1’ to the ‘led0’ brightness file with the following command;

echo 1 | sudo tee /sys/class/leds/led0/brightness

If we want to turn it off we write a ‘0’ like so;

echo 0 | sudo tee /sys/class/leds/led0/brightness

And to return it to the state where it indicates activity on the SD card we use mmc0 which is shorthand for multi media card 0 (or the SD card);

echo mmc0 | sudo tee /sys/class/leds/led0/trigger

The explanation of how it works

The /sys directory exists as an interface between the kernel-space and the user-space. As such it is an implementation of the system file system (sysfs). The /sys/class subdirectory is exported by the kernel at runtime and presents devices on the system as a ‘class’ in the sense that it abstracts out the detailed implementation that might otherwise be exposed (the example used in the ‘makelinux’ description of classes is that a driver might see a SCSI or ATA disk, but as a class they are all just ‘disks’).

The following is a highly abridged hierarchy of the /sys/class directory where we can see the range of classes and their respective links.

pi@raspberrypi /sys/class $ tree
.
├── bcm2708_vcio
│ └── vcio -> ../../devices/virtual/bcm2708_vcio/vcio
├── gpio
│ ├── export
│ ├── gpiochip0 -> ../../devices/soc/3f200000.gpio/gpio/gpiochip0
│ └── unexport
├── graphics
│ ├── fb0 -> ../../devices/virtual/graphics/fb0
│ └── fbcon -> ../../devices/virtual/graphics/fbcon
├── i2c-adapter
├── input
│ └── mice -> ../../devices/virtual/input/mice
├── leds
│ ├── led0 -> ../../devices/soc/soc:leds/leds/led0
│ └── led1 -> ../../devices/soc/soc:leds/leds/led1
├── mem
│ ├── full -> ../../devices/virtual/mem/full
│ ├── mem -> ../../devices/virtual/mem/mem
│ ├── null -> ../../devices/virtual/mem/null
│ ├── random -> ../../devices/virtual/mem/random
│ ├── urandom -> ../../devices/virtual/mem/urandom
│ └── zero -> ../../devices/virtual/mem/zero
├── misc
│ ├── autofs -> ../../devices/virtual/misc/autofs
│ ├── cachefiles -> ../../devices/virtual/misc/cachefiles
│ ├── cpu_dma_latency -> ../../devices/virtual/misc/cpu_dma_latency
│ ├── memory_bandwidth -> ../../devices/virtual/misc/memory_bandwidth
│ ├── network_latency -> ../../devices/virtual/misc/network_latency
│ └── network_throughput -> ../../devices/virtual/misc/network_throughput
├── mmc_host
│ └── mmc0 -> ../../devices/platform/mmc-bcm2835.0/mmc_host/mmc0
├── net
│ ├── eth0 -> ../../devices/platform/bcm2708_usb/usb1/1-1/1-1.1:1.0/net/
│ └── lo -> ../../devices/virtual/net/lo
├── power_supply
├── scsi_device
├── scsi_disk
├── scsi_host
├── sound
│ ├── card0 -> ../../devices/virtual/sound/card0
│ └── timer -> ../../devices/virtual/sound/timer
└── vtconsole
 └── vtcon1 -> ../../devices/virtual/vtconsole/vtcon1

The leds class contains directories for ‘led0’ and ‘led1’.

Inside this directory are the trigger file which determines which kernel modules activity will flash the led and the brightness file that will determine the brightness (duh!) of the led.

If we cat the trigger file we can see that there is a range of different things that can be used as the trigger to illuminate the led.

pi@raspberrypi /sys/class/leds/led0 $ cat trigger
none [mmc0] timer oneshot heartbeat backlight gpio cpu0 default-on input

The multimedia card (mmc0) is set as the default.

The led can only have two levels of brightness; ‘on’ or ‘off’. This corresponds to a ‘0’ or a ‘1’ respectively. To illuminate our led all we have to do therefore is to signal the brightness file that it has the value ‘1’ (per the example above).

To revert to control of the brightness we echo the device responsible for controlling the led to the trigger file. In this case for the activity led it is the ‘mmc0’ device.

The Commands

Commands on Linux operating systems are either built-in or external commands. Built-in commands are part of the shell. External commands are either executables (programs written in a programming language and then compiled into an executable binary) or shell scripts.

A command consists of a command name usually followed by one or more sequences of characters that include options and/or arguments. Each of these strings is separated by white space. The general syntax for commands is;

commandname [options] [arguments]

The square brackets indicate that the enclosed items are optional. Commands typically have a few options and utilise arguments. However, there are some commands that do not accept arguments, and a few with no options.
As an example we can run the ls command with no options or arguments as follows;

ls

The ls command will list the contents of a directory and in this case the command and the output would be expected to look something like the following;

pi@raspberrypi ~ $ ls
Desktop python_games

Options

An option (also referred to as a switch or a flag) is a single-letter code, or sometimes a single word or set of words, that modifies the behaviour of a command. When multiple single-letter options are used, all the letters are placed adjacent to each other (not separated by spaces) and can be in any order. The set of options must usually be preceded by a single hyphen, again with no intervening space.

So again using ls if we introduce the option -l we can show the total files in the directory and subdirectories, the names of the files in the current directory, their permissions, the number of subdirectories in directories listed, the size of the file, and the date of last modification.

The command we execute therefore looks like this;

ls -l

And so the command (with the -l option) and the output would look like the following;

pi@raspberrypi ~ $ ls -l
total 26
drwxr-xr-x 2 pi pi 4096 Feb 20 08:07 Desktop
drwxrwxr-x 2 pi pi 4096 Jan 27 08:34 python_games

Here we can see quite a radical change in the formatting and content of the returned information.

Arguments

An argument (also called a command line argument) is a file name or other data that is provided to a command in order for the command to use it as an input.

Using ls again we can specify that we wish to list the contents of the python_games directory (which we could see when we ran ls) by using the name of the directory as the argument as follows;

ls python_games

The command (with the python_games argument) and the output would look like the following (actually I removed quite a few files to make it a bit more readable);

pi@raspberrypi ~ $ ls python_games
4row_arrow.png gem4.png pentomino.py
4row_black.png gem5.png pinkgirl.png
4row_board.png gem6.png Plain_Block.png
4row_computerwinner.png gem7.png princess.png
4row_humanwinner.png gemgem.py RedSelector.png
gem1.png match5.wav Wall_Block_Tall.png
gem2.png memorypuzzle_obfuscated.py Wood_Block_Tall.png
gem3.png memorypuzzle.py wormy.py

Putting it all together

And as our final example we can combine our command (ls) with both an option (-l) and an argument (python_games) as follows;

ls -l python_games

Hopefully by this stage, the output shouldn’t come as too much surprise, although again I have pruned some of the files for readabilities sake;

pi@raspberrypi ~ $ ls -l python_games
total 1800
-rw-rw-r-- 1 pi pi 9731 Jan 27 08:34 4row_arrow.png
-rw-rw-r-- 1 pi pi 7463 Jan 27 08:34 4row_black.png
-rw-rw-r-- 1 pi pi 8666 Jan 27 08:34 4row_board.png
-rw-rw-r-- 1 pi pi 18933 Jan 27 08:34 4row_computerwinner.png
-rw-rw-r-- 1 pi pi 25412 Jan 27 08:34 4row_humanwinner.png
-rw-rw-r-- 1 pi pi 8562 Jan 27 08:34 4row_red.png
-rw-rw-r-- 1 pi pi 14661 Jan 27 08:34 tetrisc.mid
-rw-rw-r-- 1 pi pi 15759 Jan 27 08:34 tetrominoforidiots.py
-rw-rw-r-- 1 pi pi 18679 Jan 27 08:34 tetromino.py
-rw-rw-r-- 1 pi pi 9771 Jan 27 08:34 Tree_Short.png
-rw-rw-r-- 1 pi pi 11546 Jan 27 08:34 Tree_Tall.png
-rw-rw-r-- 1 pi pi 10378 Jan 27 08:34 Tree_Ugly.png
-rw-rw-r-- 1 pi pi 8443 Jan 27 08:34 Wall_Block_Tall.png
-rw-rw-r-- 1 pi pi 6011 Jan 27 08:34 Wood_Block_Tall.png
-rw-rw-r-- 1 pi pi 8118 Jan 27 08:34 wormy.py

 apt-get

The apt-get command is a program, that is used with Debian based Linux distributions to install, remove or upgrade software packages. It’s a vital tool for installing and managing software and should be used on a regular basis to ensure that software is up to date and security patching requirements are met.

