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A Pull of the Lever: Prefaces

Caffe Molinari

“Café Allongé, also called Espresso Lungo, is a drink midway between an Espresso

and Americano in strength. There are two different ways to make it. The first, and the

one I prefer, is to add a small amount of hot water to a double or quadruple Espresso

Ristretto. Like adding a splash of water to whiskey, the small dilution releases more of

the complex flavours in the mouth. 

“The second way is to pull an extra long double shot of Espresso. This achieves

approximately the same ratio of oils to water as the dilution method, but also releases a

different mix of flavours due to the longer extraction. Some complain that the long pull

is more bitter and detracts from the best character of the coffee, others feel it releases

even more complexity. 

“The important thing is that neither method of preparation should use so much water

as to result in a sickly, pale ghost of Espresso. Moderation in all things.” 

A Pull of the Lever: Prefaces
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About JavaScript Allongé

JavaScript Allongé is a first and foremost, a book about  programming with functions. It’s written in JavaScript, because JavaScript hits the perfect sweet spot of being both widely used, and of having proper first-class functions with lexical scope. If those terms seem unfamiliar, don’t worry: JavaScript Allongé takes great delight in explaining what they mean and why they matter. 

 JavaScript Allongé  begins at the beginning, with values and expressions, and builds from there to discuss types, identity, functions, closures, scopes, collections, iterators, and many more subjects up to working with classes and instances. 

It also provides recipes for using functions to write software that is simpler, cleaner, and less complicated than alternative approaches that are object-centric or code-centric. JavaScript idioms like function combinators and decorators leverage JavaScript’s power to make code easier to read, modify, debug and refactor. 

 JavaScript Allongé  teaches you how to handle complex code, and it also teaches you how to simplify code without dumbing it down. As a result,  JavaScript Allongé  is a rich read releasing many of JavaScript’s subtleties, much like the Café Allongé beloved by coffee enthusiasts everywhere. 

why the “six” edition? 

ECMAScript 2015 (formerly called ECMAScript 6 or “ES6”), is ushering in a very large number of

improvements to the way programmers can write small, powerful components and combine them

into larger, fully featured programs. Features like destructuring, block-structured variables, iterables, generators, and the class keyword are poised to make JavaScript programming more expressive. 

Prior to ECMAScript 2015, JavaScript did not include many features that programmers have dis-

covered are vital to writing great software. For example, JavaScript did not include block-structured variables. Over time, programmers discovered ways to roll their own versions of important features. 

For example, block-structured languages allow us to write:

for (int i = 0; i < array.length; ++i) {

 // ... 

}

And the variable i is scoped locally to the code within the braces. Prior to ECMAScript 2015, 

JavaScript did not support block-structuring, so programmers borrowed a trick from the Scheme

programming language, and would write:
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var i; 

for (i = 0; i < array.length; ++i) {

(function (i) {

 // ... 

})(i)

}

To create the same scoping with an Immediately Invoked Function Expression, or “IIFE.” 

Likewise, many programming languages permit functions to have a variable number of arguments, 

and to collect the arguments into a single variable as an array. In Ruby, we can write:

def foo (first, *rest)

# ... 

end

Prior to ECMAScript 2015, JavaScript did not support collecting a variable number of arguments

into a parameter, so programmers would take advantage of an awkward work-around and write

things like:

function foo () {

var first = arguments[0], 

rest

= [].slice.call(arguments, 1); 

 // ... 

}

The first edition of JavaScript Allongé explained these and many other patterns for writing

flexible and composable programs in JavaScript, but the intention wasn’t to explain how to work around JavaScript’s missing features: The intention was to explain why the style of programming exemplified by the missing features is important. 

Working around the missing features was a necessary evil. 

But now, JavaScript is gaining many important features, in part because the governing body behind JavaScript has observed that programmers are constantly working around the same set of limitations. 

With ECMASCript 2015, we can write:

for (let i = 0; i < array.length; ++i) {

 // ... 

}

And i is scoped to the for loop. We can also write:
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function foo (first, ...rest) {

 // ... 

}

And presto, rest collects the rest of the arguments without a lot of malarky involving slicing

arguments. Not having to work around these kinds of missing features makes JavaScript Allongé

a  better book, because it can focus on the  why  to do something and  when  to do it, instead of on the how to make it work

JavaScript Allongé, The “Six” Edition packs all the goodness of JavaScript Allongé into a new, 

updated package that is relevant for programmers working with (or planning to work with) the

latest version of JavaScript. 

that’s nice. is that the only reason? 

Actually, no. 

If it were just a matter of updating the syntax, the original version of JavaScript Allongé could have simply iterated, slowly replacing old syntax with new. It would have continued to say much the

same things, only with new syntax. 

 But there’s more to it than that. The original JavaScript Allongé was not just written to teach JavaScript: It was written to describe certain ideas in programming: Working with small, independent entities that compose together to make bigger programs. Thus, the focus on things like writing decorators. 

As noted above, JavaScript was chosen as the language for Allongé because it hit a sweet spot of having a large audience of programmers and having certain language features that happen to work well with this style of programming. 

ECMAScript 2015 does more than simply update the language with some simpler syntax for a few

things and help us avoid warts. It makes a number of interesting programming techniques easy to explain and easy to use. And these techniques dovetail nicely with Allongé’s focus on composing entities and working with functions. 

Thus, the “six” edition introduces classes and mixins. It introduces the notion of implementing private properties with symbols. It introduces iterators and generators. But the common thread that runs through all these things is that since they are all simple objects and simple functions, we can use the same set of “programming with functions” techniques to build programs by composing small, 

flexible, and decoupled entities. 

We just call some of those functions constructors, others decorators, others functional mixins, and yet others, policies. 

Introducing so many new ideas did require a major rethink of the way the book was organized. 

And introducing these new ideas did add substantially to its bulk. But even so, in a way it is

still explaining the exact same original idea that programs are built out of small, flexible functions composed together. 
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What JavaScript Allongé is. And isn’t. 

JavaScript Allongé is a book about thinking about programs

JavaScript Allongé is a book about programming with functions. From functions flow many ideas, 

from decorators to methods to delegation to mixins, and onwards in so many fruitful directions. 

The focus in this book on the underlying ideas, what we might call the fundamentals, and how they combine to form new ideas. The intention is to improve the way we think about programs. That’s a good thing. 

But while JavaScript Allongé attempts to be provocative, it is not  prescriptive. There is absolutely no suggestion that any of the techniques shown here are the only way to do something, the best way, or even an acceptable way to write programs that are intended to be used, read, and maintained by others. 

Software development is a complex field. Choices in development are often driven by social

considerations. People often say that software should be written for people to read. Doesn’t that depend upon the people in question? Should code written by a small team of specialists use the

same techniques and patterns as code maintained by a continuously changing cast of inexperienced interns? 

Choices in software development are also often driven by requirements specific to the type of

software being developed. For example, business software written in-house has a very different

set of requirements than a library written to be publicly distributed as open-source. 
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Choices in software development must also consider the question of consistency. If a particular codebase is written with lots of helper functions that place the subject first, like this:

const mapWith = (iterable, fn) =>

({

[Symbol.iterator]: function* () {

for (let element of iterable) {

yield fn(element); 

}

}

}); 

Then it can be jarring to add new helpers written that place the verb first, like this:

const filterWith = (fn, iterable) =>

({

[Symbol.iterator]: function* () {

for (let element of iterable) {

if (!!fn(element)) yield element; 

}

}

}); 

There are reasons why the second form is more flexible, especially when used in combination with partial application, but does that outweigh the benefit of having an entire codebase do everything consistently the first way or the second way? 

Finally, choices in software development cannot ignore the tooling that is used to create and maintain software. The use of source-code control systems with integrated diffing rewards making certain types of focused changes. The use of linters1 makes checking for certain types of undesirable code very cheap. Debuggers encourage the use of functions with explicit or implicit names. Continuous integration encourages the creation of software in tandem with and factored to facilitate the creation of automated test suites. 

JavaScript Allongé does not attempt to address the question of JavaScript best practices in the wider context of software development, because JavaScript Allongé isn’t a book about practicing, it’s a book about thinking. 

how this book is organized

 JavaScript Allongé  introduces new aspects of programming with functions in each chapter, explaining exactly how JavaScript works. Code examples within each chapter are small and emphasize

exposition rather than serving as patterns for everyday use. 

1https://en.wikipedia.org/wiki/Lint_
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Following some of the chapters are a series of recipes designed to show the application of the

chapter’s ideas in practical form. While the content of each chapter builds naturally on what

was discussed in the previous chapter, the recipes may draw upon any aspect of the JavaScript

programming language. 
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Foreword to the “Six” edition

ECMAScript 6 (short name: ES6; official name: ECMAScript 2015) was ratified as a standard on

June 17. Getting there took a while – in a way, the origins of ES6 date back to the year 2000:

After ECMAScript 3 was finished, TC39 (the committee evolving JavaScript) started to work on

ECMAScript 4. That version was planned to have numerous new features (interfaces, namespaces, 

packages, multimethods, etc.), which would have turned JavaScript into a completely new language. 

After internal conflict, a settlement was reached in July 2008 and a new plan was made – to abandon ECMAScript 4 and to replace it with two upgrades:

• A smaller upgrade would bring a few minor enhancements to ECMAScript 3. This upgrade

became ECMAScript 5. 

• A larger upgrade would substantially improve JavaScript, but without being as radical

as ECMAScript 4. This upgrade became ECMAScript 6 (some features that were initially

discussed will show up later, in upcoming ECMAScript versions). 

ECMAScript 6 has three major groups of features:

• Better syntax for features that already exist (e.g. via libraries). For example: classes and

modules. 

• New functionality in the standard library. For example:

– New methods for strings and arrays

– Promises (for asynchronous programming)

– Maps and sets

• Completely new features. For example: Generators, proxies and WeakMaps. 

With ECMAScript 6, JavaScript has become much larger as a language.  JavaScript Allongé, the

 “Six” Edition  is both a comprehensive tour of its features and a rich collection of techniques for making better use of them. You will learn much about functional programming and object-oriented programming. And you’ll do so via ES6 code, handed to you in small, easily digestible pieces. 

– Axel Rauschmayer Blogger2, trainer3 and author of “Exploring ES64” 

2http://www.2ality.com

3http://ecmanauten.de

4http://exploringjs.com
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Forewords to the First Edition

michael fogus

As a life-long bibliophile and long-time follower of Reg’s online work, I was excited when he started writing books. However, I’m very conservative about books – let’s just say that if there was an aftershave scented to the essence of “Used Book Store” then I would be first in line to buy. So as you might imagine I was “skeptical” about the decision to release JavaScript Allongé as an ongoing ebook, with a pay-what-you-want model. However, Reg sent me a copy of his book and I was humbled. 

Not only was this a great book, but it was also a great way to write and distribute books. Having written books myself, I know the pain of soliciting and receiving feedback. 

The act of writing is an iterative process with (very often) tight revision loops. However, the process of soliciting feedback, gathering responses, sending out copies, waiting for people to actually read it (if they ever do), receiving feedback and then ultimately making sense out of how to use it takes weeks and sometimes months. On more than one occasion I’ve found myself attempting to reify

feedback with content that either no longer existed or was changed beyond recognition. However, with the Leanpub model the read-feedback-change process is extremely efficient, leaving in its wake a quality book that continues to get better as others likewise read and comment into infinitude. 

In the case of JavaScript Allongé, you’ll find the Leanpub model a shining example of effectiveness. 

Reg has crafted (and continues to craft) not only an interesting book from the perspective of a connoisseur, but also an entertaining exploration into some of the most interesting aspects of his art. No matter how much of an expert you think you are, JavaScript Allongé has something to teach you… about coffee. I kid. 

As a staunch advocate of functional programming, much of what Reg has written rings true to me. 

While not exclusively a book about functional programming, JavaScript Allongé will provide a solid foundation for functional techniques. However, you’ll not be beaten about the head and neck with dogma. Instead, every section is motivated by relevant dialog and fortified with compelling source examples. As an author of programming books I admire what Reg has managed to accomplish and I

envy the fine reader who finds JavaScript Allongé via some darkened channel in the Internet sprawl and reads it for the first time. 

Enjoy. 

– Fogus, fogus.me5

matthew knox

A different kind of language requires a different kind of book. 

JavaScript holds surprising depths–its scoping rules are neither strictly lexical nor strictly dynamic, and it supports procedural, object-oriented (in several flavors!), and functional programming. Many 5http://www.fogus.me
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books try to hide most of those capabilities away, giving you recipes for writing JavaScript in a way that approximates class-centric programming in other languages. Not JavaScript Allongé. It starts with the fundamentals of values, functions, and objects, and then guides you through JavaScript from the inside with exploratory bits of code that illustrate scoping, combinators, context, state, prototypes, and constructors. 

Like JavaScript itself, this book gives you a gentle start before showing you its full depth, and like a Cafe Allongé, it’s over too soon. Enjoy! 

–Matthew Knox, mattknox.com6

6http://mattknox.com
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About The Sample PDF

This sample edition of the book includes just a portion of the complete book. Buying the book in progress entitles you to free updates, so download it today7! Besides, there’s really no risk at all. If you read  JavaScript Allongé, The “six” edition  and it doesn’t blow your mind, your money will be cheerfully refunded. 

–Reginald “Raganwald” Braithwaite, Toronto, 2015

7http://leanpub.com/javascriptallongesix
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No, this is not the author: But he has free coffee! 

Prelude: Values and Expressions over

Coffee

 The following material is extremely basic, however like most stories, the best way to begin is to start at the very beginning. 

Imagine we are visiting our favourite coffee shop. They will make for you just about any drink you desire, from a short, intense espresso ristretto through a dry cappuccino, up to those coffee-flavoured desert concoctions featuring various concentrated syrups and milks. (You tolerate the existence of sugary drinks because they provide a sufficient profit margin to the establishment to finance your hanging out there all day using their WiFi and ordering a $3 drink every few hours.)

You express your order at one end of their counter, the folks behind the counter perform their magic, and deliver the coffee you value at the other end. This is exactly how the JavaScript environment works for the purpose of this book. We are going to dispense with web servers, browsers and other complexities and deal with this simple model: You give the computer an expression8, and it returns a value9, just as you express your wishes to a barista and receive a coffee in return. 