There are a plethora of uses for apt-get, but we will consider the basics that will allow us to get by. These will include;

 	Updating the database of available applications (apt-get update)

 	Upgrading the applications on the system (apt-get upgrade)

 	Installing an application (apt-get install *package-name*)

 	Un-installing an application (apt-get remove *package-name*)

The apt-get command

The apt part of apt-get stands for ‘advanced packaging tool’. The program is a process for managing software packages installed on Linux machines, or more specifically Debian based Linux machines (Since those based on ‘redhat’ typically use their rpm (red hat package management (or more lately the recursively named ‘rpm package management’) system). As Raspbian is based on Debian, so the examples we will be using are based on apt-get.

APT simplifies the process of managing software on Unix-like computer systems by automating the retrieval, configuration and installation of software packages. This was historically a process best described as ‘dependency hell’ where the requirements for different packages could mean a manual installation of a simple software application could lead a user into a sink-hole of despair.

In common apt-get usage we will be prefixing the command with sudo to give ourselves the appropriate permissions;

 apt-get update

sudo apt-get update

This will resynchronize our local list of packages files, updating information about new and recently changed packages. If an apt-get upgrade (see below) is planned, an apt-get update should always be performed first.

Once the command is executed, the computer will delve into the internet to source the lists of current packages and download them so that we will see a list of software sources similar to the following appear;

pi@raspberrypi ~ $ sudo apt-get update
Hit http://raspberrypi.collabora.com wheezy Release.gpg
Get:1 http://mirrordirector.raspbian.org wheezy Release.gpg [490 B]
Get:2 http://archive.raspberrypi.org wheezy Release.gpg [473 B]
Hit http://raspberrypi.collabora.com wheezy Release
Get:3 http://mirrordirector.raspbian.org wheezy Release [14.4 kB]
Get:4 http://archive.raspberrypi.org wheezy Release [17.6 kB]
Hit http://raspberrypi.collabora.com wheezy/rpi armhf Packages
Get:5 http://mirrordirector.raspbian.org wheezy/main armhf Packages [6,904 kB]
Get:6 http://archive.raspberrypi.org wheezy/main armhf Packages [130 kB]
Ign http://raspberrypi.collabora.com wheezy/rpi Translation-en
Ign http://mirrordirector.raspbian.org wheezy/contrib Translation-en
Ign http://mirrordirector.raspbian.org wheezy/main Translation-en
Ign http://mirrordirector.raspbian.org wheezy/non-free Translation-en
Ign http://mirrordirector.raspbian.org wheezy/rpi Translation-en
Fetched 7,140 kB in 35s (200 kB/s)
Reading package lists... Done

 apt-get upgrade

sudo apt-get upgrade

The apt-get upgrade command will install the newest versions of all packages currently installed on the system. If a package is currently installed and a new version is available, it will be retrieved and upgraded. Any new versions of current packages that cannot be upgraded without changing the install status of another package will be left as they are.

As mentioned above, an apt-get update should always be performed first so that apt-get upgrade knows which new versions of packages are available.

Once the command is executed, the computer will consider its installed applications against the databases list of the most up to date packages and it will prompt us with a message that will let us know how many packages are available for upgrade, how much data will need to be downloaded and what impact this will have on our local storage. At this point we get to decide whether or not we want to continue;

pi@raspberrypi ~ $ sudo apt-get upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be upgraded:
 bind9-host cups-bsd cups-client cups-common libapache2-mod-php5 libbind9-80
 libisccc80 libisccfg82 liblwres80 libsdl1.2debian libsqlite3-0 libssl1.0.0
 php5-mcrypt php5-mysql raspi-config
6 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 10.7 MB of archives.
After this operation, 556 kB disk space will be freed.
Do you want to continue [Y/n]?

Once we say yes (‘Y’) the upgrade kicks off and we will see a list of the packages as they are downloaded unpacked and installed (what follows is an edited example);

Do you want to continue [Y/n]? y
Get:1 http://archive.raspberrypi.org/debian/wheezy/main libsdl1.2debian
armhf 1.2.15-5+rpi1 [205 kB]
Get:2 http://archive.raspberrypi.org/debian/wheezy/main raspi-config all
20150131-5 [13.3 kB]
Get:3 http://mirrordirector.raspbian.org/raspbian/ wheezy/main libsqlite3-0
armhf 3.7.13-1+deb7u2 [414 kB]
Fetched 10.7 MB in 31s (343 kB/s)
Preconfiguring packages ...
(Reading database ... 80703 files and directories currently installed.)
Preparing to replace cups-common 1.5.3-5+deb7u5
(using .../cups-common_1.5.3-5+deb7u6_all.deb) ...
Unpacking replacement cups-common ...
Preparing to replace cups-bsd 1.5.3-5+deb7u5
(using .../cups-bsd_1.5.3-5+deb7u6_armhf.deb) ...
Unpacking replacement cups-bsd ...
Preparing to replace php5-gd 5.4.39-0+deb7u2
(using .../php5-gd_5.4.41-0+deb7u1_armhf.deb) ...
Unpacking replacement php5-gd ...
Processing triggers for man-db ...
Setting up libssl1.0.0:armhf (1.0.1e-2+rvt+deb7u17) ...
Setting up libsqlite3-0:armhf (3.7.13-1+deb7u2) ...
Setting up cups-common (1.5.3-5+deb7u6) ...
Setting up cups-client (1.5.3-5+deb7u6) ...

There can often be alerts as the process identifies different issues that it thinks the system might strike (different aliases, runtime levels or missing fully qualified domain names). This is not necessarily a sign of problems so much as an indication that the process had to take certain configurations into account when upgrading and these are worth noting. Whenever there is any doubt about what has occurred, Google will be your friend :-).

 apt-get install

The apt-get install command installs or upgrades one (or more) packages. All additional (dependency) packages required will also be retrieved and installed.

sudo apt-get install *package-name*

If we want to install multiple packages we can simply list each package separated by a space after the command as follows;

sudo apt-get install package1 package2 package3

 apt-get remove

sudo apt-get remove *package-name*

The apt-get remove command removes one (or more) packages.

 chmod

The chmod command allows us to set or modify a file’s permissions. Because Linux is built as a multi-user system there are typically multiple different users with differing permissions for which files they can read / write or execute. chmod allows us to limit access to authorised users to do things like editing web files while general users can only read the files.

 	
chmod [options] mode files : Change access permissions of one or more files & directories

For example, the following command (which would most likely be prefixed with sudo) sets the permissions for the /var/www directory so that the user can read from, write to and change into the directory. Group owners can also read from, write to and change into the directory. All others can read from and change into the directory, but they cannot create or delete a file within it;

chmod 775 /var/www

This might allow normal users to browse web pages on a server, but prevent them from editing those pages (which is probably a good thing).

The chmod command

The chmod command allows us to change the permissions for which user is allowed to do what (read, write or execute) to files and directories. It does this by changing the ‘mode’ (hence chmod = change file mode) of the file where we can make the assumption that ‘mode’ = permissions.

Every file on the computer has an associated set of permissions. Permissions tell the operating system what can be done with that file and by whom. There are three things you can (or can’t) do with a given file:

 	read it,

 	write (modify) it and

 	execute it.

Linux permissions specify what the owning user can do, what the members of the owning group can do and what other users can do with the file. For any given user, we need three bits to specify access permissions: the first to denote read (r) access, the second to denote (w) access and the third to denote execute (x) access.

We also have three levels of ownership: ‘user’, ‘group’ and ‘others’ so we need a triplet (three sets of three) for each, resulting in nine bits.

The following diagram shows how this grouping of permissions can be represented on a Linux system where the user, group and others had full read, write and execute permissions;

 [image: Linux permissions as rwx]
 Linux permissions as rwx

 Usually in Linux (when you execute the ls -l command) there is also another bit that leads this 9-bit pattern, but we will ignore this in the mean time.

If we had a file with more complex permissions where the user could read, write and execute, the group could read and write, but all other users could only read it would look as follows;

 [image: Slightly more complex Linux permissions]
 Slightly more complex Linux permissions

This description of permissions is workable, but we will need to be aware that the permissions are also represented as 3 bit values (where each bit is a ‘1’ or a ‘0’ (where a ‘1’ is yes you can, or ‘0’ is no you can’t)) or as the equivalent octal value.