8https://en.wikipedia.org/wiki/Expression_

9https://en.wikipedia.org/wiki/Value_
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values are expressions

All values are expressions. Say you hand the barista a café Cubano. Yup, you hand over a cup with some coffee infused through partially caramelized sugar. You say, “I want one of these.” The barista is no fool, she gives it straight back to you, and you get exactly what you want. Thus, a café Cubano is an expression (you can use it to place an order) and a value (you get it back from the barista). 

Let’s try this with something the computer understands easily:

42

Is this an expression? A value? Neither? Or both? 

The answer is, this is both an expression  and  a value. 10 The way you can tell that it’s both is very easy: When you type it into JavaScript, you get the same thing back, just like our café Cubano: 42

 //=> 42

All values are expressions. That’s easy! Are there any other kinds of expressions? Sure! let’s go back to the coffee shop. Instead of handing over the finished coffee, we can hand over the ingredients. 

Let’s hand over some ground coffee plus some boiling water. 

Astute readers will realize we’re omitting something. Congratulations! Take a sip of espresso. We’ll get to that in a moment. 

Now the barista gives us back an espresso. And if we hand over the espresso, we get the espresso right back. So, boiling water plus ground coffee is an expression, but it isn’t a value.11 Boiling water is a value. Ground coffee is a value. Espresso is a value. Boiling water plus ground coffee is an expression. 

Let’s try this as well with something else the computer understands easily:

"JavaScript" + " " + "Allonge" 

 //=> "JavaScript Allonge" 

10Technically, it’s a  representation  of a value using Base10 notation, but we needn’t worry about that in this book. You and I both understand that this means “42,” and so does the computer. 

11In some languages, expressions are a kind of value unto themselves and can be manipulated. The grandfather of such languages is Lisp. 

JavaScript is not such a language, expressions in and of themselves are not values. 
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Now we see that “strings” are values, and you can make an expression out of strings and an operator

+. Since strings are values, they are also expressions by themselves. But strings with operators are not values, they are expressions. Now we know what was missing with our “coffee grounds plus hot water” example. The coffee grounds were a value, the boiling hot water was a value, and the “plus” 

operator between them made the whole thing an expression that was not a value. 
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values and identity

In JavaScript, we test whether two values are identical with the === operator, and whether they are not identical with the !== operator:

2 === 2

 //=> true

'hello' !== 'goodbye' 

 //=> true

How does === work, exactly? Imagine that you’re shown a cup of coffee. And then you’re shown

another cup of coffee. Are the two cups “identical?” In JavaScript, there are four possibilities: First, sometimes, the cups are of different kinds. One is a demitasse, the other a mug. This

corresponds to comparing two things in JavaScript that have different  types. For example, the string

"2" is not the same thing as the number 2. Strings and numbers are different types, so strings and numbers are never identical:

2 === '2' 

 //=> false

true !== 'true' 

 //=> true

Second, sometimes, the cups are of the same type–perhaps two espresso cups–but they have different contents. One holds a single, one a double. This corresponds to comparing two JavaScript values that have the same type but different “content.” For example, the number 5 is not the same thing as the number 2. 

true === false

 //=> false

2 !== 5

 //=> true

'two' === 'five' 

 //=> false

What if the cups are of the same type  and  the contents are the same? Well, JavaScript’s third and fourth possibilities cover that. 
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value types

Third, some types of cups have no distinguishing marks on them. If they are the same kind of cup, and they hold the same contents, we have no way to tell the difference between them. This is the case with the strings, numbers, and booleans we have seen so far. 

2 + 2 === 4

 //=> true

(2 + 2 === 4) === (2 !== 5)

 //=> true

Note well what is happening with these examples: Even when we obtain a string, number, or boolean as the result of evaluating an expression, it is identical to another value of the same type with the same “content.” Strings, numbers, and booleans are examples of what JavaScript calls “value” or

“primitive” types. We’ll use both terms interchangeably. 

We haven’t encountered the fourth possibility yet. Stretching the metaphor somewhat, some types of cups have a serial number on the bottom. So even if you have two cups of the same type, and

their contents are the same, you can still distinguish between them. 

Cafe Macchiato is also a fine drink, especially when following up on the fortunes of the Azzurri or the standings in the Giro d’Italia

reference types

So what kinds of values might be the same type and have the same contents, but not be

considered identical to JavaScript? Let’s meet a data structure that is very common in contemporary programming languages, the  Array (other languages sometimes call it a List or a Vector). 

Prelude: Values and Expressions over Coffee

xviii

An array looks like this: [1, 2, 3]. This is an expression, and you can combine [] with other

expressions. Go wild with things like:

[2-1, 2, 2+1]

[1, 1+1, 1+1+1]

Notice that you are always generating arrays with the same contents. But are they identical the same way that every value of 42 is identical to every other value of 42? Try these for yourself:

[2-1, 2, 2+1] === [1,2,3]

[1,2,3] === [1, 2, 3]

[1, 2, 3] === [1, 2, 3]

How about that! When you type [1, 2, 3] or any of its variations, you are typing an expression

that generates its own  unique  array that is not identical to any other array, even if that other array also looks like [1, 2, 3]. It’s as if JavaScript is generating new cups of coffee with serial numbers on the bottom. 

They look the same, but if you examine them with ===, you see that they are different. Every time you evaluate an expression (including typing something in) to create an array, you’re creating a new, distinct value even if it  appears  to be the same as some other array value. As we’ll see, this is true of many other kinds of values, including  functions, the main subject of this book. 
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Mathematics and Coffee

In computer science, a literal is a notation for representing a fixed value in source code. 

Almost all programming languages have notations for atomic values such as integers, 

floating-point numbers, and strings, and usually for booleans and characters; some

also have notations for elements of enumerated types and compound values such as

arrays, records, and objects. An anonymous function is a literal for the function type.—

Wikipedia12

JavaScript, like most languages, has a collection of literals. We saw that an expression consisting solely of numbers, like 42, is a literal. It represents the number forty-two, which is 42 base 10. Not 12https://en.wikipedia.org/wiki/Literal_(computer_programming)
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all numbers are base ten. If we start a literal with a zero, it is an octal literal. So the literal 042 is 42

base 8, which is actually 34 base 10. 

Internally, both 042 and 34 have the same representation, as double-precision floating point13

numbers. A computer’s internal representation for numbers is important to understand. The

machine’s representation of a number almost never lines up perfectly with our understanding of

how a number behaves, and thus there will be places where the computer’s behaviour surprises us if we don’t know a little about what it’s doing “under the hood.” 

For example, the largest integer JavaScript can safely14 handle is 9007199254740991, or 2‘53‘- 1. Like most programming languages, JavaScript does not allow us to use commas to separate groups of

digits. 

floating

Most programmers never encounter the limit on the magnitude of an integer. But we mentioned that numbers are represented internally as floating point, meaning that they need not be just integers. 

We can, for example, write 1.5 or 33.33, and JavaScript represents these literals as floating point numbers. 

It’s tempting to think we now have everything we need to do things like handle amounts of

money, but as the late John Belushi would say, “Nooooooooooooooooooooo.” A computer’s internal

representation for a floating point number is binary, while our literal number was in base ten. This makes no meaningful difference for integers, but it does for fractions, because some fractions base 10 do not have exact representations base 2. 

One of the most oft-repeated examples is this:

1.0

 //=> 1

1.0 + 1.0

 //=> 2

1.0 + 1.0 + 1.0

 //=> 3

However:

13http://en.wikipedia.org/wiki/Double-precision_floating-point_format

14Implementations of JavaScript are free to handle larger numbers. For example, if you type 9007199254740991 + 9007199254740991 into node.js, it will happily report that the answer is 18014398509481982. But code that depends upon numbers larger than 9007199254740991 may not be reliable when moved to other implementations. 
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0.1

 //=> 0.1

0.1 + 0.1

 //=> 0.2

0.1 + 0.1 + 0.1

 //=> 0.30000000000000004

This kind of “inexactitude” can be ignored when performing calculations that have an acceptable deviation. For example, when centering some text on a page, as long as the difference between what you might calculate longhand and JavaScript’s calculation is less than a pixel, there is no observable error. 

But as a rule, if you need to work with real numbers, you should have more than a nodding

acquaintance with the IEEE Standard for Floating-Point Arithmetic15. Professional programmers almost never use floating point numbers to represent monetary amounts. For example, “$43.21” will nearly always be presented as two numbers: 43 for dollars and 21 for cents, not 43.21. In this book, we need not think about such details, but outside of this book, we must. 

operations on numbers

As we’ve seen, JavaScript has many common arithmetic operators. We can create expressions that

look very much like mathematical expressions, for example we can write 1 + 1 or 2 * 3 or 42 -

34 or even 6 / 2. These can be combined to make more complex expressions, like 2 * 5 + 1. 

In JavaScript, operators have an order of precedence designed to mimic the way humans typically parse written arithmetic. So:

2 * 5 + 1

 //=> 11

1 + 5 * 2

 //=> 11

JavaScript treats the expressions as if we had written (2 * 5) + 1 and 1 + (5 * 2), because the *

operator has a  higher precedence  than the + operator. JavaScript has many more operators. In a sense, they behave like little functions. If we write 1 + 2, this is conceptually similar to writing plus(1, 2) (assuming we have a function that adds two numbers bound to the name plus, of course). 

In addition to the common +, -, *, and /, JavaScript also supports modulus, %, and unary negation, 

-:

15https://en.wikipedia.org/wiki/IEEE_floating_point
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-(457 % 3)

 //=> -1

There are lots and lots more operators that can be used with numbers, including bitwise operators like | and & that allow you to operate directly on a number’s binary representation, and a number of other operators that perform assignment or logical comparison that we will look at later. 
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The first sip: Basic Functions

The perfect Café Allongé begins with the right beans, properly roasted. JavaScript Allongé begins with functions, properly dissected. 
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As Little As Possible About Functions, But No Less

In JavaScript, functions are values, but they are also much more than simple numbers, strings, or even complex data structures like trees or maps. Functions represent computations to be performed. 

Like numbers, strings, and arrays, they have a representation. Let’s start with the second simplest possible function. 16 In JavaScript, it looks like this:

() => 0

This is a function that is applied to no values and returns 0. Let’s verify that our function is a value like all others:

(() => 0)

 //=> [Function]

What!? Why didn’t it type back () => 0 for us? This  seems  to break our rule that if an expression is also a value, JavaScript will give the same value back to us. What’s going on? The simplest and easiest answer is that although the JavaScript interpreter does indeed return that value, displaying it on the screen is a slightly different matter. [Function] is a choice made by the people who wrote Node.js, the JavaScript environment that hosts the JavaScript REPL. If you try the same thing in a browser, you may see something else. 

16The simplest possible function is () => {}, we’ll see that later. 
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I’d prefer something else, but I must accept that what gets typed back to us on the screen is arbitrary, and all that really counts is that it is somewhat useful for a human to read. But we must understand that whether we see [Function] or () => 0, internally JavaScript has a full and proper function. 

functions and identities

You recall that we have two types of values with respect to identity: Value types and reference types. 

Value types share the same identity if they have the same contents. Reference types do not. 

Which kind are functions? Let’s try them out and see. For reasons of appeasing the JavaScript parser, we’ll enclose our functions in parentheses:

(() => 0) === (() => 0)

 //=> false

Like arrays, every time you evaluate an expression to produce a function, you get a new function that is not identical to any other function, even if you use the same expression to generate it. “Function” 

is a reference type. 

applying functions

Let’s put functions to work. The way we use functions is to  apply  them to zero or more values called  arguments. Just as 2 + 2 produces a value (in this case 4), applying a function to zero or more arguments produces a value as well. 

Here’s how we apply a function to some values in JavaScript: Let’s say that  fn_expr  is an expression that when evaluated, produces a function. Let’s call the arguments  args. Here’s how to apply a function to some arguments:

 fn_expr( args)

Right now, we only know about one such expression: () => 0, so let’s use it. We’ll put it in

parentheses17 to keep the parser happy, like we did above: (() => 0). Since we aren’t giving it any arguments, we’ll simply write () after the expression. So we write:

(() => 0)()

 //=> 0

17If you’re used to other programming languages, you’ve probably internalized the idea that sometimes parentheses are used to group operations in an expression like math, and sometimes to apply a function to arguments. If not… Welcome to the ALGOL family of programming languages! 
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functions that return values and evaluate expressions

We’ve seen () => 0. We know that (() => 0)() returns 0, and this is unsurprising. Likewise, the following all ought to be obvious:

(() => 1)()

 //=> 1

(() => "Hello, JavaScript")()

 //=> "Hello, JavaScript" 

(() => Infinity)()

 //=> Infinity

Well, the last one’s a doozy, but still, the general idea is this: We can make a function that returns a value by putting the value to the right of the arrow. 

In the prelude, we looked at expressions. Values like 0 are expressions, as are things like 40 + 2. Can we put an expression to the right of the arrow? 

(() => 1 + 1)()

 //=> 2

(() => "Hello, " + "JavaScript")()

 //=> "Hello, JavaScript" 

(() => Infinity * Infinity)()

 //=> Infinity

Yes we can. We can put any expression to the right of the arrow. For example, (() => 0)() is an expression. Can we put it to the right of an arrow, like this: () => (() => 0)()? 

Let’s try it:

(() => (() => 0)())()

 //=> 0

Yes we can! Functions can return the value of evaluating another function. 