 [image: Linux permissions as symbolic, 3 bit and octal]
 Linux permissions as symbolic, 3 bit and octal

The full range of possible values for these permission combinations is as follows;

Permission Symbolic 3-bit Octal
read, write and execute rwx 111 7
read and write rw- 110 6
read and execute r-w 101 5
read only r-- 100 4
write and execute -wx 011 3
write only -w- 010 2
execute only --x 001 1
none --- 000 0

Another interesting thing to note is that permissions take a different slant for directories.

 	read determines if a user can view the directory’s contents, i.e. execute ls in it.

 	write determines if a user can create new files or delete file in the directory. (Note here that this essentially means that a user with write access to a directory can delete files in the directory even if he/she doesn’t have write permissions for the file! So be careful.)

 	execute determines if the user can cd into the directory.

 It’s also worth noting at this point that only the owner (or root via sudo) of a file may use chmod to alter a file’s permissions.

We can check the check the permissions of files using the ls -l command which will list files in a long format as follows;

ls -l /tmp/foo.txt

This command will list the details of the file foo.txt that is in the /tmp directory as follows

pi@raspberrypi ~ $ ls -l /tmp
-rwxrw-r-- 1 pi pi-group 20 Jul 10 13:14 foo.txt

The permissions on the file, the user and the group owner can be found as follows;

 [image: File details]
 File details

From this information we can see that the file’s user (‘pi’) has permissions to read, write and execute the file. The group owner (‘pi-group’) can read and write to the file and all other users can read the file.

Options

The main option that is worth remembering is the -R option that will Recursively apply permissions on the files in the specified directory and its sub-directories.

The following command will change the permissions for all the files in the /srv/foo directory and in all the directories that are under it;

chmod -R 764 /srv/foo

Arguments

Simplistically (in other words it can be more complicated, but we’re simplifying it) there are two main ways that chmod is used. In either symbolic mode where the permissions are changed using symbols associated with read, write and execute as well as symbols for the user (u), the group owner (g), others (o) and all users (a). Or in numeric mode where we use the octal values for permission combinations.

 Symbolic Mode

In symbolic mode we can change the permissions of a file with the following syntax:

 	
chmod [who][op][permissions] filename

Where who can be the user (u), the group owner (g) and / or others (o). The operator (op) is either + to add a permission, - to remove a permission or = to explicitly set permissions. The permissions themselves are either readable (r), writeable (w), or executable (x).

For example the following command adds executable permissions (x) to the user (u) for the file /tmp/foo.txt;

chmod u+x /tmp/foo.txt

This command removes writing (w) and executing (x) permissions from the group owner (g) and all others (o) for the same file;

chmod go-wx /tmp/foo.txt

 Hopefully you will note that you can combine the ‘who’ and ‘permissions’ fields to allow multiple values.

Note that removing the execute permission from a directory will prevent you from being able to list its contents (although root will override this). If you accidentally remove the execute permission from a directory, you can use the +X argument to instruct chmod to only apply the execute permission to directories.

chmod -R u+X /home/pi/*

 Numeric Mode

In numeric mode we can explicitly state the permissions using the octal values, so this form of the command is fairly common.

For example, the following command will change the permissions on the file foo.txt so that the user can read, write and execute it, the group owner can read and write it and all others can read it;

chmod 764 /tmp/foo.txt

Examples

To change the permissions in your home directory to remove reading and executing permissions from the group owner and all other users;

chmod go-rx ~

To make a script executable by the user;

chmod u+x foo.sh

Windows marks all files as executable by default. If you copy a file or directory from a Windows system (or even a Windows-formatted disk) to your Linux system, you should ideally strip the unnecessary execute permissions from all copied files unless you specifically need to retain it. Note of course we still need it on all //directories// so that we can access their contents! Here’s how we can achieve this in one command:

chmod -R a-x+X ~/copied_from_windows

This instructs chmod to remove the execute permission for each file and directory, and then immediately set execute again if working on a directory.

 chown

The chown command changes the user and/or group ownership of given files. Because Linux is built as a multi-user system there are typically multiple different users (not necessarily actual people, but daemons or other programs who may run as their own user) responsible for maintaining clear permission boundaries that separate services to prevent corruption or maintain security or privacy. This allows us to limit access to authorised users to do things like editing web files.

 	
chown [options] newowner files : Change the ownership of one or more files & directories

For example, if we want to make the user www-data the owner of the directory www (in the /var directory) and we want to pass the group ownership of that directory to the group www-data we would run the following command;

chown www-data:www-data /var/www

There is a good likelihood that we would need to prefixed the command with sudo to run it as root depending on which user we were when we executed it.

The chown command

The chown command changes the user and/or group ownership of given files (hence chown = change owner).
It is used to help specify exactly who or what group can access certain files. There are several different options, but only one that could be deemed important enough to try and remember. There are also a number of different ways to assign ownership depending if we’re trying to assign a single user and / or group permissions. For more information on modifying permissions see chmod.

Options

The main option that is worth remembering is the -R option that will Recursively apply permissions on the files in the specified directory and its sub-directories.

The following command will change the owner to the user ‘apache’ for the /var/www directory and all the directories that are under it;

chown -R apache /var/www

Arguments

The object that has its ownership changed can be a file or a directory and its contents.

One of the clever things about assigning permissions using chown is the way that user and group ownership can be applied in the same command (if desired).

If only a user name is given, that user is made the owner of each given file, and the files’ group is not changed.

chown apache /var/www

If the owner is followed by a colon and a group name (with no space in between them) the group ownership of the files is changed as well. In the following example the user apache and the group apache-group are given ownership of the files in the /var/www directory;

chown apache:apache-group /var/www

If a colon but no group name follows the user name, that user is made the owner of the files and the group of the files is changed to that user’s initial login group. So if the apache users initial login group was apache-group then the following command would accomplish the same thing as the previous example;

chown apache: /var/www

If the colon and group are given, but the owner is omitted, only the group of the files is changed.

chown :apache-group /var/www

 Actually a period (.) can be used in place of a colon (:) to separate the user and the group when executing the command. Additionally the numeric User ID (UID) and / or Group ID (GID) can be used in place of the user and group names.

Examples

To change the ownership of the file /home/pi/foo.txt to the UID 3456 and the group ownership to GID 4321.

chown 3456:4321 /home/pi/foo.txtt

 fdisk

fdisk is a command designed to manage disk partitions. This means that it allows us to view, create, resize, delete, change, copy and move partitions on a hard drive.

 Let’s start this off with a bit of a warning. fdisk is a command that will re-organise your storage and as such it carries some significant risk if done incorrectly. fdisk will require that it is run by a user with administrator permissions and for good reason. Please don’t create, delete or modify partitions. Unless you know what you are doing! incorrect usage of fdisk may result in loss of data or trash the system.

While we will outline some of the functions of fdisk here we will restrict the description to allow an understanding of what fdisk can show us and if you are wanting to change your partitions I recommend that you seek specific advice before doing so.

 	
fdisk [options] [device] : manipulate partition tables.

The only command / option combination that we will look at in depth incorporates the -l option to list the disk partition tables.

sudo fdisk -l

The program will then present the information that it has on the existing partitions;

Disk /dev/mmcblk0: 7.4 GiB, 7948206080 bytes, 15523840 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xa3a4d77a

Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 8192 131071 122880 60M c W95 FAT32 (LBA)
/dev/mmcblk0p2 131072 15523839 15392768 7.3G 83 Linux

Disk /dev/sda: 29.5 GiB, 31614566400 bytes, 61747200 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xb1832c48

Device Boot Start End Sectors Size Id Type
/dev/sda1 96 61747199 61747104 29.5G c W95 FAT32 (LBA)

The information above shows that we have two different storage devices connected to the system. /dev/mmcblk0 and /dev/sda. There is a great deal of information presented about the disks themselves in addition to information on how they are partitioned.

We can see that the device (disk) /dev/mmcblk0 has two partitions set on it. We’re told that the disk has 7.4 GiB of storage (The ‘i’ in GiB is an indication that the storage size is reported using factors of 1024 rather than 1000 (which would be a GB). Do not panic, this is normal.). The information on sectors, is a way of representing storage capacity and is something of a hold over from when storage was always a spinning disk of something (up to recently we would also be talking about cylinders and blocks).