When dealing with expressions that have a lot of the same characters (like parentheses), you may find it helpful to format the code to make things stand out. So we can also write:
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(() =>

(() => 0

)()

)()

 //=> 0

It evaluates to the same thing, 0. 

commas

The comma operator in JavaScript is interesting. It takes two arguments, evaluates them both, and itself evaluates to the value of the right-hand argument. In other words:

(1, 2)

 //=> 2

(1 + 1, 2 + 2)

 //=> 4

We can use commas with functions to create functions that evaluate multiple expressions:

(() => (1 + 1, 2 + 2))()

 //=> 4

This is useful when trying to do things that might involve  side-effects, but we’ll get to that later. In most cases, JavaScript does not care whether things are separated by spaces, tabs, or line breaks. So we can also write:

() =>

(1 + 1, 2 + 2)

Or even:

() => (

1 + 1, 

2 + 2

)
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the simplest possible block

There’s another thing we can put to the right of an arrow, a  block. A block has zero or more statements, separated by semicolons. 18

So, this is a valid function:

() => {}

It returns the result of evaluating a block that has no statements. What would that be? Let’s try it: (() => {})()

 //=> undefined

What is this undefined? 

undefined

In JavaScript, the absence of a value is written undefined, and it means there is no value. It will crop up again. undefined is its own type of value, and it acts like a value type:

undefined

 //=> undefined

Like numbers, booleans and strings, JavaScript can print out the value undefined. 

undefined === undefined

 //=> true

(() => {})() === (() => {})()

 //=> true

(() => {})() === undefined

 //=> true

No matter how you evaluate undefined, you get an identical value back. undefined is a value that means “I don’t have a value.” But it’s still a value :-)

18Sometimes, you will find JavaScript that has statements that are separated by newlines without semi-colons. This works because JavaScript has a feature that can infer where the semi-colons should be most of the time. We will not take advantage of this feature, but it’s helpful to know it exists. 
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You might think that undefined in JavaScript is equivalent to NULL in SQL. No. In SQL, two things that are NULL are not equal to nor share the same identity, because two unknowns can’t be equal. 

In JavaScript, every undefined is identical to every other undefined. 

void

We’ve seen that JavaScript represents an undefined value by typing undefined, and we’ve generated undefined values in two ways:

1. By evaluating a function that doesn’t return a value (() => {})(), and; 

2. By writing undefined ourselves. 

There’s a third way, with JavaScript’s void operator. Behold:

void 0

 //=> undefined

void 1

 //=> undefined

void (2 + 2)

 //=> undefined

void is an operator that takes any value and evaluates to undefined, always. So, when we

deliberately want an undefined value, should we use the first, second, or third form?19 The answer is, use void. By convention, use void 0. 

The first form works but it’s cumbersome. The second form works most of the time, but it is possible to break it by reassigning undefined to a different value, something we’ll discuss in Reassignment

and Mutation. The third form is guaranteed to always work, so that’s what we will use.20

back on the block

Back to our function. We evaluated this:

19Experienced JavaScript programmers are aware that there’s a fourth way, using a function argument. This was actually the preferred mechanism until void became commonplace. 

20As an exercise for the reader, we suggest you ask your friendly neighbourhood programming language designer or human factors subject-matter expert to explain why a keyword called void is used to generate an undefined value, instead of calling them both void or both undefined. We have no idea. 
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(() => {})()

 //=> undefined

We said that the function returns the result of evaluating a  block, and we said that a block is a (possibly empty) list of JavaScript  statements  separated by semicolons.21

Something like: { statement1; statement2; statement3; ... ; statementn }

We haven’t discussed these  statements. What’s a statement? 

There are many kinds of JavaScript statements, but the first kind is one we’ve already met. An

expression is a JavaScript statement. Although they aren’t very practical, these are valid JavaScript functions, and they return undefined when applied:

() => { 2 + 2 }

() => { 1 + 1; 2 + 2 }

As we saw with commas above, we can rearrange these functions onto multiple lines when we feel

its more readable that way:

() => {

1 + 1; 

2 + 2

}

But no matter how we arrange them, a block with one or more expressions still evaluates to

undefined:

(() => { 2 + 2 })()

 //=> undefined

(() => { 1 + 1; 2 + 2 })()

 //=> undefined

(() => {

1 + 1; 

2 + 2

})()

 //=> undefined

As you can see, a block with one expression does not behave like an expression, and a block with more than one expression does not behave like an expression constructed with the comma operator: 21You can also separate statements with line breaks. Readers who follow internet flame-fests may be aware of something called automatic semi-

colon insertion. Basically, there’s a step where JavaScript looks at your code and follows some rules to guess where you meant to put semicolons in should you leave them out. This feature was originally created as a kind of helpful error-correction. Some programmers argue that since it’s part of the language’s definition, it’s fair game to write code that exploits it, so they deliberately omit any semicolon that JavaScript will insert for them. 
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(() => 2 + 2)()

 //=> 4

(() => { 2 + 2 })()

 //=> undefined

(() => (1 + 1, 2 + 2))()

 //=> 4

(() => { 1 + 1; 2 + 2 })()

 //=> undefined

So how do we get a function that evaluates a block to return a value when applied? With the return keyword and any expression:

(() => { return 0 })()

 //=> 0

(() => { return 1 })()

 //=> 1

(() => { return 'Hello ' + 'World' })()

 // 'Hello World' 

The return keyword creates a  return statement  that immediately terminates the function application and returns the result of evaluating its expression. For example:

(() => {

1 + 1; 

return 2 + 2

})()

 //=> 4

And also:

(() => {

return 1 + 1; 

2 + 2

})()

 //=> 2

The return statement is the first statement we’ve seen, and it behaves differently than an expression. 

For example, you can’t use one as the expression in a simple function, because it isn’t an expression:
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(() => return 0)()

 //=> ERROR

Statements belong inside blocks and only inside blocks. Some languages simplify this by making

everything an expression, but JavaScript maintains this distinction, so when learning JavaScript we also learn about statements like function declarations, for loops, if statements, and so forth. We’ll see a few more of these later. 

functions that evaluate to functions

If an expression that evaluates to a function is, well, an expression, and if a return statement can have any expression on its right side…  Can we put an expression that evaluates to a function on the right side of a function expression? 

Yes:

() => () => 0

That’s a function! It’s a function that when applied, evaluates to a function that when applied, evaluates to 0. So we have  a function, that returns a function, that returns zero. Likewise: () => () => true

That’s a function, that returns a function, that returns true:

(() => () => true)()()

 //=> true

We could, of course, do the same thing with a block if we wanted:

() => () => { return true; }

But we generally don’t. 

Well. We’ve been very clever, but so far this all seems very abstract. Diffraction of a crystal is beautiful and interesting in its own right, but you can’t blame us for wanting to be shown a practical use for it, like being able to determine the composition of a star millions of light years away. So… In the next chapter, “I’d Like to Have an Argument, Please,” we’ll see how to make functions practical. 
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Ah. I’d Like to Have an Argument, Please. 22

Up to now, we’ve looked at functions without arguments. We haven’t even said what an argument

 is, only that our functions don’t have any. 

Most programmers are perfectly familiar with arguments (often called “parameters”). Secondary

school mathematics discusses this. So you know what they are, and I know that you know what

they are, but please be patient with the explanation! 

Let’s make a function with an argument:

(room) => {}

This function has one argument, room, and an empty body. Here’s a function with two arguments

and an empty body:

(room, board) => {}

I’m sure you are perfectly comfortable with the idea that this function has two arguments, room, and board. What does one do with the arguments? Use them in the body, of course. What do you

think this is? 

(diameter) => diameter * 3.14159265

It’s a function for calculating the circumference of a circle given the diameter. I read that aloud as “When applied to a value representing the diameter, this function  returns  the diameter times 3.14159265.” 

Remember that to apply a function with no arguments, we wrote (() => {})(). To apply a function with an argument (or arguments), we put the argument (or arguments) within the parentheses, like this:

((diameter) => diameter * 3.14159265)(2)

 //=> 6.2831853

You won’t be surprised to see how to write and apply a function to two arguments:

22The Argument Sketch from “Monty Python’s Previous Record” and “Monty Python’s Instant Record Collection” 
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((room, board) => room + board)(800, 150)

 //=> 950

a quick summary of functions and bodies

How arguments are used in a body’s expression is probably perfectly obvious to you from

the examples, especially if you’ve used any programming language (except for the dialect

of BASIC–which I recall from my secondary school–that didn’t allow parameters when

you called a procedure). 

Expressions consist either of representations of values (like 3.14159265, true, and

undefined), operators that combine expressions (like 3 + 2), some special forms like [1, 

2, 3] for creating arrays out of expressions, or function ( arguments) { body-statements}

for creating functions. 

One of the important possible statements is a return statement. A return statement accepts

any valid JavaScript expression. 

This loose definition is recursive, so we can intuit (or use our experience with other

languages) that since a function can contain a return statement with an expression, we can

write a function that returns a function, or an array that contains another array expression. 

Or a function that returns an array, an array of functions, a function that returns an array

of functions, and so forth:

() => () => {}; 

() => [ 1, 2, 3]; 

[1, [2, 3], 4]; 

() => [

() => 1, 

() => 2, 

() => 3

]; 

call by value

Like most contemporary programming languages, JavaScript uses the “call by value” evaluation

strategy23. That means that when you write some code that appears to apply a function to an expression or expressions, JavaScript evaluates all of those expressions and applies the functions to the resulting value(s). 

23http://en.wikipedia.org/wiki/Evaluation_strategy

The first sip: Basic Functions

18

So when you write:

((diameter) => diameter * 3.14159265)(1 + 1)

 //=> 6.2831853

What happened internally is that the expression 1 + 1 was evaluated first, resulting in 2. Then our circumference function was applied to 2.24

We’ll see below that while JavaScript always calls by value, the notion of a “value” has additional subtlety. But before we do, let’s look at variables. 

variables and bindings

Right now everything looks simple and straightforward, and we can move on to talk about

arguments in more detail. And we’re going to work our way up from (diameter) => diameter

* 3.14159265 to functions like:

(x) => (y) => x

(x) => (y) => x just looks crazy, as if we are learning English as a second language and the

teacher promises us that soon we will be using words like  antidisestablishmentarianism. Besides a desire to use long words to sound impressive, this is not going to seem attractive until we find ourselves wanting to discuss the role of the Church of England in 19th century British politics. 

But there’s another reason for learning the word  antidisestablishmentarianism: We might learn how prefixes and postfixes work in English grammar. It’s the same thing with (x) => (y) => x. 

It has a certain important meaning in its own right, and it’s also an excellent excuse to learn about functions that make functions, environments, variables, and more. 

In order to talk about how this works, we should agree on a few terms (you may already know them, but let’s check-in together and “synchronize our dictionaries”). The first x, the one in (x) => ..., is an  argument. The y in function (y) ... is another argument. The second x, the one in => x, is not an argument,  it’s an expression referring to a variable. Arguments and variables work the same way whether we’re talking about (x) => (y) => x or just plain (x) => x. 

Every time a function is invoked (“invoked” means “applied to zero or more arguments”), a new

 environment  is created. An environment is a (possibly empty) dictionary that maps variables to values by name. The x in the expression that we call a “variable” is itself an expression that is evaluated by looking up the value in the environment. 

24We said that you can’t apply a function to an expression. You  can  apply a function to one or more functions. Functions are values! This has interesting applications, and they will be explored much more thoroughly in Functions That Are Applied to Functions. 
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How does the value get put in the environment? Well for arguments, that is very simple. When you apply the function to the arguments, an entry is placed in the dictionary for each argument. So when we write:

((x) => x)(2)

 //=> 2

What happens is this:

1. JavaScript parses this whole thing as an expression made up of several sub-expressions. 

2. It then starts evaluating the expression, including evaluating sub-expressions

3. One sub-expression, (x) => x evaluates to a function. 

4. Another, 2, evaluates to the number 2. 

5. JavaScript now evaluates applying the function to the argument 2. Here’s where it gets

interesting…

6. An environment is created. 

7. The value ‘2’ is bound to the name ‘x’ in the environment. 

8. The expression ‘x’ (the right side of the function) is evaluated within the environment we just created. 

9. The value of a variable when evaluated in an environment is the value bound to the variable’s name in that environment, which is ‘2’

10. And that’s our result. 

When we talk about environments, we’ll use an unsurprising syntax25 for showing their bindings:

{x: 2, ...}. meaning, that the environment is a dictionary, and that the value 2 is bound to the name x, and that there might be other stuff in that dictionary we aren’t discussing right now. 

call by sharing

Earlier, we distinguished JavaScript’s  value types  from its  reference types. At that time, we looked at how JavaScript distinguishes objects that are identical from objects that are not. Now it is time to take another look at the distinction between value and reference types. 

There is a property that JavaScript strictly maintains: When a value–any value–is passed as an

argument to a function, the value bound in the function’s environment must be identical to the

original. 

We said that JavaScript binds names to values, but we didn’t say what it means to bind a name to a value. Now we can elaborate: When JavaScript binds a value-type to a name, it makes a copy of the value and places the copy in the environment. As you recall, value types like strings and numbers 25http://json.org/
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are identical to each other if they have the same content. So JavaScript can make as many copies of strings, numbers, or booleans as it wishes. 

What about reference types? JavaScript does not place copies of reference values in any environment. 

JavaScript places  references  to reference types in environments, and when the value needs to be used, JavaScript uses the reference to obtain the original. 

Because many references can share the same value, and because JavaScript passes references as

arguments, JavaScript can be said to implement “call by sharing” semantics. Call by sharing is

generally understood to be a specialization of call by value, and it explains why some values are known as value types and other values are known as reference types. 

And with that, we’re ready to look at  closures. When we combine our knowledge of value types, reference types, arguments, and closures, we’ll understand why this function always evaluates to true no matter what argument26 you apply it to:

(value) =>

((ref1, ref2) => ref1 === ref2)(value, value)

26Unless the argument is NaN, which isn’t equal to anything,  including itself. NaN in JavaScript behaves a lot like NULL in SQL. 
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Closures and Scope

It’s time to see how a function within a function works:

((x) => (y) => x)(1)(2)

 //=> 1

First off, let’s use what we learned above. Given ( some function)( some argument), we know that we apply the function to the argument, create an environment, bind the value of the argument to the name, and evaluate the function’s expression. So we do that first with this code:

((x) => (y) => x)(1)

 //=> [Function]

The environment belonging to the function with signature (x) => ... becomes {x: 1, ...}, and

the result of applying the function is another function value. It makes sense that the result value is a function, because the expression for (x) => ...’s body is:

(y) => x

So now we have a value representing that function. Then we’re going to take the value of that

function and apply it to the argument 2, something like this:

((y) => x)(2)

So we seem to get a new environment {y: 2, ...}. How is the expression x going to be evaluated

in that function’s environment? There is no x in its environment, it must come from somewhere

else. 

This, by the way, is one of the great defining characteristics of JavaScript and languages in the same family: Whether they allow things like functions to nest inside each other, and if so, how they handle variables from “outside” of a function that are referenced inside a function. For example, here’s the equivalent code in Ruby:

lambda { |x|

lambda { |y| x }

}[1][2]

 #=> 1

Now let’s enjoy a relaxed Allongé before we continue! 
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if functions without free variables are pure, are closures impure? 

The function (y) => x is interesting. It contains a  free variable, x. 27 A free variable is one that is not bound within the function. Up to now, we’ve only seen one way to “bind” a variable, namely by passing in an argument with the same name. Since the function (y) => x doesn’t have an argument named x, the variable x isn’t bound in this function, which makes it “free.” 

Now that we know that variables used in a function are either bound or free, we can bifurcate

functions into those with free variables and those without:

• Functions containing no free variables are called  pure functions. 

• Functions containing one or more free variables are called  closures. 

Pure functions are easiest to understand. They always mean the same thing wherever you use them. 

Here are some pure functions we’ve already seen:

() => {}

(x) => x

(x) => (y) => x

The first function doesn’t have any variables, therefore doesn’t have any free variables. The second doesn’t have any free variables, because its only variable is bound. The third one is actually two functions, one inside the other. (y) => ... has a free variable, but the entire expression refers to (x) => ..., and it doesn’t have a free variable: The only variable anywhere in its body is x, which is certainly bound within (x) => .... 

From this, we learn something: A pure function can contain a closure. 

If pure functions can contain closures, can a closure contain a pure function? Using only

what we’ve learned so far, attempt to compose a closure that contains a pure function. If

you can’t, give your reasoning for why it’s impossible. 

Pure functions always mean the same thing because all of their “inputs” are fully defined by their arguments. Not so with a closure. If I present to you this pure function (x, y) => x + y, we know exactly what it does with (2, 2). But what about this closure: (y) => x + y? We can’t say what it will do with argument (2) without understanding the magic for evaluating the free variable x. 

27You may also hear the term “non-local variable.” Both are correct. 
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it’s always the environment

To understand how closures are evaluated, we need to revisit environments. As we’ve said before, all functions are associated with an environment. We also hand-waved something when describing

our environment. Remember that we said the environment for ((x) => (y) => x)(1) is {x: 1, 

...} and that the environment for ((y) => x)(2) is {y: 2, ...}? Let’s fill in the blanks! 

The environment for ((y) => x)(2) is  actually {y: 2, '..': {x: 1, ...}}. '..' means something like “parent” or “enclosure” or “super-environment.” It’s (x) => ...’s environment, because the function (y) => x is within (x) => ...’s body. So whenever a function is applied to arguments, its environment always has a reference to its parent environment. 

And now you can guess how we evaluate ((y) => x)(2) in the environment {y: 2, '..': {x:

1, ...}}. The variable x isn’t in (y) => ...’s immediate environment, but it is in its parent’s environment, so it evaluates to 1 and that’s what ((y) => x)(2) returns even though it ended up ignoring its own argument. 

(x) => x is called the I Combinator, or the  Identity Function. (x) => (y) => x is called the K

Combinator, or  Kestrel. Some people get so excited by this that they write entire books about them, some are great a, some–how shall I put this–are interesting b if you use Ruby. 

 ahttp://www.amzn.com/0192801422?tag=raganwald001-20

 bhttps://leanpub.com/combinators

Functions can have grandparents too:

(x) =>

(y) =>

(z) => x + y + z

This function does much the same thing as:

(x, y, z) => x + y + z

Only you call it with (1)(2)(3) instead of (1, 2, 3). The other big difference is that you can call it with (1) and get a function back that you can later call with (2)(3). 
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The first function is the result of currying a the second function. Calling a curried function with only some of its arguments is sometimes called partial application b. Some programming languages automatically curry and partially evaluate functions without the need to manually nest them. 

 ahttps://en.wikipedia.org/wiki/Currying

 bhttps://en.wikipedia.org/wiki/Partial_application

shadowy variables from a shadowy planet

An interesting thing happens when a variable has the same name as an ancestor environment’s

variable. Consider:

(x) =>

(x, y) => x + y

The function (x, y) => x + y is a pure function, because its x is defined within its own environment. Although its parent also defines an x, it is ignored when evaluating x + y. JavaScript always searches for a binding starting with the functions own environment and then each parent in turn until it finds one. The same is true of:

(x) =>

(x, y) =>

(w, z) =>

(w) =>

x + y + z

When evaluating x + y + z, JavaScript will find x and y in the great-grandparent scope and z in the parent scope. The x in the great-great-grandparent scope is ignored, as are both ws. When a variable has the same name as an ancestor environment’s binding, it is said to  shadow  the ancestor. 

This is often a good thing. 

which came first, the chicken or the egg? 

This behaviour of pure functions and closures has many, many consequences that can be exploited to write software. We are going to explore them in some detail as well as look at some of the other mechanisms JavaScript provides for working with variables and mutable state. 

But before we do so, there’s one final question: Where does the ancestry start? If there’s no other code in a file, what is (x) => x’s parent environment? 
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JavaScript always has the notion of at least one environment we do not control: A global

environment in which many useful things are bound such as libraries full of standard functions. 

So when you invoke ((x) => x)(1) in the REPL, its full environment is going to look like this: {x: 1, '..':  global environment}. 

Sometimes, programmers wish to avoid this. If you don’t want your code to operate directly within the global environment, what can you do? Create an environment for them, of course. Many

programmers choose to write every JavaScript file like this:

 // top of the file

(() => {

 // ... lots of JavaScript ... 

})(); 

 // bottom of the file

The effect is to insert a new, empty environment in between the global environment and your own functions: {x: 1, '..': {'..':  global environment}}. As we’ll see when we discuss mutable state, this helps to prevent programmers from accidentally changing the global state that is shared by all code in the program. 
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That Constant Coffee Craving

Up to now, all we’ve really seen are  anonymous functions, functions that don’t have a name. This feels very different from programming in most other languages, where the focus is on naming

functions, methods, and procedures. Naming things is a critical part of programming, but all we’ve seen so far is how to name arguments. 

There are other ways to name things in JavaScript, but before we learn some of those, let’s see how to use what we already have to name things. Let’s revisit a very simple example:

(diameter) => diameter * 3.14159265

What is this “3.14159265” number? PI28, obviously. We’d like to name it so that we can write something like:

(diameter) => diameter * PI

In order to bind 3.14159265 to the name PI, we’ll need a function with a parameter of PI applied to an argument of 3.14159265. If we put our function expression in parentheses, we can apply it to the argument of 3.14159265:

((PI) =>

 // ???? 

)(3.14159265)

What do we put inside our new function that binds 3.14159265 to the name PI when evaluated? 

Our circumference function, of course:

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

This expression, when evaluated, returns a function that calculates circumferences. That sounds bad, but when we think about it, (diameter) => diameter * 3.14159265 is also an expression, 

that when evaluated, returns a function that calculates circumferences. All of our “functions” are expressions. This one has a few more moving parts, that’s all. But we can use it just like (diameter)

=> diameter * 3.14159265. 

Let’s test it:

28https://en.wikipedia.org/wiki/Pi
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((diameter) => diameter * 3.14159265)(2)

 //=> 6.2831853

((PI) =>

(diameter) => diameter * PI

)(3.14159265)(2)

 //=> 6.2831853

That works! We can bind anything we want in an expression by wrapping it in a function that is

immediately invoked with the value we want to bind.29

inside-out

There’s another way we can make a function that binds 3.14159265 to the name PI and then uses

that in its expression. We can turn things inside-out by putting the binding inside our diameter calculating function, like this:

(diameter) =>

((PI) =>

diameter * PI)(3.14159265)

It produces the same result as our previous expressions for a diameter-calculating function:

((diameter) => diameter * 3.14159265)(2)

 //=> 6.2831853

((PI) =>

(diameter) => diameter * PI

)(3.14159265)(2)

 //=> 6.2831853

((diameter) =>

((PI) =>

diameter * PI)(3.14159265))(2)

 //=> 6.2831853

Which one is better? Well, the first one seems simplest, but a half-century of experience has

taught us that names matter. A “magic literal” like 3.14159265 is anathema to sustainable software development. 

The third one is easiest for most people to read. It separates concerns nicely: The “outer” function describes its parameters:

29JavaScript programmers regularly use the idea of writing an expression that denotes a function and then immediately applying it to arguments. 

Explaining the pattern, Ben Alman coined the term [Immediately Invoked Function Expression][iife] for it, often abbreviated “IIFE.” 
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(diameter) =>

 // ... 

Everything else is encapsulated in its body. That’s how it should be, naming PI is its concern, not ours. The other formulation:

((PI) =>

 // ... 

)(3.14159265)

“Exposes” naming PI first, and we have to look inside to find out why we care. So, should we should always write this? 

(diameter) =>

((PI) =>

diameter * PI)(3.14159265)

Well, the wrinkle with this is that typically, invoking functions is considerably more expensive than evaluating expressions. Every time we invoke the outer function, we’ll invoke the inner function. 

We could get around this by writing

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

But then we’ve obfuscated our code, and we don’t want to do that unless we absolutely have to. 

What would be very nice is if the language gave us a way to bind names inside of blocks without incurring the cost of a function invocation. And JavaScript does. 

const

Another way to write our “circumference” function would be to pass PI along with the diameter

argument, something like this:

(diameter, PI) => diameter * PI

And we could use it like this:
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((diameter, PI) => diameter * PI)(2, 3.14159265)

 //=> 6.2831853

This differs from our example above in that there is only one environment, rather than two. We have one binding in the environment representing our regular argument, and another our “constant.” 

That’s more efficient, and it’s  almost  what we wanted all along: A way to bind 3.14159265 to a readable name. 

JavaScript gives us a way to do that, the const keyword. We’ll learn a lot more about const in future chapters, but here’s the most important thing we can do with const:

(diameter) => {

const PI = 3.14159265; 

return diameter * PI

}

The const keyword introduces one or more bindings in the block that encloses it. It doesn’t incur the cost of a function invocation. That’s great. Even better, it puts the symbol (like PI) close to the value (3.14159265). That’s much better than what we were writing. 

We use the const keyword in a  const statement. const statements occur inside blocks, we can’t use them when we write a fat arrow that has an expression as its body. 

It works just as we want. Instead of:

((diameter) =>

((PI) =>

diameter * PI)(3.14159265))(2)

Or:

((diameter, PI) => diameter * PI)(2, 3.14159265)

 //=> 6.2831853

We write:
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((diameter) => {

const PI = 3.14159265; 

return diameter * PI

})(2)

 //=> 6.2831853

We can bind any expression. Functions are expressions, so we can bind helper functions:

(d) => {

const calc = (diameter) => {

const PI = 3.14159265; 

return diameter * PI

}; 

return "The circumference is " + calc(d)

}

Notice calc(d)? This underscores what we’ve said: if we have an expression that evaluates to a

function, we apply it with (). A name that’s bound to a function is a valid expression evaluating to a function.30

Amazing how such an important idea–naming functions–can be explained  en passant  in just a few words. That emphasizes one of the things JavaScript gets really, really right: Functions as “first class entities.” Functions are values that can be bound to names like any other value, passed as arguments, returned from other functions, and so forth. 

We can bind more than one name-value pair by separating them with commas. For readability, most people put one binding per line:

(d) => {

const PI

= 3.14159265, 

calc = (diameter) => diameter * PI; 

return "The circumference is " + calc(d)

}

30We’re into the second chapter and we’ve finally named a function. Sheesh. 
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nested blocks

Up to now, we’ve only ever seen blocks we use as the body of functions. But there are other kinds of blocks. One of the places you can find blocks is in an if statement. In JavaScript, an if statement looks like this:

(n) => {

const even = (x) => {

if (x === 0)

return true; 

else

return !even(x - 1); 

}

return even(n)

}

And it works for fairly small numbers:

((n) => {

const even = (x) => {

if (x === 0)

return true; 

else

return !even(x - 1); 

}

return even(n)

})(13)

 //=> false

The if statement is a statement, not an expression (an unfortunate design choice), and its clauses are statements or blocks. So we could also write something like:

(n) => {

const even = (x) => {

if (x === 0)

return true; 

else {

const odd = (y) => !even(y); 

return odd(x - 1); 

}
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}

return even(n)

}

And this also works:

((n) => {

const even = (x) => {

if (x === 0)

return true; 

else {

const odd = (y) => !even(y); 

return odd(x - 1); 

}

}

return even(n)

})(42)

 //=> true

We’ve used a block as the else clause, and since it’s a block, we’ve placed a const statement inside it. 

const and lexical scope

This seems very straightforward, but alas, there are some semantics of binding names that we need to understand if we’re to place const anywhere we like. The first thing to ask ourselves is, what happens if we use const to bind two different values to the “same” name? 

Let’s back up and reconsider how closures work. What happens if we use parameters to bind two

different values to the same name? 

Here’s the second formulation of our diameter function, bound to a name using an IIFE:

((diameter_fn) =>

 // ... 

)(

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

)

It’s more than a bit convoluted, but it binds ((PI) => (diameter) => diameter * PI)(3.14159265) to diameter_fn and evaluates the expression that we’ve elided. We can use any expression in there, and that expression can invoke diameter_fn. For example:
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((diameter_fn) =>

diameter_fn(2)

)(

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

)

 //=> 6.2831853

We know this from the chapter on closures, but even though PI is not bound when we invoke diameter_fn by evaluating diameter_fn(2), PI  is  bound when we evaluated (diameter) =>

diameter * PI, and thus the expression diameter * PI is able to access values for PI and diameter when we evaluate diameter_fn. 

This is called lexical scoping31, because we can discover where a name is bound by looking at the source code for the program. We can see that PI is bound in an environment surrounding (diameter)

=> diameter * PI, we don’t need to know where diameter_fn is invoked. 