/dev/mmcblk0 is reported to be divided into two partitions (/dev/mmcblk0p1 and /dev/mmcblk0p2). The storage allocated to each partition is allocated to specific sectors which correspond to a particular size. The Id of the partition corresponds to system indicators or ‘types’ for the partitions. The type is also represented by a human readable name. The various `Types include (but are not limited to);

 0 Empty 24 NEC DOS 81 Minix / old Lin bf Solaris
 1 FAT12 39 Plan 9 82 Linux swap / So c1 DRDOS/sec (FAT
 2 XENIX root 3c PartitionMagic 83 Linux c4 DRDOS/sec (FAT
 3 XENIX usr 40 Venix 80286 84 OS/2 hidden C: c6 DRDOS/sec (FAT
 4 FAT16 <32M 41 PPC PReP Boot 85 Linux extended c7 Syrinx
 5 Extended 42 SFS 86 NTFS volume set da Non-FS data
 6 FAT16 4d QNX4.x 87 NTFS volume set db CP/M / CTOS /
 7 HPFS/NTFS 4e QNX4.x 2nd part 88 Linux plaintext de Dell Utility
 8 AIX 4f QNX4.x 3rd part 8e Linux LVM df BootIt
 9 AIX bootable 50 OnTrack DM 93 Amoeba e1 DOS access
 a OS/2 Boot Manag 51 OnTrack DM6 Aux 94 Amoeba BBT e3 DOS R/O
 b W95 FAT32 52 CP/M 9f BSD/OS e4 SpeedStor
 c W95 FAT32 (LBA) 53 OnTrack DM6 Aux a0 IBM Thinkpad hi eb BeOS fs
 e W95 FAT16 (LBA) 54 OnTrackDM6 a5 FreeBSD ee GPT
 f W95 Ext'd (LBA) 55 EZ-Drive a6 OpenBSD ef EFI (FAT-12/16
10 OPUS 56 Golden Bow a7 NeXTSTEP f0 Linux/PA-RISC
11 Hidden FAT12 5c Priam Edisk a8 Darwin UFS f1 SpeedStor
12 Compaq diagnost 61 SpeedStor a9 NetBSD f4 SpeedStor
14 Hidden FAT16 <3 63 GNU HURD or Sys ab Darwin boot f2 DOS secondary
16 Hidden FAT16 64 Novell Netware af HFS / HFS+ fb VMware VMFS
17 Hidden HPFS/NTF 65 Novell Netware b7 BSDI fs fc VMware VMKCORE
18 AST SmartSleep 70 DiskSecure Mult b8 BSDI swap fd Linux raid aut
1b Hidden W95 FAT3 75 PC/IX bb Boot Wizard hid fe LANstep
1c Hidden W95 FAT3 80 Old Minix be Solaris boot ff BBT
1e Hidden W95 FAT1

Yes, there are conservatively a metric meaga-load of types there. For our very simplistic overview of fdisk we shouldn’t be too concerned about the variety. There are quite a few specialised and some semi-historical types there so in the ‘Just Enough’ way of thinking we can expect to see some Type ‘7’, ‘b’ and ‘c’ on removable media and ‘82’ / ‘83’ for standard storage (be prepared for some flexibility there).

The fdisk command

Hard disks (or more commonly nowadays with a wide range of options available, ‘storage’ devices) can be divided into one or more logical disks called partitions. These divisions are described in the ‘partition table’ found in sector 0 of a disk. The table lists information about the start and end of each partition, information about its type, and whether it is marked bootable or not. the fdisk command allows us to edit the partition table and as such it has the potential to significantly affect the operation of the storage medium. As a result, the fdisk command is only executable by a user with administrator privileges and we risk losing data on the disk if you execute the command incorrectly.

Partitions can be different sizes, and different partitions may have different filesystems on them, so a single disk can be used for many purposes. Traditional hard drives have a structure defined by the terms of cylinders, heads, and sectors. Modern drives use logical block addressing (LBA) which renders this structure largely irrelevant however, the standard allocation unit for partitioning purposes is usually still the cylinder.

Linux needs a minimum of one partition to support its root file system. It can also take advantage of swap files and/or swap partitions, but as a swap partition is more efficient we will usually have a second Linux partition dedicated as for swap.

On Intel compatible hardware, the Basic Input / Output System (BIOS) that boots the computer can often only access the first 1024 cylinders of the disk. As a result there can often be a third partition of a few MB (typically mounted on /boot), to store the kernel image and a few auxiliary files used while booting.

fdisk allows us to view, create, resize, delete, change, copy and move partitions on a hard drive. It is an essential tool for creating space for new partitions, organising space for new drives, re-organising old drives and copying or moving data to new disks. While fdisk can manipulate the partition table, this does not make the space available for use. To do this we need to format the partition with a specific filesystem using mkfs.

As already described in the original example we can view our partition details with the -l option.

To go further down the rabbit hole of manipulating partitions is something that I am hesitant to describe because it may provide the impression that it is a trivial task that anyone should try. It is not something that should be avoided, but it is something that we should learn about and practise in a safe environment before attempting it for the first time. This can be done in a controlled way using the interactive commands but without saving the changes.

Once we have identified the device that we want to partition, we can start fdisk as a command driven interactive utility with the fdisk command and the device;

sudo fdisk /dev/sda

The response is a welcome message and a warning;

Welcome to fdisk (util-linux 2.25.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

 We should note that we can make plenty of potential changes using fdisk’s commands, but these do not become operative until we save them using ‘w’. This is a good way to practice what the commands will do and how they might affect the storage before enacting the changes.

Pressing ‘m’ will show the range of possible commands;

Help:

 DOS (MBR)
 a toggle a bootable flag
 b edit nested BSD disklabel
 c toggle the dos compatibility flag

 Generic
 d delete a partition
 l list known partition types
 n add a new partition
 p print the partition table
 t change a partition type
 v verify the partition table

 Misc
 m print this menu
 u change display/entry units
 x extra functionality (experts only)

 Save & Exit
 w write table to disk and exit
 q quit without saving changes

 Create a new label
 g create a new empty GPT partition table
 G create a new empty SGI (IRIX) partition table
 o create a new empty DOS partition table
 s create a new empty Sun partition table

To add a new partition we would press ‘n’ which will ask what type of partition we want to set up;

Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p):

 The partition table is located in the master boot record (MBR) of a disk. The MBR is the first sector on the disk, so the partition table is quite small. This limits the number of primary partitions on a disk to four. When more than four partitions are required (which is pretty normal) one of the primary partitions must become an extended partition. An extended partition is a container for one or more logical partitions. In this way, you can have more than four partitions on a drive using the MBR layout.

Making the assumption (in this case) that we will add a primary partition we can enter ‘p’ and we are asked which partition number we want to create;

Partition number (1-4, default 1):

Then we are asked where the first sector of our partition should start from;

First sector (2048-61747199, default 2048):

Then we are asked what the last sector will be;

Last sector, +sectors or +size{K,M,G,T,P} (2048-61747199, default 61747199):

Once complete, fdisk will tell us the details of the partition that it has set up;

Created a new partition 1 of type 'Linux' and of size 29.5 GiB.

If this was our desired result we might write the changes and the configuration would be stored in the partition table. Again, this is something to be studied and understood before trying for real.

 ifconfig

The ifconfig command can be used to view the configuration of, or to configure a network interface. Networking is a fundamental function of modern computers. ifconfig allows us to configure the network interfaces to allow that connection.

 	
ifconfig [arguments] [interface]

or

 	
ifconfig [arguments] interface [options]

Used with no ‘interface’ declared ifconfig will display information about all the operational network interfaces. For example running;

ifconfig

… produces something similar to the following on a simple Raspberry Pi.

eth0 Link encap:Ethernet HWaddr 76:12:45:56:47:53
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

wlan0 Link encap:Ethernet HWaddr 09:87:65:54:43:32
 inet addr:10.1.1.8 Bcast:10.1.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:3978 errors:0 dropped:898 overruns:0 frame:0
 TX packets:347 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:859773 (839.6 KiB) TX bytes:39625 (38.6 KiB)

The output above is broken into three sections; eth0, lo and wlan0.

 	
eth0 is the first Ethernet interface and in our case represents the RJ45 network port on the Raspberry Pi (in this specific case on a B+ model). If we had more than one Ethernet interface, they would be named eth1, eth2, etc.

 	
lo is the loopback interface. This is a special network interface that the system uses to communicate with itself. You can notice that it has the IP address 127.0.0.1 assigned to it. This is described as designating the ‘localhost’.

 	
wlan0 is the name of the first wireless network interface on the computer. This reflects a wireless USB adapter (if installed). Any additional wireless interfaces would be named wlan1, wlan2, etc.

The ifconfig command

The ifconfig command is used to read and manage a servers network interface configuration (hence ifconfig = interface configuration).

We can use the ifconfig command to display the current network configuration information, set up an ip address, netmask or broadcast address on an network interface, create an alias for network interface, set up hardware addresses and enable or disable network interfaces.

 ifconfig has been ‘deprecated’ in some Linux distributions, which means that the software has been superseded and where practical an alternative used. Although deprecated, the command is still available, although its use may raise warning messages recommending alternative practices, and deprecation may indicate that the feature will be removed in the future. Features are deprecated rather than immediately removed in order to provide backward compatibility. In the case of ifconfig the alternative is ip.

To view the details of a specific interface we can specify that interface as an argument;

ifconfig eth0

Which will produce something similar to the following;

eth0 Link encap:Ethernet HWaddr b8:27:eb:2c:bc:62
 inet addr:10.1.1.8 Bcast:10.1.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:119833 errors:0 dropped:0 overruns:0 frame:0
 TX packets:8279 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:8895891 (8.4 MiB) TX bytes:879127 (858.5 KiB)

The configuration details being displayed above can be interpreted as follows;

 	
Link encap:Ethernet - This tells us that the interface is an Ethernet related device.

 	
HWaddr b8:27:eb:2c:bc:62 - This is the hardware address or Media Access Control (MAC) address which is unique to each Ethernet card. Kind of like a serial number.

 	
inet addr:10.1.1.8 - indicates the interfaces IP address.

 	
Bcast:10.1.1.255 - denotes the interfaces broadcast address

 	
Mask:255.255.255.0 - is the network mask for that interface.

 	
UP - Indicates that the kernel modules for the Ethernet interface have been loaded.

 	
BROADCAST - Tells us that the Ethernet device supports broadcasting (used to obtain IP address via DHCP).

 	
RUNNING - Lets us know that the interface is ready to accept data.

 	
MULTICAST - Indicates that the Ethernet interface supports multicasting.

 	
MTU:1500 - Short for for Maximum Transmission Unit is the size of each packet received by the Ethernet card.

 	
Metric:1 - The value for the Metric of an interface decides the priority of the device (to designate which of more than one devices should be used for routing packets).

 	
RX packets:119833 errors:0 dropped:0 overruns:0 frame:0 and TX packets:8279 errors:0 dropped:0 overruns:0 carrier:0 - Show the total number of packets received and transmitted with their respective errors, number of dropped packets and overruns respectively.

 	
collisions:0 - Shows the number of packets which are colliding while traversing the network.

 	
txqueuelen:1000 - Tells us the length of the transmit queue of the device.

 	
RX bytes:8895891 (8.4 MiB) and TX bytes:879127 (858.5 KiB) - Indicates the total amount of data that has passed through the Ethernet interface in transmit and receive.

Options

The main option that would be used with ifconfig is -a which will will display all of the interfaces on the interfaces available (ones that are ‘up’ (active) and ‘down’ (shut down). The default use of the ifconfig command without any arguments or options will display only the active interfaces.

ifconfig -a

Arguments

We can disable an interface (turn it down) by specifying the interface name and using the suffix ‘down’ as follows;

ifconfig eth0 down

Or we can make it active (bring it up) by specifying the interface name and using the suffix ‘up’ as follows;

ifconfig eth0 up

To assign a IP address to a specific interface we can specify the interface name and use the IP address as the suffix;

ifconfig eth0 10.1.1.8

To add a netmask to a a specific interface we can specify the interface name and use the netmask argument followed by the netmask value;

ifconfig eth0 netmask 255.255.255.0

To assign an IP address and a netmask at the same time we can combine the arguments into the same command;

ifconfig eth0 10.1.1.8 netmask 255.255.255.0

Test yourself

 	List all the network interfaces on your server.

 	Why might it be a bad idea to turn down a network interface while working on a server remotely?

 	Display the information about a specific interface, turn it down, display the information about it again then turn it up. What differences do you see?

 ls

The ls command lists the contents of a directory and can show the properties of those objects it lists. It is one of the fundamental commands for knowing what files are where and the properties of those files.

 	
ls [options] directory : List the files in a particular directory

For example: If we execute the ls command with the -l option to show the properties of the listings in long format and with the argument /var so that it lists the content of the /var directory…

ls -l /var

… we should see the following;

pi@raspberrypi ~ $ ls -l /var
total 102440
drwxr-xr-x 2 root root 4096 Mar 7 06:25 backups
drwxr-xr-x 12 root root 4096 Feb 20 08:33 cache
drwxr-xr-x 43 root root 4096 Feb 20 08:33 lib
drwxrwsr-x 2 root uucp 4096 Jan 11 00:02 local
lrwxrwxrwx 1 root root 9 Feb 15 11:23 lock -> /run/lock
drwxr-xr-x 11 root root 4096 Jul 7 06:25 log
drwxrwsr-x 2 root mail 4096 Feb 15 11:23 mail
drwxr-xr-x 2 root root 4096 Feb 15 11:23 opt
lrwxrwxrwx 1 root root 4 Feb 15 11:23 run -> /run
drwxr-xr-x 4 root root 4096 Feb 15 11:26 spool
-rw------- 1 root root 104857600 Feb 16 14:03 swap
drwxrwxrwt 2 root root 4096 Jan 11 00:02 tmp
drwxrwxr-x 2 www-data www-data 4096 Feb 20 08:21 www

 What’s the information in the long list format?

 	1st column will give detailed information regarding file permission,

 	2nd column will tell you about the number of links to the file,

 	3rd and 4th columns are associated with owner and group of the file,

 	5th column will be displaying the size of the file in bytes,

 	6th column will display the recent time and date at which the file was modified,

 	and the last and 7th column is the actual file/directory/link name.

The ls command

The ls command will be one of the first commands that someone starting with Linux will use. It is used to list the contents of a directory (hence ls = list). It has a large number of options for displaying listings and their properties in different ways. The arguments used are normally the name of the directory or file that we want to show the contents of.

By default the ls command will show the contents of the current directory that the user is in and just the names of the files that it sees in the directory. So if we execute the ls command on its own from the pi users home directory (where we would be after booting up the Raspberry Pi), this is the command we would use;

ls

… and we should see the following;

pi@raspberrypi ~ $ ls
Desktop python_games

This shows two directories (Desktop and python_games) that are in pi’s home directory, but there are no details about the directories themselves. To get more information we need to include some options.

Options

There are a very large number of options available to use with the ls command. For a full listing type man ls on the command line. Some of the most commonly used are;

 	
-l gives us a long listing (as explained above)

 	
-a shows us aLL the files in the directory, including hidden files

 	
-s shows us the size of the files (in blocks, not bytes)

 	
-h shows the size in “human readable format” (ie: 4K, 16M, 1G etc). (must be used in conjunction with the -s option).

 	
-S sorts by file Size

 	
-t sorts by modification time

 	
-r reverses order while sorting

A useful combination of options could be a long listing (-l) that shows all (-a) the files with the file size being reported in human readable (-h) block size (-s).

ls -lash

… will produce something like the following;

pi@raspberrypi ~ $ ls -lash
total 84K
4.0K drwxr-xr-x 13 pi pi 4.0K May 7 11:46 .
4.0K drwxr-xr-x 3 root root 4.0K May 7 10:20 ..
4.0K -rw-r--r-- 1 pi pi 69 May 7 11:46 .asoundrc
4.0K -rw------- 1 pi pi 854 Jul 8 12:55 .bash_history
4.0K -rw-r--r-- 1 pi pi 3.2K May 7 10:20 .bashrc
4.0K drwxr-xr-x 4 pi pi 4.0K May 7 11:46 .cache
4.0K drwxr-xr-x 7 pi pi 4.0K May 7 11:46 .config
4.0K drwxr-xr-x 2 pi pi 4.0K May 7 11:46 Desktop
4.0K drwxr-xr-x 2 pi pi 4.0K May 7 11:46 .fontconfig
4.0K drwxr-xr-x 2 pi pi 4.0K May 7 11:46 .gstreamer-0.10
4.0K drwx------ 3 pi pi 4.0K May 7 11:46 .local
4.0K -rw-r--r-- 1 pi pi 675 May 7 10:20 .profile
4.0K drwxrwxr-x 2 pi pi 4.0K Jan 27 21:34 python_games
4.0K drwxr-xr-x 3 pi pi 4.0K May 7 11:46 .themes

 The size of the reported files when using the human readable option are designated by the following respective letters;

 	K = Kilobyte

 	M = Megabyte

 	G = Gigabyte

 	T = Terabyte

 	P = Petabyte

 	E = Exabyte

 	Z = Zettabyte

 	Y = Yottabyte

Arguments

The default argument (if none is included) is to list the contents of the directory that the user is currently in. Otherwise we can specify the directory to list. This might seem like a simple task, but there are a few tricks that can make using ls really versatile.

The simplest example of using a specific directory for an argument is to specify the location with the full address. For example, if we wanted to list the contents of the /var directory (and it doesn’t matter which directory we run this command from) we simply type;

ls /var

… will produce the following;

pi@raspberrypi ~ $ ls /var
backups cache lib local lock log mail opt run spool swap tmp www

We can also use some of the relative addressing characters to shortcut our listing. We can list the home directory by using the tilde (ls ~) and the parent directory by using two full stops (ls ..).