We can test this by deliberately creating a “conflict:” 

((diameter_fn) =>

((PI) =>

diameter_fn(2)

)(3)

)(

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

)

 //=> 6.2831853

Although we have bound 3 to PI in the environment surrounding diameter_fn(2), the value that

counts is 3.14159265, the value we bound to PI in the environment surrounding (diameter)  ⇒

diameter * PI. 

That much we can carefully work out from the way closures work. Does const work the same way? 

Let’s find out:

31https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope_vs._dynamic_scope
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((diameter_fn) => {

const PI = 3; 

return diameter_fn(2)

})(

(() => {

const PI = 3.14159265; 

return (diameter) => diameter * PI

})()

)

 //=> 6.2831853

Yes. Binding values to names with const works just like binding values to names with parameter

invocations, it uses lexical scope. 

are consts also from a shadowy planet? 

We just saw that values bound with const use lexical scope, just like values bound with parameters. 

They are looked up in the environment where they are declared. And we know that functions create environments. Parameters are declared when we create functions, so it makes sense that parameters are bound to environments created when we invoke functions. 

But const statements can appear inside blocks, and we saw that blocks can appear inside of other blocks, including function bodies. So where are const variables bound? In the function environment? 

Or in an environment corresponding to the block? 

We can test this by creating another conflict. But instead of binding two different variables to the same name in two different places, we’ll bind two different values to the same name, but one environment will be completely enclosed by the other. 

Let’s start, as above, by doing this with parameters. We’ll start with:

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

And gratuitously wrap it in another IIFE so that we can bind PI to something else:
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((PI) =>

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

)(3)

This still evaluates to a function that calculates diameters:

((PI) =>

((PI) =>

(diameter) => diameter * PI

)(3.14159265)

)(3)(2)

 //=> 6.2831853

And we can see that our diameter * PI expression uses the binding for PI in the closest parent

environment. but one question: Did binding 3.14159265 to PI somehow change the binding in the

“outer” environment? Let’s rewrite things slightly differently:

((PI) => {

((PI) => {})(3); 

return (diameter) => diameter * PI; 

})(3.14159265)

Now we bind 3 to PI in an otherwise empty IIFE inside of our IIFE that binds 3.14159265 to PI. 

Does that binding “overwrite” the outer one? Will our function return 6 or 6.2831853? This is a book, you’ve already scanned ahead, so you know that the answer is no, the inner binding does not overwrite the outer binding:

((PI) => {

((PI) => {})(3); 

return (diameter) => diameter * PI; 

})(3.14159265)(2)

 //=> 6.2831853

We say that when we bind a variable using a parameter inside another binding, the inner binding shadows  the outer binding. It has effect inside its own scope, but does not affect the binding in the enclosing scope. 

So what about const. Does it work the same way? 
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((diameter) => {

const PI = 3.14159265; 

(() => {

const PI = 3; 

})(); 

return diameter * PI; 

})(2)

 //=> 6.2831853

Yes, names bound with const shadow enclosing bindings just like parameters. But wait! There’s

more!!! 

Parameters are only bound when we invoke a function. That’s why we made all these IIFEs. But

const statements can appear inside blocks. What happens when we use a const inside of a block? 

We’ll need a gratuitous block. We’ve seen if statements, what could be more gratuitous than:

if (true) {

 // an immediately invoked block statement (IIBS)

}

Let’s try it:

((diameter) => {

const PI = 3; 

if (true) {

const PI = 3.14159265; 

return diameter * PI; 

}

})(2)

 //=> 6.2831853

((diameter) => {

const PI = 3.14159265; 

if (true) {

const PI = 3; 

}

return diameter * PI; 
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})(2)

 //=> 6.2831853

Ah! const statements don’t just shadow values bound within the environments created by functions, they shadow values bound within environments created by blocks! 

This is enormously important. Consider the alternative: What if const could be declared inside of a block, but it always bound the name in the function’s scope. In that case, we’d see things like this: ((diameter) => {

const PI = 3.14159265; 

if (true) {

const PI = 3; 

}

return diameter * PI; 

})(2)

 //=> would return 6 if const had function scope

If const always bound its value to the name defined in the function’s environment, placing a const statement inside of a block would merely rebind the existing name, overwriting its old contents. 

That would be super-confusing. And this code would “work:” 

((diameter) => {

if (true) {

const PI = 3.14159265; 

}

return diameter * PI; 

})(2)

 //=> would return 6.2831853 if const had function scope

Again, confusing. Typically, we want to bind our names as close to where we need them as possible. 

This design rule is called the Principle of Least Privilege32, and it has both quality and security implications. Being able to bind a name inside of a block means that if the name is only needed in the block, we are not “leaking” its binding to other parts of the code that do not need to interact with it. 

rebinding

By default, JavaScript permits us to  rebind  new values to names bound with a parameter. For example, we can write:

32https://en.wikipedia.org/wiki/Principle_of_least_privilege
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const evenStevens = (n) => {

if (n === 0) {

return true; 

}

else if (n == 1) {

return false; 

}

else {

n = n - 2; 

return evenStevens(n); 

}

}

evenStevens(42)

 //=> true

The line n = n - 2;  rebinds  a new value to the name n. We will discuss this at much greater length in Reassignment, but long before we do, let’s try a similar thing with a name bound using const. 

We’ve already bound evenStevens using const, let’s try rebinding it:

evenStevens = (n) => {

if (n === 0) {

return true; 

}

else if (n == 1) {

return false; 

}

else {

return evenStevens(n - 2); 

}

}

 //=> ERROR, evenStevens is read-only

JavaScript does not permit us to rebind a name that has been bound with const. We can  shadow  it by using const to declare a new binding with a new function or block scope, but we cannot rebind a name that was bound with const in an existing scope. 

This is valuable, as it greatly simplifies the analysis of programs to see at a glance that when something is bound with const, we need never worry that its value may change. 
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Naming Functions

Let’s get right to it. This code does  not  name a function:

const repeat = (str) => str + str

It doesn’t name the function “repeat” for the same reason that const answer = 42 doesn’t name

the number 42. This syntax binds an anonymous function to a name in an environment, but the

function itself remains anonymous. 

the function keyword

JavaScript  does  have a syntax for naming a function, we use the function keyword. Until ECMAScript 2015 was created, function was the usual syntax for writing functions. 

Here’s our repeat function written using a “fat arrow” 

(str) => str + str

And here’s (almost) the exact same function written using the function keyword:

function (str) { return str + str }

Let’s look at the obvious differences:

1. We introduce a function with the function keyword. 

2. Something else we’re about to discuss is optional. 

3. We have arguments in parentheses, just like fat arrow functions. 

4. We do not have a fat arrow, we go directly to the body. 

5. We always use a block, we cannot write function (str) str + str. This means that if we

want our functions to return a value, we always need to use the return keyword

If we leave out the “something optional” that comes after the function keyword, we can translate all of the fat arrow functions that we’ve seen into function keyword functions, e.g. 

(n) => (1.618**n - -1.618**-n) / 2.236

Can be written as:
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function (n) {

return (1.618**n - -1.618**-n) / 2.236; 

}

This still does not  name  a function, but as we noted above, functions written with the function keyword have an optional “something else.” Could that “something else” name a function? Yes, of course. 33

Here are our example functions written with names:

const repeat = function repeat (str) {

return str + str; 

}; 

const fib = function fib (n) {

return (1.618**n - -1.618**-n) / 2.236; 

}; 

Placing a name between the function keyword and the argument list names the function. 

Confusingly, the name of the function is not exactly the same thing as the name we may choose to bind to the value of the function. For example, we can write:

const double = function repeat (str) {

return str + str; 

}

In this expression, double is the name in the environment, but repeat is the function’s actual name. 

This is a  named function expression. That may seem confusing, but think of the binding names as properties of the environment, not of the function. While the name of the function is a property of the function, not of the environment. 

And indeed the name  is  a property:

double.name

 //=> 'repeat' 

In this book we are not examining JavaScript’s tooling such as debuggers baked into browsers, but we will note that when you are navigating call stacks in all modern tools, the function’s binding name is ignored but its actual name is displayed, so naming functions is very useful even if they don’t get a formal binding, e.g. 

33“Yes of course?” Well, in chapter of a book dedicated to naming functions, it is not surprising that feature we mention has something to do with naming functions. 
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someBackboneView.on('click', function clickHandler () {

 //... 

}); 

Now, the function’s actual name has no effect on the environment in which it is used. To whit:

const bindingName = function actualName () {

 //... 

}; 

bindingName

 //=> [Function: actualName]

actualName

 //=> ReferenceError: actualName is not defined

So “actualName” isn’t bound in the environment where we use the named function expression. Is it bound anywhere else? Yes it is. Here’s a function that determines whether a positive integer is even or not. We’ll use it in an IIFE so that we don’t have to bind it to a name with const:

(function even (n) {

if (n === 0) {

return true

}

else return !even(n - 1)

})(5)

 //=> false

(function even (n) {

if (n === 0) {

return true

}

else return !even(n - 1)

})(2)

 //=> true

Clearly, the name even is bound to the function  within the function’s body. Is it bound to the function outside of the function’s body? 
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even

 //=> Can't find variable: even

even is bound within the function itself, but not outside it. This is useful for making recursive functions as we see above, and it speaks to the principle of least privilege: If you don’t  need  to name it anywhere else, you needn’t. 

function declarations

There is another syntax for naming and/or defining a function. It’s called a  function declaration statement, and it looks a lot like a named function expression, only we use it as a statement: function someName () {

 // ... 

}

This behaves a  little  like:

const someName = function someName () {

 // ... 

}

In that it binds a name in the environment to a named function. However, there are two important differences. First, function declarations are  hoisted  to the top of the function in which they occur. 

Consider this example where we try to use the variable fizzbuzz as a function before we bind a

function to it with const:

(function () {

return fizzbuzz(); 

const fizzbuzz = function fizzbuzz () {

return "Fizz" + "Buzz"; 

}

})()

 //=> undefined is not a function (evaluating 'fizzbuzz()')

We haven’t actually bound a function to the name fizzbuzz before we try to use it, so we get an error. But a function  declaration  works differently:
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(function () {

return fizzbuzz(); 

function fizzbuzz () {

return "Fizz" + "Buzz"; 

}

})()

 //=> 'FizzBuzz' 

Although fizzbuzz is declared later in the function, JavaScript behaves as if we’d written:

(function () {

const fizzbuzz = function fizzbuzz () {

return "Fizz" + "Buzz"; 

}

return fizzbuzz(); 

})()

The definition of the fizzbuzz is “hoisted” to the top of its enclosing scope (an IIFE in this case). This behaviour is intentional on the part of JavaScript’s design to facilitate a certain style of programming where you put the main logic up front, and the “helper functions” at the bottom. It is not necessary to declare functions in this way in JavaScript, but understanding the syntax and its behaviour

(especially the way it differs from const) is essential for working with production code. 

function declaration caveats34

Function declarations are formally only supposed to be made at what we might call the “top level” 

of a function. Although some JavaScript environments permit the following code, this example is technically illegal and definitely a bad idea:

34A number of the caveats discussed here were described in Jyrly Zaytsev’s excellent article Named function expressions demystified. 
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(function (camelCase) {

return fizzbuzz(); 

if (camelCase) {

function fizzbuzz () {

return "Fizz" + "Buzz"; 

}

}

else {

function fizzbuzz () {

return "Fizz" + "Buzz"; 

}

}

})(true)

 //=> 'FizzBuzz'? Or ERROR: Can't find variable: fizzbuzz? 

Function declarations are not supposed to occur inside of blocks. The big trouble with expressions like this is that they may work just fine in your test environment but work a different way in

production. Or it may work one way today and a different way when the JavaScript engine is

updated, say with a new optimization. 

Another caveat is that a function declaration cannot exist inside of  any  expression, otherwise it’s a function expression. So this is a function declaration:

function trueDat () { return true }

But this is not:

(function trueDat () { return true })

The parentheses make this an expression, not a function declaration. 
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Combinators and Function Decorators

higher-order functions

As we’ve seen, JavaScript functions take values as arguments and return values. JavaScript functions are values, so JavaScript functions can take functions as arguments, return functions, or both. 

Generally speaking, a function that either takes functions as arguments, or returns a function, or both, is referred to as a “higher-order” function. 

Here’s a very simple higher-order function that takes a function as an argument:

const repeat = (num, fn) =>

(num > 0)

? (repeat(num - 1, fn), fn(num))

: undefined

repeat(3, function (n) {

console.log(`Hello ${n}`)

})

 //=>

'Hello 1' 

'Hello 2' 

'Hello 3' 

undefined

Higher-order functions dominate  JavaScript Allongé. But before we go on, we’ll talk about some specific types of higher-order functions. 

combinators

The word “combinator” has a precise technical meaning in mathematics:

“A combinator is a higher-order function that uses only function application and earlier

defined combinators to define a result from its arguments.”–Wikipedia35

If we were learning Combinatorial Logic, we’d start with the most basic combinators like S, K, and I, and work up from there to practical combinators. We’d learn that the fundamental combinators are named after birds following the example of Raymond Smullyan’s famous book To Mock a

Mockingbird36. 

35https://en.wikipedia.org/wiki/Combinatory_logic

36http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&

linkCode=as2&tag=raganwald001-20
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In this book, we will be using a looser definition of “combinator:” Higher-order pure functions that take only functions as arguments and return a function. We won’t be strict about using only previously defined combinators in their construction. 

Let’s start with a useful combinator: Most programmers call it  Compose, although the logicians call it the B combinator or “Bluebird.” Here is the typical37 programming implementation: const compose = (a, b) =>

(c) => a(b(c))

Let’s say we have:

const addOne = (number) => number + 1; 

const doubleOf = (number) => number * 2; 

With compose, anywhere you would write

const doubleOfAddOne = (number) => doubleOf(addOne(number)); 

You could also write:

const doubleOfAddOne = compose(doubleOf, addOne); 

This is, of course, just one example of many. You’ll find lots more perusing the recipes in this book. 