The asterisk (*) can be used as a wildcard to list files with similar names. E.g. to list all the png file in a directory we can use ls *.png.

If we just want to know the details of a specific file we can use its name explicitly. For example if we wanted to know the details of the swap file in /var we would use the following command;

ls -l /var/swap

… which will produce the following;

pi@raspberrypi ~ $ ls -l /var/swap
-rw------- 1 root root 104857600 May 7 11:29 /var/swap

Examples

List all the configuration (.conf) files in the /etc directory;

ls /etc/*.conf

… which will produce the following;

pi@raspberrypi ~ $ ls /etc/*.conf
/etc/adduser.conf /etc/host.conf /etc/ntp.conf
/etc/ca-certificates.conf /etc/idmapd.conf /etc/pam.conf
/etc/debconf.conf /etc/insserv.conf /etc/resolv.conf
/etc/deluser.conf /etc/ld.so.conf /etc/resolvconf.conf
/etc/dhcpcd.conf /etc/libaudit.conf /etc/rsyslog.conf
/etc/fuse.conf /etc/logrotate.conf /etc/sysctl.conf
/etc/gai.conf /etc/mke2fs.conf /etc/ts.conf
/etc/gssapi_mech.conf /etc/nsswitch.conf /etc/ucf.conf

 mkdir

The mkdir command creates directories. It is one of the fundamental file management commands in Linux.

 	
mkdir [options] directory : Create a directory

The mkdir command is used to create directories or folders. It’s a fairly simple command with a few options for additional functionality to allow paths and permissions to be set when creating.

At its simplest, the following command will create a directory called foobar in the current working directory;

mkdir foobar

We can check on the creation by listing the files using ls with the -l option as follows;

ls -l

Which should show something like the following;

pi@raspberrypi ~ $ ls -l
total 68
drwxr-xr-x 2 pi pi 4096 Feb 20 08:07 Desktop
drwxr-xr-x 2 pi pi 4096 Aug 16 03:47 foobar
-rw-r--r-- 1 pi pi 5 Aug 16 01:27 foo.txt
drwxrwxr-x 2 pi pi 4096 Jan 27 2015 python_games

The read/write/execute descriptors for the permissions of the directories are prefixed by an d (for directory) and in some terminals the colour of the text showing the directory will be fifferent from that of other types of files (let’s not forget that while we call a directory a directory because of it’s function, it is really a type of file).

The ‘mkdir’ command

The mkdir command is used to create directories which are used as containers for files and subdirectories. Directories created by mkdir are automatically created with two hidden directories, one representing the directory just created (and shown as a single dot (.)) and the other representing its parent directory (and represented by two dots (..)). These hidden directories can be seen by using the ls command with the -a option (ls -a).

Directories can be removed with the rm and rmdir commands.

Options

The mkdir command has a small number of options and the two most likely to be used on anything approaching a regular basis would be;

 	
-p creates the specified parent directories for a new directory if they do not already exist

 	
-m controls the permission mode of new directories (in the same way as chmod)

For example to create the nested directories foo/bar/foobar in the current working directory we would execute the following;

mkdir -p foo/bar/foobar

Without the -p option we would need to create each layer seperatly.

To create a directory with a specific set of read, write and execute permissions we can use the -m option with the same mode arguments as used with the chmod command. For example the following command will create the foobar directory where the owner has read and write permissions, the group has read permission and other users have no permissions, the following would be used;

mkdir -m 640 foobar

If we subsequently check those permissions with ls -l we will see the following;

pi@raspberrypi ~ $ ls -l
total 68
drw-r----- 2 pi pi 4096 Aug 16 05:36 foobar

Arguments

The normal set of addressing options are available to make the process of creating the right directories more flexible and extensible.

Test yourself

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/permissions-02.png
user group others

A

rwxrw r—-

OEBPS/images/permissions-03.png
user group others

A

hY

rwxrw = = = symbolic
111110100 -

Y Y Y
7 6 4 = octal

OEBPS/images/permissions-04.png
file
type user

| -

-rwxrw-r-- 1 pi pi-group 20 Jul 10 13:14 /tmp/foo.txt

permissions group

OEBPS/images/edimax.JPG

OEBPS/images/rasbi-config-04a.png
Root partition has been resized.
The filesystem will be enlarged upon the next reboot

OEBPS/images/LEDs.png
= GPIO
Power ¥
Acti\[ity Raspberry Pi Model B+ V1.2
©Raspberry Pi 2014

e~

OEBPS/images/opencase-06.jpg

OEBPS/images/permissions-01.png
user group others

rwxrwxrwx

a|ca|ca|

d t wu d t u d t
t t
e e

e e e

o ~C O

cover.jpeg
JUST ENOUGH
Raspberry Pi

OEBPS/images/wheezy-raspbian-file.png
2,

OEBPS/images/rasbi-config-01.png
[Raspberry Pi Software Configuration Tool (raspi-config) f————

2 Set the visible name for this Pi on a network
3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your location
5 Interfacing Options Configure connections to peripherals

& overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

& Update Update this tool to the latest version

9 About raspi-config Information about this configuration ool

<Select> <Finish>

OEBPS/images/rasbi-config-02a.png
[Raspberry Pi Software Configuration Tool (raspi-config) f————

1 Change User Password Change password for the default user (pi)

2 Hostname Set the visible name for this Pi on a network

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your location
5 Interfacing Options Configure connections to peripherals

& overclock Configure overclocking for your Pi

& Update Update this tool to the latest version
9 About raspi-config Information about this configuration ool

<Finish>

OEBPS/images/ssh-04.png
PUTTY Security Alert

The server's host key is not cached in the registry. You
have no guarantee that the server is the computer you
think itis.

The server's sa2 key fingerpri
Ssh-rsa 2048

I you trust this host, hit Ves to add the key to
PUTTY's cache and carry on connecting.

F you want to carry on connecting just once, without
adding the key to the cache, hit No.

¥ you do not trustthis host, hit Cancel to abandon the
connection.

[p—r—

OEBPS/images/rasbi-config-03a.png
[Raspberry Pi Software Configuration Tool (raspi-config) f————

A3 Memory Split Change the amount of memory made available to cthe GBU
24 Audio

You may need to configure overscan if black bars are present on display

25 Resolution
26 GL Driver

Force audio out through HDMI or 3.5mm jack
Set a specific screen resolution
Enable/Disable experimental desktop GL driver

<Back>

OEBPS/images/ssh-05.png
login as: pi
[p1610.1.1.8's passwora;
Linux raspberrypi 3.12.28+ $709 PREEMPT Mon Sep 8 15:28:00 BST 2014 armvel

[The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
[permitted by applicable law.
Last 1ogin: Sun Dec 21 08:48:12 2014

pieraspberrypi - ¢]

OEBPS/images/drive.png
418 Computer
> & Local Disk (C)

| am Removable Disk (D)

OEBPS/images/DiskImager.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/DiskImagerSuccess.png
%3 Win32 Disk Imager [=le] =

Tmage Fie

Re/2014.05.05-nheezy | % Complete

Copy | [C] MDS Hash:

Progress.

Done.

OEBPS/images/RPiDownload.png
RASPBIAN JESSIE LITE

Minimal image based on Debian Jessie

Version: April 2017
Release date: 2017-04-10
Kernel version: a1

Release notes: Link

[Download Torrent | & Download ZIP

OEBPS/images/pi0case.jpg

OEBPS/images/openelec-02.png
% Raspberry Pi Builds

These builds are based on the ARM architecture and run on Raspberry Pi only. There are separate builds for first-
generation (RPi) and second-generation (RPi2) boards. Please select the right one!

OEBPS/images/openelec-03.png
RPi First-Generation single-core models (Model A/B/B+ 256/512MB)

[Stable] OpenELEC 5.0.8 (arm) [Beta OpenELEC 5.95.5 (arm) [Legacy] OpenELEC 42.1 (arm)
Update file Update file Update file
Q Details Q Details Q Details

[Stable] OpenELEC 5.0.8 (arm) Disk [Beta] OpenELEC 5.95.5 (arm) Disk [Legacy] OpenELEC 4.2.1 (arm)
image image Disk image
Q Details Q Details Q Details

OEBPS/images/openelec-04.png

OEBPS/images/openelec-05.png
General topics

S — .
& o 2 > b
Firsttime user/ Video library Music library Pictures Remote Settings FAQs
Installing controls
Extras
Y ~ -
e \
VAN
New features Devices / Add-ons Skins. Supplemental Syncing and Advanced
Hardware tools. sharing topics
Development
Ve, A
X W @5
) .
Team Kodi Development Test builds and Troubleshooting Skin Add-on Translation
betas development development System

OEBPS/images/rasbi-config-07a.png
[Raspberry Pi Software Configuration Tool (raspi-config) f————

1 Change User Password Change password for the default user (pi)

2 Hostname Set the visible name for this Pi on a network

3 Boot Options Configure options for start-up

2 Localisation Options Set up language and regional settings to match your location
& Overclack Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

& Update Update this tool to the latest version

9 About raspi-config Information about this configuration ool

<Finish>

OEBPS/images/rasbi-config-08a.png
[Raspberry Pi Software Configuration Teol (raspi-config) —————————————

P1 Camera Enable/Disable connection to the Raspberry Pi Camera

P3 VNC Enable/Disable graphical remote access to your Pi using RealVNC
P4 SPT Enable/Disable automatic loading of SPI kernel module

s 12C Enable/Disable automatic loading of I2C kernel module

P6 Serial Enable/Disable shell and kernel messages on the serial connection
B7 1-Wire Enable/Disable one-wire interface

P8 Remote GPIO Enable/Disable remote access to GPIO pins

<Back>

OEBPS/images/desktop.jpg

OEBPS/images/openelec-01.png
=
Code Rush.
o W |
= MUSIC PRC

VIDEOS MOVIES

- - « Geves Years Actors

openelec -

Thark you for chaosing
mbedded linux entertainment center “.MWM‘MLE:,)

OEBPS/images/rasbi-config-05a.png
[Raspberry Pi Software Configuration Tool (raspi-config) f————

1 Change User Password Change password for the default user (pi)

2 Hostname Set the visible name for this Pi on a network
3 Boot Options Configure options for start-up

A

5 Interfacing Options Configure connections to peripherals

& overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

& Update Update this tool to the latest version

9 About raspi-config Information about this configuration ool

<Finish>

OEBPS/images/rasbi-config-06a.png
[Raspberry Pi Software Configuration Tool (raspi-config) f————

12 Change Timezone Set up cimezone to match your location
14 Change Wi-fi Country Set the legal channels used in your country

<Select> <Back>

OEBPS/images/microsd.JPG

OEBPS/images/board-02.png

OEBPS/images/board-03.png

OEBPS/images/rpi4-04.jpg

OEBPS/images/rpi4-05.jpg

OEBPS/images/rpi4-06.jpg

OEBPS/images/rpi4-07.jpg

OEBPS/images/rpi4-01.jpg

OEBPS/images/rpi4-02.jpg

OEBPS/images/rpi4-03.jpg
II.'-& —‘\ ¢ B

-_m— ‘. \ -
-~ - o L:..,"':-"-- ((il
p Sy - .';;.m o o \ . -

OEBPS/images/cc-by-nc-sa.png
(D HOO

OEBPS/images/case-01.jpg

OEBPS/images/case-04.jpg

OEBPS/images/board-06.png

OEBPS/images/case-02.jpg

OEBPS/images/case-03.jpg

OEBPS/images/case-05.jpg

OEBPS/images/board-03a.png

OEBPS/images/board-04a.png

OEBPS/images/hdmi-vga1.png

OEBPS/images/board-05.png

OEBPS/images/rpiB-08.JPG

OEBPS/images/rpiB-04a.JPG

OEBPS/images/rpiB-05.JPG

OEBPS/images/rpiB-06.JPG

OEBPS/images/rpiB-07a.JPG

OEBPS/images/rpiAp-08.png
Power
/ SDAI2C

scLizc

Power
MOS!
MISO

SCLK

12C ID EEPROM

Power

Power

UARTO_TXD
UARTO_RXD

PCM_CLK

CEON
CELN

12C 1D EEPROM

OEBPS/images/rpiB-01a.JPG

OEBPS/images/rpiB-02.JPG

OEBPS/images/rpiB-03.JPG

OEBPS/images/rpiAp-07.jpg

OEBPS/images/rpi-05.jpg

OEBPS/images/rpi-06.jpg

OEBPS/images/rpi-07.jpg

OEBPS/images/rpi-08a.jpg
5V Power

Power 3v3
/SDA 12C — GPIO2 5v Power

scLi2c GPI03

E

Ground

GPl0O4 GPIO14 UARTO_TXD

e

Ground
GPIO17
GPl027
GPI1022
Power 3v3

GPIO15 — UARTO_RXD
GPI1018 PCM_CLK

Ground
GPI023
GPI024
MoSI— GPIO10 Ground
GPI025

GPIO8 - CEON

GPIO7 CE1N

MISO GPI09

SCLK GPIO11
Ground

12C ID EEPROM ID_SD
GPIO5

GPI0O6

GPIO13

GPIO19

GPI1026

ID_SC 12C ID EEPROM

Ground
GPI012

Ground

GPIO16
GPI020
GPI021

Ground

OEBPS/images/rpi-01.jpg

OEBPS/images/rpi-02.jpg

OEBPS/images/rpi-03.jpg

OEBPS/images/rpi-04.jpg

OEBPS/images/rpiB-09.JPG

OEBPS/images/rpiB-10.jpg
Power
SDAI2C
SCLI2C

Power
Mosi
MISO

SCLK

ava [X2 M5V
23 © O 2
P03 s X6)| Ground
apio4 (7 J's) GPiO14
Ground [['s Y10} GPIo15
Gpio17 fu)i2] riots
Gpio27 [[13]14) Ground
apioz2 ffisJ1s] GPio23

ava 17] 1] GPio24
Gpio10 f19120) Ground
Gpio [[21]22] Grio2s
Griot1 2324] Grios
Ground (25126} GPiO7

Power

Power

UARTO_TXD
UARTO_RXD

PCM_CLK

CEON

CELN

OEBPS/images/rpiZ-01.jpg

OEBPS/images/pi0front.jpg
PIPPGIGIIIPO@@@®
(e e T T R R RO

0Q000Q@0GBGOGO
0000000 0c¢

Ll =

g
pm

(€3

[eXe] @]

OEBPS/images/rpiZ-05.jpg

OEBPS/images/Pi0.jpg

OEBPS/images/Pi4.jpg

OEBPS/images/board-01.png
r " E E BN N EEEEEEEEEEEEEERETRE

28!
- I s Raspberry Pi 4 Mode
©Ra spberry Pi 2018
] e |

RUN GLOBAL_EN

@

TRJGO926HENL
China M 1904

DISPLAY

FCC 1D: ZABCB RPIAB
_IC: 20953-R]

OEBPS/images/comparison.png
ol S G5'sy'ge ge g€ g€ 14 g€ 0¢ Gz (sng) sdud

6 6 i 14 14 14 414 414 € Gv (6)ubiopy
0€ X 69 0€ X 69 696X 968 G696 X968 G'9G X968 G'9G X968 G'9G X968 G9GX9G8 G9GX9G9 G9GX9Ge (Ww)szs
Sl Sl 4] LG 19 4 7 e o'l gL (M) Jemod
ERICIN4 IIN 06 3J1gsiecy Jalv IIN IIN IIN IIN Ulooenig
pueg pueg pueg pueg
albuis u/b/q IIN| [engoe/u/b/q [engoe/u/f/q eibuls u/b/q IIN IIN IIN IIN UIAA
MoMIBN
IIN IIN| 000L/00L/0L 00€/001/01 00L/0L 00L/0L 00L/0L 00L/0L IIN Svry
olas olas
AsoDIN ASoIN AsoDIN asoIN dsosIN AsoDIN asolIn JONIW/as dsoIN | /ONIN/AS abelo}s
€asnxe spod
(oso1w) | (osow) | ‘zasnxg C asnxy C asnxy C asnxy C asnxe ¢ asnxe cgasnxy zdsnxi 0z dasn
aneLs aneLs gor'e’L a9l a9l a9l aneLs aneLs aIN9se an9se Kows |y
[9A7 eV £V
IANYY 9ANYY | -X8HO0D WYY| -X8HOD NYY | -X8H0D NYY 9ANTY IANYY ANHY 9ANTY
2109-9|buls | 8109-9|BuUIS a109-penb a109-penb a109-penb JANYY 8100 2100-9|Buls| 8109-9|buls| 8100-9|buUIS | 8109-8|BUIS
ZH9 | ZHO | HO-Y9 ZHOG L HA-¥9 ZHD ¥'L WA-¥9 ZHO Z'} | -Penb ZHIW 006 ZHIN 002 ZHIN 002 ZHN 004 ZHIN 002 ndo
1102 S10C 9102 [4%014 vioc €102 sjed
Areniqaq | JaquisnoN 610z dunf| 8L0Z YoIen Areniga4| GlLog Aenigaq 10z AInp Kieniga4 JsquianoN | Aueniged asesley
Y
M o7 Id 0l87 1d gI8PoN ¥ +8 I9POIN € g 18POIN € g I8PoN +8 I13poN g18PON| +VISPON | IBPOIN | Id

Auusqdsey | Ausqdsey 14 Aueqdsey 14 Ausqdsey 14 Ausqdsey g id Ausqdsey 14 Ausqdsey 14 Ausqdsey I Ausqdsey Auseqdsey

OEBPS/images/umate-05.jpg

OEBPS/images/RealVNC-01.png
=@ =]|

Enter a VNC Server address or search

There are no connections in your address book at present.