While some programmers believe “There Should Only Be One Way To Do It,” having combinators

available as well as explicitly writing things out with lots of symbols and keywords has some

advantages when used judiciously. 

a balanced statement about combinators

Code that uses a lot of combinators tends to name the verbs and adverbs (like doubleOf, addOne, and compose) while avoiding language keywords and the names of nouns (like number). So one

perspective is that combinators are useful when you want to emphasize what you’re doing and how it fits together, and more explicit code is useful when you want to emphasize what you’re working with. 

function decorators

A  function decorator  is a higher-order function that takes one function as an argument, returns another function, and the returned function is a variation of the argument function. Here’s a

ridiculously simple decorator:38

37As we’ll discuss later, this implementation of the B Combinator is correct in languages like Scheme, but for truly general-purpose use in JavaScript, it needs to correctly manage the function context. 

38We’ll see later why an even more useful version would be written (fn) => (...args) => !fn(...args)
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const not = (fn) => (x) => !fn(x)

So instead of writing !someFunction(42), we can write not(someFunction)(42). Hardly progress. 

But like compose, we could write either:

const something = (x) => x != null; 

And elsewhere, write:

const nothing = (x) => !something(x); 

Or we could write:

const nothing = not(something); 

not is a function decorator because it modifies a function while remaining strongly related to the original function’s semantics. You’ll see other function decorators in the recipes, like once and

maybe. Function decorators aren’t strict about being pure functions, so there’s more latitude for making decorators than combinators. 
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Building Blocks

When you look at functions within functions in JavaScript, there’s a bit of a “spaghetti code” look to it. The strength of JavaScript is that you can do anything. The weakness is that you will. There are ifs, fors, returns, everything thrown higgledy piggledy together. Although you needn’t restrict yourself to a small number of simple patterns, it can be helpful to understand the patterns so that you can structure your code around some basic building blocks. 

composition

One of the most basic of these building blocks is  composition:

const cookAndEat = (food) => eat(cook(food)); 

It’s really that simple: Whenever you are chaining two or more functions together, you’re composing them. You can compose them with explicit JavaScript code as we’ve just done. You can also generalize composition with the B Combinator or “compose” that we saw in Combinators and Decorators: const compose = (a, b) => (c) => a(b(c)); 

const cookAndEat = compose(eat, cook); 

If that was all there was to it, composition wouldn’t matter much. But like many patterns, using it when it applies is only 20% of the benefit. The other 80% comes from organizing your code such that you can use it: Writing functions that can be composed in various ways. 

In the recipes, we’ll look at a decorator called once: It ensures that a function can only be executed once. Thereafter, it does nothing. Once is useful for ensuring that certain side effects are not repeated. 

We’ll also look at maybe: It ensures that a function does nothing if it is given nothing (like null or undefined) as an argument. 

Of course, you needn’t use combinators to implement either of these ideas, you can use if statements. 

But once and maybe compose, so you can chain them together as you see fit:

const actuallyTransfer= (from, to, amount) =>

 // do something

const invokeTransfer = once(maybe(actuallyTransfer(...))); 
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partial application

Another basic building block is  partial application. When a function takes multiple arguments, we

“apply” the function to the arguments by evaluating it with all of the arguments, producing a value. 

But what if we only supply some of the arguments? In that case, we can’t get the final value, but we can get a function that represents  part  of our application. 

Code is easier than words for this. The Underscore39 library provides a higher-order function called map.40 It applies another function to each element of an array, like this: _.map([1, 2, 3], (n) => n * n)

 //=> [1, 4, 9]

We don’t want to fool around writing _., so we can use it by writing:41

This code implements a partial application of the map function by applying the function (n) => n

* n as its second argument:

const squareAll = (array) => map(array, 

(n) => n * n); 

The resulting function–squareAll–is still the map function, it’s just that we’ve applied one of its two arguments already. squareAll is nice, but why write one function every time we want to partially apply a function to a map? We can abstract this one level higher. mapWith takes any function as an argument and returns a partially applied map function. 

const mapWith = (fn) =>

(array) => map(array, fn); 

const squareAll = mapWith((n) => n * n); 

squareAll([1, 2, 3])

 //=> [1, 4, 9]

We’ll discuss mapWith again. The important thing to see is that partial application is orthogonal to composition, and that they both work together nicely:

39http://underscorejs.org

40Modern JavaScript implementations provide a map method for arrays, but Underscore’s implementation also works with older browsers if you are working with that headache. 

41If we don’t want to sort out Underscore, we can also write the following: const map = (a, fn) => a.map(fn);, and trust that it works even though we haven’t discussed methods yet. 

const map = _.map; 
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const safeSquareAll = mapWith(maybe((n) => n * n)); 

safeSquareAll([1, null, 2, 3])

 //=> [1, null, 4, 9]

We generalized composition with the compose combinator. Partial application also has a combinator, which we’ll see in the partial recipe. 
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Magic Names

When a function is applied to arguments (or “called”), JavaScript binds the values of arguments to the function’s argument names in an environment created for the function’s execution. What we

haven’t discussed so far is that JavaScript also binds values to some “magic” names in addition to any you put in the argument list.42

the function keyword

There are two separate rules for these “magic” names, one for when you invoke a function using

the function keyword, and another for functions defined with “fat arrows.” We’ll begin with how things work for functions defined with the function keyword. 

The first magic name is this, and it is bound to something called the function’s context. We will explore this in more detail when we start discussing objects and classes. The second magic name is very interesting, it’s called arguments, and the most interesting thing about it is that it contains a list of arguments passed to a function:

const plus = function (a, b) {

return arguments[0] + arguments[1]; 

}

plus(2,3)

 //=> 5

Although arguments looks like an array, it isn’t an array: It’s more like an object43 that happens to bind some values to properties with names that look like integers starting with zero:

const args = function (a, b) {

return arguments; 

}

args(2,3)

 //=> { '0': 2, '1': 3 }

arguments always contains all of the arguments passed to a function, regardless of how many are declared. Therefore, we can write plus like this:

42You should never attempt to define your own bindings against “magic” names that JavaScript binds for you. It is wise to treat them as read-only at all times. 

43We’ll look at arrays and plain old javascript objects in depth later. 
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const plus = function () {

return arguments[0] + arguments[1]; 

}

plus(2,3)

 //=> 5

When discussing objects, we’ll discuss properties in more depth. Here’s something interesting about arguments:

const howMany = function () {

return arguments['length']; 

}

howMany()

 //=> 0

howMany('hello')

 //=> 1

howMany('sharks', 'are', 'apex', 'predators')

 //=> 4

The most common use of the arguments binding is to build functions that can take a variable number of arguments. We’ll see it used in many of the recipes, starting off with partial application and

ellipses. 

magic names and fat arrows

The magic names this and arguments have a different behaviour when you invoke a function that

was defined with a fat arrow: Instead of being bound when the function is invoked, the fat arrow function always acquires the bindings for this and arguments from its enclosing scope, just like any other binding. 

For example, when this expression’s inner function is defined with function, arguments[0] refers to its only argument, "inner":
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(function () {

return (function () { return arguments[0]; })('inner'); 

})('outer')

 //=> "inner" 

But if we use a fat arrow, arguments will be defined in the outer environment, the one defined with function. And thus arguments[0] will refer to "outer", not to "inner":

(function () {

return (() => arguments[0])('inner'); 

})('outer')

 //=> "outer" 

Although it seems quixotic for the two syntaxes to have different semantics, it makes sense when you consider the design goal: Fat arrow functions are designed to be very lightweight and are often used with constructs like mapping or callbacks to emulate syntax. 

To give a contrived example, this function takes a number and returns an array representing a row in a hypothetical multiplication table. It uses mapWith, which we discussed in Building Blocks.44 We’ll use arguments just to show the difference between using a fat arrow and the function keyword:

const row = function () {

return mapWith(

(column) => column * arguments[0], 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

)

}

row(3)

 //=> [3,6,9,12,15,18,21,24,27,30,33,36]

This works just fine, because arguments[0] refers to the 3 we passed to the function row. Our “fat arrow” function (column) => column * arguments[0] doesn’t bind arguments when it’s invoked. 

But if we rewrite row to use the function keyword, it stops working:

44Yes, we also used the name mapWith for working with ordinary collections elsewhere. If we were writing a library of functions, we would have to disambiguate the two kinds of mapping functions with special names, namespaces, or modules. But for the purposes of discussing ideas, we can use the same name twice in two different contexts. It’s the same idea, after all. 
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const row = function () {

return mapWith(

function (column) { return column * arguments[0] }, 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

)

}

row(3)

 //=> [1,4,9,16,25,36,49,64,81,100,121,144]

Now our inner function binds arguments[0] every time it is invoked, so we get the same result as if we’d written function (column) { return column * column }. 

Although this example is clearly unrealistic, there is a general design principle that deserves attention. Sometimes, a function is meant to be used as a Big-F function. It has a name, it is called by different pieces of code, it’s a first-class entity in the code. 

But sometimes, a function is a small-f function. It’s a simple representation of an expression to be computed. In our example above, row is a Big-F function, but (column) => column * arguments[0]

is a small-f function, it exists just to give mapWith something to apply. 

Having magic variables apply to Big-F functions but not to small-G functions makes it much easier to use small-F functions as syntax, treating them as expressions or blocks that can be passed to functions like mapWith. 
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Summary

Functions

• Functions are values that can be part of expressions, returned from other functions, 

and so forth. 

• Functions are  reference values. 

• Functions are applied to arguments. 

• The arguments are passed by sharing, which is also called “pass by value.” 

• Fat arrow functions have expressions or blocks as their bodies. 

• function keyword functions always have blocks as their bodies. 

• Function bodies have zero or more statements. 

• Expression bodies evaluate to the value of the expression. 

• Block bodies evaluate to whatever is returned with the return keyword, or to

undefined. 

• JavaScript uses const to bind values to names within block scope. 

• JavaScript uses function declarations to bind functions to names within function

scope. Function declarations are “hoisted.” 

• Function application creates a scope. 

• Blocks also create scopes if const statements are within them. 

• Scopes are nested and free variable references closed over. 

• Variables can shadow variables in an enclosing scope. 



Recipes with Basic Functions

Before combining ingredients, begin with implements so clean, they gleam. 

Having looked at basic pure functions and closures, we’re going to see some practical recipes that focus on the premise of functions that return functions. 

Disclaimer

The recipes are written for practicality, and their implementation may introduce JavaScript features that haven’t been discussed in the text to this point, such as methods and/or prototypes. The

overall  use  of each recipe will fit within the spirit of the language discussed so far, even if the implementations may not. 
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Partial Application

In Building Blocks, we discussed partial application, but we didn’t write a generalized recipe for it. This is such a common tool that many libraries provide some form of partial application. You’ll find examples in Lemonad45 from Michael Fogus, Functional JavaScript46 from Oliver Steele and the terse but handy node-ap47 from James Halliday. 

These two recipes are for quickly and simply applying a single argument, either the leftmost or

rightmost.48 If you want to bind more than one argument, or you want to leave a “hole” in the argument list, you will need to either use a generalized partial recipe, or you will need to repeatedly apply arguments. They are context-agnostic. 

const callFirst = (fn, larg) =>

function (...rest) {

return fn.call(this, larg, ...rest); 

}

const callLast = (fn, rarg) =>

function (...rest) {

return fn.call(this, ...rest, rarg); 

}

const greet = (me, you) =>

`Hello, ${you}, my name is ${me}`; 

const heliosSaysHello = callFirst(greet, 'Helios'); 

heliosSaysHello('Eartha')

 //=> 'Hello, Eartha, my name is Helios' 

const sayHelloToCeline = callLast(greet, 'Celine'); 

sayHelloToCeline('Eartha')

 //=> 'Hello, Celine, my name is Eartha' 

As noted above, our partial recipe allows us to create functions that are partial applications of functions that are context aware. We’d need a different recipe if we wish to create partial applications of object methods. 

45https://github.com/fogus/lemonad

46http://osteele.com/sources/javascript/functional/

47https://github.com/substack/node-ap

48callFirst and callLast were inspired by Michael Fogus’ Lemonad. Thanks! 

Recipes with Basic Functions

58

We take it a step further, and can use gathering and spreading to allow for partial application with more than one argument:

const callLeft = (fn, ...args) =>

(...remainingArgs) =>

fn(...args, ...remainingArgs); 

const callRight = (fn, ...args) =>

(...remainingArgs) =>

fn(...remainingArgs, ...args); 
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Unary

“Unary” is a function decorator that modifies the number of arguments a function takes: Unary takes any function and turns it into a function taking exactly one argument. 

The most common use case is to fix a problem. JavaScript has a .map method for arrays, and many libraries offer a map function with the same semantics. Here it is in action:

['1', '2', '3'].map(parseFloat)

 //=> [1, 2, 3]

In that example, it looks exactly like the mapping function you’ll find in most languages: You pass it a function, and it calls the function with one argument, the element of the array. However, that’s not the whole story. JavaScript’s map actually calls each function with  three  arguments: The element, the index of the element in the array, and the array itself. 

Let’s try it:

[1, 2, 3].map(function (element, index, arr) {

console.log({element: element, index: index, arr: arr})

})

 //=> { element: 1, index: 0, arr: [ 1, 2, 3 ] }

 //

 { element: 2, index: 1, arr: [ 1, 2, 3 ] }

 //

 { element: 3, index: 2, arr: [ 1, 2, 3 ] }

If you pass in a function taking only one argument, it simply ignores the additional arguments. But some functions have optional second or even third arguments. For example:

['1', '2', '3'].map(parseInt)

 //=> [1, NaN, NaN]

This doesn’t work because parseInt is defined as parseInt(string[, radix]). It takes an optional radix argument. And when you call parseInt with map, the index is interpreted as a radix. Not good! 

What we want is to convert parseInt into a function taking only one argument. 

We could write ['1', '2', '3'].map((s) => parseInt(s)), or we could come up with a decorator

to do the job for us:
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const unary = (fn) =>

fn.length === 1

? fn

: function (something) {

return fn.call(this, something)

}

And now we can write:

['1', '2', '3'].map(unary(parseInt))

 //=> [1, 2, 3]

Presto! 
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Tap

One of the most basic combinators is the “K Combinator,” nicknamed the “Kestrel:” 

const K = (x) => (y) => x; 

It has some surprising applications. One is when you want to do something with a value for side-effects, but keep the value around. Behold:

const tap = (value) =>

(fn) => (

typeof(fn) === 'function' && fn(value), 

value

)

tap is a traditional name borrowed from various Unix shell commands. It takes a value and returns a function that always returns the value, but if you pass it a function, it executes the function for side-effects. Let’s see it in action as a poor-man’s debugger:

tap('espresso')((it) => {

console.log(Òur drink is ' ${it}'`)

}); 

 //=> Our drink is 'espresso' 

'espresso' 

It’s easy to turn off:

tap('espresso')(); 

 //=> 'espresso' 

Libraries like Underscore49 use a version of tap that is “uncurried:” 

_.tap('espresso', (it) =>

console.log(Òur drink is ' ${it}'`)

); 

 //=> Our drink is 'espresso' 

'espresso' 

Let’s enhance our recipe so that it works both ways:

49http://underscorejs.org
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const tap = (value, fn) => {

const curried = (fn) => (

typeof(fn) === 'function' && fn(value), 

value

); 

return fn === undefined

? curried

: curried(fn); 

}

Now we can write:

tap('espresso')((it) => {

console.log(Òur drink is ' ${it}'`)

}); 

 //=> Our drink is 'espresso' 

'espresso' 

Or:

tap('espresso', (it) => {

console.log(Òur drink is ' ${it}'`)

}); 

 //=> Our drink is 'espresso' 

'espresso' 

And if we wish it to do nothing at all, We can write either tap('espresso')() or tap('espresso', null)

p.s. tap can do more than just act as a debugging aid. It’s also useful for working with object and

instance methods. 
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Maybe

A common problem in programming is checking for null or undefined (hereafter called “nothing,” 

while all other values including 0, [] and false will be called “something”). Languages like

JavaScript do not strongly enforce the notion that a particular variable or particular property be something, so programs are often written to account for values that may be nothing. 

This recipe concerns a pattern that is very common: A function fn takes a value as a parameter, and its behaviour by design is to do nothing if the parameter is nothing:

const isSomething = (value) =>

value !== null && value !== void 0; 

const checksForSomething = (value) => {

if (isSomething(value)) {

 // function's true logic

}

}

Alternately, the function may be intended to work with any value, but the code calling the function wishes to emulate the behaviour of doing nothing by design when given nothing:

var something =

isSomething(value)

? doesntCheckForSomething(value)

: value; 

Naturally, there’s a function decorator recipe for that, borrowed from Haskell’s maybe monad50, Ruby’s andand51, and CoffeeScript’s existential method invocation: const maybe = (fn) =>

function (...args) {

if (args.length === 0) {

return

}

else {

for (let arg of args) {

if (arg == null) return; 

}

50https://en.wikipedia.org/wiki/Monad_(functional_programming)#The_Maybe_monad

51https://github.com/raganwald/andand
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return fn.apply(this, args)

}

}

maybe reduces the logic of checking for nothing to a function call:

maybe((a, b, c) => a + b + c)(1, 2, 3)

 //=> 6

maybe((a, b, c) => a + b + c)(1, null, 3)

 //=> undefined

As a bonus, maybe plays very nicely with instance methods, we’ll discuss those later: function Model () {}; 

Model.prototype.setSomething = maybe(function (value) {

this.something = value; 

}); 

If some code ever tries to call model.setSomething with nothing, the operation will be skipped. 
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Once

once is an extremely helpful combinator. It ensures that a function can only be called, well,  once. 

Here’s the recipe:

const once = (fn) => {

let done = false; 

return function () {

return done ? void 0 : ((done = true), fn.apply(this, arguments))

}

}

Very simple! You pass it a function, and you get a function back. That function will call your function once, and thereafter will return undefined whenever it is called. Let’s try it:

const askedOnBlindDate = once(

() => "sure, why not?" 

); 

askedOnBlindDate()

 //=> 'sure, why not?' 

askedOnBlindDate()

 //=> undefined

askedOnBlindDate()

 //=> undefined

It seems some people will only try blind dating once. 

(Note: There are some subtleties with decorators like once that involve the intersection of state with methods. We’ll look at that again in stateful method decorators.)
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Left-Variadic Functions

A  variadic function  is a function that is designed to accept a variable number of arguments.52 In JavaScript, you can make a variadic function by gathering parameters. For example:

const abccc = (a, b, ...c) => {

console.log(a); 

console.log(b); 

console.log(c); 

}; 

abccc(1, 2, 3, 4, 5)

1

2

[3,4,5]

This can be useful when writing certain kinds of destructuring algorithms. For example, we might want to have a function that builds some kind of team record. It accepts a coach, a captain, and an arbitrary number of players. Easy in ECMAScript 2015:

function team(coach, captain, ...players) {

console.log(`${captain} (captain)`); 

for (let player of players) {

console.log(player); 

}

console.log(`squad coached by ${coach}`); 

}

team('Luis Enrique', 'Xavi Hernández', 'Marc-André ter Stegen', 

'Martín Montoya', 'Gerard Piqué')

 //=>

Xavi Hernández (captain)

Marc-André ter Stegen

Martín Montoya

Gerard Piqué

squad coached by Luis Enrique

But we can’t go the other way around:

52English is about as inconsistent as JavaScript: Functions with a fixed number of arguments can be unary, binary, ternary, and so forth. But can they be “variary?” No! They have to be “variadic.” 
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function team2(...players, captain, coach) {

console.log(`${captain} (captain)`); 

for (let player of players) {

console.log(player); 

}

console.log(`squad coached by ${coach}`); 

}

 //=> Unexpected token

ECMAScript 2015 only permits gathering parameters from the  end  of the parameter list. Not the beginning. What to do? 

a history lesson

In “Ye Olde Days,” 53 JavaScript could not gather parameters, and we had to either do backflips with arguments and .slice, or we wrote ourselves a variadic decorator that could gather arguments

into the last declared parameter. Here it is in all of its ECMAScript-5 glory:

var __slice = Array.prototype.slice; 

function rightVariadic (fn) {

if (fn.length < 1) return fn; 

return function () {

var ordinaryArgs = (1 <= arguments.length ? 

__slice.call(arguments, 0, fn.length - 1) : []), 

restOfTheArgsList = __slice.call(arguments, fn.length - 1), 

args = (fn.length <= arguments.length ? 

ordinaryArgs.concat([restOfTheArgsList]) : []); 

return fn.apply(this, args); 

}

}; 

var firstAndButFirst = rightVariadic(function test (first, butFirst) {

return [first, butFirst]

}); 

firstAndButFirst('why', 'hello', 'there', 'little', 'droid')

 //=> ["why",["hello","there","little","droid"]]

53Another history lesson. “Ye” in “Ye Olde,” was not actually spelled with a “Y” in days of old, it was spelled with a thorn, and is pronounced

“the.” Another word, “Ye” in “Ye of little programming faith,” is pronounced “ye,” but it’s a different word altogether. 
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We don’t need rightVariadic any more, because instead of:

var firstAndButFirst = rightVariadic(

function test (first, butFirst) {

return [first, butFirst]

}); 

We now simply write:

const firstAndButFirst = (first, ...butFirst) =>



[first, butFirst]; 

This is a  right-variadic function, meaning that it has one or more fixed arguments, and the rest are gathered into the rightmost argument. 

overcoming limitations

It’s nice to have progress. But as noted above, we can’t write:

const butLastAndLast = (...butLast, last) =>

[butLast, last]; 

That’s a  left-variadic function. All left-variadic functions have one or more fixed arguments, and the rest are gathered into the leftmost argument. JavaScript doesn’t do this. But if we wanted to write left-variadic functions, could we make ourselves a leftVariadic decorator to turn a function with one or more arguments into a left-variadic function? 

We sure can, by using the techniques from rightVariadic. Mind you, we can take advantage of

modern JavaScript to simplify the code:

const leftVariadic = (fn) => {

if (fn.length < 1) {

return fn; 

}

else {

return function (...args) {

const gathered = args.slice(0, args.length - fn.length + 1), 

spread

= args.slice(args.length - fn.length + 1); 

return fn.apply(

this, [gathered].concat(spread)

Recipes with Basic Functions

69

); 

}

}

}; 

const butLastAndLast = leftVariadic((butLast, last) => [butLast, last]); 

butLastAndLast('why', 'hello', 'there', 'little', 'droid')

 //=> [["why","hello","there","little"],"droid"]

Our leftVariadic function is a decorator that turns any function into a function that gathers

parameters  from the left, instead of from the right. 

left-variadic destructuring

Gathering arguments for functions is one of the ways JavaScript can  destructure  arrays. Another way is when assigning variables, like this:

const [first, ...butFirst] = ['why', 'hello', 'there', 'little', 'droid']; 

first

 //=> 'why' 

butFirst

 //=> ["hello","there","little","droid"]

As with parameters, we can’t gather values from the left when destructuring an array:

const [...butLast, last] = ['why', 'hello', 'there', 'little', 'droid']; 

 //=> Unexpected token

We could use leftVariadic the hard way:
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const [butLast, last] = leftVariadic((butLast, last) => [butLast, last])(...['wh\

y', 'hello', 'there', 'little', 'droid']); 

butLast

 //=> ['why', 'hello', 'there', 'little']

last

 //=> 'droid' 

But we can write our own left-gathering function utility using the same principles without all the tedium:

const leftGather = (outputArrayLength) => {

return function (inputArray) {

return [inputArray.slice(0, inputArray.length - outputArrayLength + 1)].conc\

at(

inputArray.slice(inputArray.length - outputArrayLength + 1)

)

}

}; 

const [butLast, last] = leftGather(2)(['why', 'hello', 'there', 'little', 'droid\

']); 

butLast

 //=> ['why', 'hello', 'there', 'little']

last

 //=> 'droid' 

With leftGather, we have to supply the length of the array we wish to use as the result, and it gathers excess arguments into it from the left, just like leftVariadic gathers excess parameters for a function. 



Picking the Bean: Choice and

Truthiness

Decaf and the Antidote

We’ve seen operators that act on numeric values, like + and %. In addition to numbers, we often need to represent a much more basic idea of truth or falsehood. Is this array empty? Does this person have a middle name? Is this user logged in? 

JavaScript does have “boolean” values, they’re written true and false:

true

 //=> true

false

 //=> false

true and false are value types. All values of true are === all other values of true. We can see that is the case by looking at some operators we can perform on boolean values, !, &&, and ||. To being with, ! is a unary prefix operator that negates its argument. So:
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! true

 //=> false

! false

 //=> true

The && and || operators are binary infix operators that perform “logical and” and “logical or” 

respectively:

false && false  //=> false

false && true

 //=> false

true

&& false  //=> false

true

&& true

 //=> true

false || false  //=> false

false || true

 //=> true

true

|| false  //=> true

true

|| true

 //=> true

Now, note well: We have said what happens if you pass boolean values to !, &&, and ||, but we’ve said nothing about expressions or about passing other values. We’ll look at those presently. 

truthiness and the ternary operator

In JavaScript, there is a notion of “truthiness.” Every value is either “truthy” or “falsy.” Obviously, false is falsy. So are null and undefined, values that semantically represent “no value.” NaN is falsy, a value representing the result of a calculation that is not a number.54 And there are more: 0 is falsy, a value representing “none of something.” The empty string, '' is falsy, a value representing having no characters. 

Every other value in JavaScript is “truthy” except the aforementioned false, null, undefined, NaN, 0, and ''. (Many other languages that have a notion of truthiness consider zero and the empty string to be truthy, not falsy, so beware of blindly transliterating code from one language to another!) The reason why truthiness matters is that the various logical operators (as well as the if statement) actually operate on  truthiness, not on boolean values. This affects the way the !, &&, and || operators work. We’ll look at them in a moment, but first, we’ll look at one more operator. 

JavaScript inherited an operator from the C family of languages, the  ternary  operator. It’s the only operator that takes  three  arguments. It looks like this: first ? second : third. It evaluates first, 54We will not discuss JavaScript’s numeric behaviour in much depth in this book, but the most important thing to know is that it implements the IEEE Standard for Floating-Point Arithmetic (IEEE 754), a technical standard for floating-point computation established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). 
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and if first is “truthy”, it evaluates second and that is its value. If first is not truthy, it evaluates third and that is its value. 

This is a lot like the if statement, however it is an  expression, not a statement, and that can be very valuable. It also doesn’t introduce braces, and that can be a help or a hindrance if we want to introduce a new scope or use statements. 

Here’re some simple examples of the ternary operator:

true ? 'Hello' : 'Good bye' 

 //=> 'Hello' 

0 ? 'Hello' : 'Good bye' 

 //=> 'Good bye' 

[1, 2, 3, 4, 5].length === 5 ? 'Pentatonic' : 'Quasimodal' 

 //=> 'Pentatonic' 

The fact that either the second or the third (but not both) expressions are evaluated can have

important repercussions. Consider this hypothetical example:

const status = isAuthorized(currentUser) ? deleteRecord(currentRecord) : 'Forbid\

den'; 

We certainly don’t want JavaScript trying to evaluate deleteRecord(currentRecord) unless isAuthorized(currentUser) returns true. 

truthiness and operators

Our logical operators !, &&, and || are a little more subtle than our examples above implied. ! is the simplest. It always returns false if its argument is truthy, and true is its argument is not truthy:

!5

 //=> false

! undefined

 //=> true

Programmers often take advantage of this behaviour to observe that !!(someExpression) will

always evaluate to true is someExpression is truthy, and to false if it is not. So in JavaScript (and other languages with similar semantics), when you see something like !!currentUser(), this
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is an idiom that means “true if currentUser is truthy.” Thus, a function like currentUser() is free to return null, or undefined, or false if there is no current user. 

Thus, !! is the way we write “is truthy” in JavaScript. How about && and ||? What haven’t we

discussed? 

First, and unlike !, && and || do not necessarily evaluate to true or false. To be precise:

• && evaluates its left-hand expression. 

– If its left-hand expression evaluates to something falsy, && returns the value of its left-hand expression without evaluating its right-hand expression. 

– If its left-hand expression evaluates to something truthy, && evaluates its right-hand expression and returns the value of the right-hand expression. 

• || evaluates its left-hand expression. 

– If its left-hand expression evaluates to something truthy, || returns the value of its left-hand expression without evaluating its right-hand expression. 