Signin to your RealVNC account to automatically discover team computers.

Alternatively, enter the VNC Server IP address or hostname in the Search bar to connect direct.

& sonin. ~

OEBPS/images/RPiAlpha1.jpg

OEBPS/images/piblog-01.png
Posted by Eben Upton
Rasoberry P Founder.
Founder

27th Feb 2012t 736 pm

4 Comments

« A QR-CODE POSTER FOR ALL YOU GUERRILLA
The Raspberry Pi Foundation will be making a big (and very positive) MARKETING TYPES

announcement that just might interest you at 0600h GMT on Wednesday 29 LADIES AND GENTLEMEN, SET YOUR ALARMS!

February 2012. Come to www.raspberryniorg to find out what's going on
AND BREATHE .. »

OEBPS/images/RealVNC-08.jpg
@ ogemming
@ office

Q Internet

gk Games

@ Accessories

@ e

{8 #dd/ Remove Softviare
Appearance Settings
84 audio Device Settings
Main Menu Editor
ouse and Keyboard Settings

@ Raspbeny Pi Configuration

OEBPS/images/BplusandB2.jpg
Raspberry Pi Model B+ V1.2 Raspberry Pi 2 Model B V1.1

OEBPS/images/umate-09.png
ubuntu MATE

OEBPS/images/umate-01.png
* Install (as superuser)

re are you?

Auckland

Continue

OEBPS/images/umate-02.png
 Install (as superuser)

Keyboard layout

Choose your keyboard layout:

English (Ghana)
English (Nigeria)
English (South Africa)
English (UK)

Esperanto
Estonian
Faroese
Filipino

English (US) - Cherokee

English (US) - English (Colemak)

English (US) - English (Dvorak alternative international no dead keys)
English (Us) - English (Dvorak)

English (US) - English (Dvorak, international with dead keys)

English (US) - English (Macintosh)

English (US) - English (US, alternative international)

English (US) - English (Us, international with dead keys)

Type here to test your keyboard

Detect Keyboard Layout

& Back Continue

OEBPS/images/umate-03.png
e Install (as superuser)

Who are you?

Your name: | Sam King &

Your computer's name: | sam-ubuntu-mate 4
The name it uses when i taks to other computers.

Picka username: | sam g

choose a password: | @

Confirm your password: | @

Login automatically

© Require my password to login
") Encrypt my home folder

< Back Continue

OEBPS/images/umate-06.jpg
@ Applications Places system £) o) T3 ThuSep 24,05:07 O

ubuntu MATE

OEBPS/images/umate-07.png
@ B |~ 11 =)

Ubuntu MATE
15.04 via
BitTorrent

Raspberry Pi2

Ubuntu MATE
15.04 from
European CDN

Raspberry Pi2

Ubuntu MATE
15.04 from
Canadian mirror

Raspberry Pi2

Ubuntu MATE
15.04 from French
mirror

Raspberry Pi2

Ubuntu MATE
15.04 from
German mirror

Raspberry Pi2

Ubuntu MATE
15.04 from ltalian
mirror

Raspberry Pi2

kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

 var bc = document.getElementById('book-columns').style;
 bc.width = (window.innerWidth * 2) + 'px !important';
 bc.height = window.innerHeight + 'px !important';
 bc.marginTop = '0px !important';
 bc.webkitColumnWidth = window.innerWidth + 'px !important';
 bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+ window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */

function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}

OEBPS/images/umate-08.png

OEBPS/images/rpiAp-05.jpg

OEBPS/images/rpiAp-06.jpg

OEBPS/images/rpiZ-08.png
Power
SDAI2C
scLi2c

Power
Mos!
MISO

SCLK

12C ID EEPROM

L 00
212 © O
P03 5 Y6) Ground
crio4 [7 s] riot4
Ground 9 J10) GPIO15
6017 fuY12] GPIO18
6pI027 [13 Y14) Ground
GPI022 [15 Y16] GPI023

avs [7]is] cpio24
GPI010 [1eJ20) Ground
P09 [21]22] GPI025
P01 3 Y2] GPIog
Ground 25 Y26} GPIO7
ID_SD @@ ID_SC
GPI05 23 Y50) Ground
P06 [31]52] GPio12
GPI013 [[33]3¢] Ground
GPI019 [136] GPIO16
Gp1026 f57)38 GPI020
Ground ffa9 Ju0) GPIO21

Power

Power

UARTO_TXD
UARTO_RXD
PCM_CLK

CEON
CEIN
12C ID EEPROM

OEBPS/images/rpiAp-01a.jpg

OEBPS/images/rpiAp-02a.jpg

OEBPS/images/rpiAp-03a.jpg

OEBPS/images/rpiZ-03.jpg

OEBPS/images/ssh-02.png

OEBPS/images/rpiZ-04.jpg

OEBPS/images/ssh-03.png
Basic optons for your PuTTY session
‘Specty the destnation you want to connct to
Host Name for P address) Pot
10118 2
Connection type:
©Raw () Tehet © Rogn © SSH O Serial
Load, save or delete a sored session
Saved Sessions.

Raspberry Pi
[—
G

Close window on et
© Aways O Never @ Onlyon clean ext

OEBPS/images/rpiZ-02.jpg
=23

'
4
e

aaxc
-»e

OEBPS/images/pi0camera.jpg

OEBPS/images/RealVNC-03.png
101130 - VNC Viewer

=@ =

n
C

Connecting to 101.1.30...

OEBPS/images/RealVNC-02.png
2 Identity Check =]

P P——
(7}

'VNC Viewer has no record of connecting to this VNC Server, soiits
identity cannot be checked.

UNCServer: 101.1.30:5900
Catchphrase: Model pelican romeo. Premium cartel binary.
Signature: b3-b9-f6-63-86-Tc-5b-0b

Are you sure you want to connect? You won't be warned about this again.

OEBPS/images/RealVNC-04.png
B Authentication =

VNC Server: 10.11.30:5900
Usemame: pi

Password:

) Rememberpsssword

Catchphrase: Model pelican romeo. Premium cartel binary.
Signature: b3-b9-16-63-86-7c-5b-0b

(BT =T

OEBPS/images/RealVNC-07.jpg

OEBPS/images/RealVNC-09.png
System Interfaces | Performance | Localisation
Camera © Enabled © Disabled
SSH: © Enabled
VNC: © Disabled
SPI. © Enabled © Disabled
12C: © Enabled © Disabled
Seriall © Enabled © Disabled
1-Wire: © Enabled) Disabled
Remote GPIO: © Enabled) Disabled

oo] _ox |

OEBPS/images/rasbi-config-09.png
[Raspberry Pi Software Configuration Tool (raspi-config) ———

P1
B2

e
s
26
P7
e

Camera Enable/Disable
ssH Enable/Disable
sP1 Enable/Disable
120 Enable/Disable
serial Enable/Disable
1-wire Enable/Disable
Remote GPIO Enable/Disable

connection to the Raspberry Pi Camera
remote command line access to your Pi using SSH

automatic loading of SPI kernel module
automatic loading of I2C kernel module

shell and kernel messages on the serial connection
one-wire interface

remote access to GEIO pins

<Back>

OEBPS/images/RealVNC-06.png

OEBPS/images/RealVNC-05.png
& resvvoryPiEston- i ode

Connectivity

«$ 10.1.1.30

Connecting users can enter this adress in YNC
Viewer

Sign in to enable cloud connectivity of leam more
about the benefils

» Other ways o connect

Security

© Identity check

When prampted, connecting users should check for
matching details

Signature
b3-h3-16-63-86-7C-5b-0h

Catchphrase
Madel pelican rameo. Premium cartel binary
& Authentication

When prompted, connecting users should enter their
Unix user name and passwor.

er and get connected