– If its left-hand expression evaluates to something false, || evaluates its right-hand

expression and returns the value of the right-hand expression. 

If we look at our examples above, we see that when we pass true and false to && and ||, we do

indeed get true or false as a result. But when we pass other values, we no longer get true or false: 1 || 2

 //=> 1

null && undefined

 //=> null

undefined && null

 //=> undefined

In JavaScript, && and || aren’t boolean logical operators in the logical sense. They don’t operate strictly on logical values, and they don’t commute: a || b is not always equal to b || a, and the same goes for &&. 

This is not a subtle distinction. 

|| and && are control-flow operators

We’ve seen the ternary operator: It is a  control-flow  operator, not a logical operator. The same is true of && and ||. Consider this tail-recursive function that determines whether a positive integer is even:

For example:
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const even = (n) =>

n === 0 || (n !== 1 && even(n - 2))

even(42)

 //=> true

If n === 0, JavaScript does not evaluate (n !== 1 && even(n - 2)). This is very important! 

Imagine that JavaScript evaluated both sides of the || operator before determining its value. n ===

0 would be true. What about (n !== 1 && even(n - 2))? Well, it would evaluate even(n - 2), or

even(-2)

This leads us to evaluate n === 0 || (n !== 1 && even(n - 2)) all over again, and this time we

end up evaluating even(-4). And then even(-6). and so on and so forth until JavaScript throws up its hands and runs out of stack space. 

But that’s not what happens. || and && have  short-cut semantics. In this case, if n === 0, JavaScript does not evaluate (n !== 1 && even(n - 2)). Likewise, if n === 1, JavaScript evaluates n !== 1

&& even(n - 2) as false without ever evaluating even(n - 2). 

This is more than just an optimization. It’s best to think of || and && as control-flow operators. The expression on the left is always evaluated, and its value determines whether the expression on the right is evaluated or not. 

function parameters are eager

In contrast to the behaviour of the ternary operator, ||, and &&, function parameters are always eagerly evaluated:

const or = (a, b) => a || b

const and = (a, b) => a && b

const even = (n) =>

or(n === 0, and(n !== 1, even(n - 2)))

even(42)

 //=> Maximum call stack size exceeded. 

Now our expression or(n === 0, and(n !== 1, even(n - 2))) is calling functions, and JavaScript

always evaluates the expressions for parameters before passing the values to a function to invoke. 

This leads to the infinite recursion we fear. 

If we need to have functions with control-flow semantics, we can pass anonymous functions. We

obviously don’t need anything like this for or and and, but to demonstrate the technique:
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const or = (a, b) => a() || b()

const and = (a, b) => a() && b()

const even = (n) =>

or(() => n === 0, () => and(() => n !== 1, () => even(n - 2)))

even(7)

 //=> false

Here we’ve passed functions that contain the expressions we want to evaluate, and now we can

write our own functions that can delay evaluation. 

summary

• Logical operators are based on truthiness and falsiness, not the strict values true and false. 

• ! is a logical operator, it always returns true or false. 

• The ternary operator (?:), ||, and && are control flow operators, they do not always return

true or false, and they have short-cut semantics. 

• Function invocation uses eager evaluation, so if we need to roll our own control-flow

semantics, we pass it functions, not expressions. 
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Stacked Cups

Recursion is the root of computation since it trades description for time.—Alan Perlis, 

Epigrams in Programming55

55http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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Arrays and Destructuring Arguments

While we have mentioned arrays briefly, we haven’t had a close look at them. Arrays are JavaScript’s

“native” representation of lists. Strings are important because they represent writing. Lists are important because they represent ordered collections of things, and ordered collections are a

fundamental abstraction for making sense of reality. 

array literals

JavaScript has a literal syntax for creating an array: The [ and ] characters. We can create an empty array:

[]

 //=> []

We can create an array with one or more  elements  by placing them between the brackets and separating the items with commas. Whitespace is optional:

[1]

 //=> [1]

[2, 3, 4]

 //=> [2,3,4]

Any expression will work:

[ 2, 

3, 

2 + 2

]

 //=> [2,3,4]

Including an expression denoting another array:

[[[[[]]]]]

This is an array with one element that is an array with one element that is an array with one element that is an array with one element that is an empty array. Although that seems like something nobody would ever construct, many students have worked with almost the exact same thing when they

explored various means of constructing arithmetic from Set Theory. 

Any expression will do, including names:
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const wrap = (something) => [something]; 

wrap("lunch")

 //=> ["lunch"]

Array literals are expressions, and arrays are  reference types. We can see that each time an array literal is evaluated, we get a new, distinct array, even if it contains the exact same elements:

[] === []

 //=> false

[2 + 2] === [2 + 2]

 //=> false

const array_of_one = () => [1]; 

array_of_one() === array_of_one()

 //=> false

element references

Array elements can be extracted using [ and ] as postfix operators. We pass an integer as an index of the element to extract:

const oneTwoThree = ["one", "two", "three"]; 

oneTwoThree[0]

 //=> 'one' 

oneTwoThree[1]

 //=> 'two' 

oneTwoThree[2]

 //=> 'three' 

As we can see, JavaScript Arrays are zero-based56. 

We know that every array is its own unique entity, with its own unique reference. What about the contents of an array? Does it store references to the things we give it? Or copies of some kind? 

56https://en.wikipedia.org/wiki/Zero-based_numbering
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const x = [], 

a = [x]; 

a[0] === x

 //=> true, arrays store references to the things you put in them. 

destructuring arrays

There is another way to extract elements from arrays:  Destructuring, a feature going back to Common Lisp, if not before. We saw how to construct an array literal using [, expressions, , and ]. 

Here’s an example of an array literal that uses a name:

const wrap = (something) => [something]; 

Let’s expand it to use a block and an extra name:

const wrap = (something) => {

const wrapped = [something]; 

return wrapped; 

}

wrap("package")

 //=> ["package"]

The line const wrapped = [something]; is interesting. On the left hand is a name to be bound, 

and on the right hand is an array literal, a template for constructing an array, very much like a quasi-literal string. 

In JavaScript, we can actually  reverse  the statement and place the template on the left and a value on the right:

const unwrap = (wrapped) => {

const [something] = wrapped; 

return something; 

}

unwrap(["present"])

 //=> "present" 

The statement const [something] = wrapped;  destructures  the array represented by wrapped, binding the value of its single element to the name something. We can do the same thing with

more than one element:
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const surname = (name) => {

const [first, last] = name; 

return last; 

}

surname(["Reginald", "Braithwaite"])

 //=> "Braithwaite" 

We could do the same thing with (name) => name[1], but destructuring is code that resembles the data it consumes, a valuable coding style. 

Destructuring can nest:

const description = (nameAndOccupation) => {

const [[first, last], occupation] = nameAndOccupation; 

return `${first} is a ${occupation}`; 

}

description([["Reginald", "Braithwaite"], "programmer"])

 //=> "Reginald is a programmer" 

gathering

Sometimes we need to extract arrays from arrays. Here is the most common pattern: Extracting the head and gathering everything but the head from an array:

const [car, ...cdr] = [1, 2, 3, 4, 5]; 

car

 //=> 1

cdr

 //=> [2, 3, 4, 5]

car and cdr57 are archaic terms that go back to an implementation of Lisp running on the IBM 704

computer. Some other languages call them first and butFirst, or head and tail. We will use a

common convention and call variables we gather rest, but refer to the ... operation as a “gather,” 

following Kyle Simpson’s example. 58

Alas, the ... notation does not provide a universal patten-matching capability. For example, we cannot write

57https://en.wikipedia.org/wiki/CAR_and_CDR

58Kyle Simpson is the author of You Don’t Know JS, available here
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const [...butLast, last] = [1, 2, 3, 4, 5]; 

 //=> ERROR

const [first, ..., last] = [1, 2, 3, 4, 5]; 

 //=> ERROR

Now, when we introduced destructuring, we saw that it is kind-of-sort-of the reverse of array literals. 

So if

const wrapped = [something]; 

Then:

const [unwrapped] = something; 

What is the reverse of gathering? We know that:

const [car, ...cdr] = [1, 2, 3, 4, 5]; 

What is the reverse? It would be:

const cons = [car, ...cdr]; 

Let’s try it:

const oneTwoThree = ["one", "two", "three"]; 

["zero", ...oneTwoThree]

 //=> ["zero","one","two","three"]

It works! We can use ... to place the elements of an array inside another array. We say that using

... to destructure is gathering, and using it in a literal to insert elements is called “spreading.” 

destructuring is not pattern matching

Some other languages have something called  pattern matching, where you can write something like a destructuring assignment, and the language decides whether the “patterns” matches at all. If it does, assignments are made where appropriate. 

In such a language, if you wrote something like:
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const [what] = []; 

That match would fail because the array doesn’t have an element to assign to what. But this is not how JavaScript works. JavaScript tries its best to assign things, and if there isn’t something that fits, JavaScript binds undefined to the name. Therefore:

const [what] = []; 

what

 //=> undefined

const [which, what, who] = ["duck feet", "tiger tail"]; 

who

 //=> undefined

And if there aren’t any items to assign with ..., JavaScript assigns an empty array:

const [...they] = []; 

they

 //=> []

const [which, what, ...they] = ["duck feet", "tiger tail"]; 

they

 //=> []

From its very inception, JavaScript has striven to avoid catastrophic errors. As a result, it often coerces values, passes undefined around, or does whatever it can to keep executing without failing. 

This often means that we must write our own code to detect failure conditions, as we cannot reply on the language to point out when we are doing semantically meaningless things. 

destructuring and return values

Some languages support multiple return values: A function can return several things at once, like a value and an error code. This can easily be emulated in JavaScript with destructuring:
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const description = (nameAndOccupation) => {

if (nameAndOccupation.length < 2) {

return ["", "occupation missing"]

}

else {

const [[first, last], occupation] = nameAndOccupation; 

return [`${first} is a ${occupation}`, "ok"]; 

}

}

const [reg, status] = description([["Reginald", "Braithwaite"], "programmer"]); 

reg

 //=> "Reginald is a programmer" 

status

 //=> "ok" 

destructuring parameters

Consider the way we pass arguments to parameters:

foo()

bar("smaug")

baz(1, 2, 3)

It is very much like an array literal. And consider how we bind values to parameter names:

const foo = () => ... 

const bar = (name) => ... 

const baz = (a, b, c) => ... 

It  looks  like destructuring. It acts like destructuring. There is only one difference: We have not tried gathering. Let’s do that:
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const numbers = (...nums) => nums; 

numbers(1, 2, 3, 4, 5)

 //=> [1,2,3,4,5]

const headAndTail = (head, ...tail) => [head, tail]; 

headAndTail(1, 2, 3, 4, 5)

 //=> [1,[2,3,4,5]]

Gathering works with parameters! This is very useful indeed, and we’ll see more of it in a moment.59

59Gathering in parameters has a long history, and the usual terms are to call gathering “pattern matching” and to call a name that is bound to gathered values a “rest parameter.” The term “rest” is perfectly compatible with gather: “Rest” is the noun, and “gather” is the verb. We  gather  the  rest of the parameters. 
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Self-Similarity

Recursion is the root of computation since it trades description for time.—Alan Perlis, 

Epigrams in Programming60

In Arrays and Destructuring Arguments, we worked with the basic idea that putting an array together with a literal array expression was the reverse or opposite of taking it apart with a

destructuring assignment. 

We saw that the basic idea that putting an array together with a literal array expression was the reverse or opposite of taking it apart with a destructuring assignment. 

Let’s be more specific. Some data structures, like lists, can obviously be seen as a collection of items. 

Some are empty, some have three items, some forty-two, some contain numbers, some contain

strings, some a mixture of elements, there are all kinds of lists. 

But we can also define a list by describing a rule for building lists. One of the simplest, and longest-standing in computer science, is to say that a list is:

1. Empty, or; 

2. Consists of an element concatenated with a list . 

Let’s convert our rules to array literals. The first rule is simple: [] is a list. How about the second rule? We can express that using a spread. Given an element e and a list list, [e, ...list] is a list. 

We can test this manually by building up a list:

[]

 //=> []

["baz", ...[]]

 //=> ["baz"]

["bar", ...["baz"]]

 //=> ["bar","baz"]

["foo", ...["bar", "baz"]]

 //=> ["foo","bar","baz"]

Thanks to the parallel between array literals + spreads with destructuring + rests, we can also use the same rules to decompose lists:

60http://www.cs.yale.edu/homes/perlis-alan/quotes.html
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const [first, ...rest] = []; 

first

 //=> undefined

rest

 //=> []:

const [first, ...rest] = ["foo"]; 

first

 //=> "foo" 

rest

 //=> []

const [first, ...rest] = ["foo", "bar"]; 

first

 //=> "foo" 

rest

 //=> ["bar"]

const [first, ...rest] = ["foo", "bar", "baz"]; 

first

 //=> "foo" 

rest

 //=> ["bar","baz"]

For the purpose of this exploration, we will presume the following:61

const isEmpty = ([first, ...rest]) => first === undefined; 

isEmpty([])

 //=> true

isEmpty([0])

 //=> false

isEmpty([[]])

 //=> false

Armed with our definition of an empty list and with what we’ve already learned, we can build a

great many functions that operate on arrays. We know that we can get the length of an array using 61Well, actually, this does not work for arrays that contain undefined as a value, but we are not going to see that in our examples. A more robust implementation would be (array) => array.length === 0, but we are doing backflips to keep this within a very small and contrived playground. 
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its .length. But as an exercise, how would we write a length function using just what we have

already? 

First, we pick what we call a  terminal case. What is the length of an empty array? 0. So let’s start our function with the observation that if an array is empty, the length is 0:

const length = ([first, ...rest]) =>

first === undefined

? 0

:  // ??? 

We need something for when the array isn’t empty. If an array is not empty, and we break it into two pieces, first and rest, the length of our array is going to be length(first) + length(rest). 

Well, the length of first is 1, there’s just one element at the front. But we don’t know the length of rest. If only there was a function we could call… Like length! 

const length = ([first, ...rest]) =>

first === undefined

? 0

: 1 + length(rest); 

Let’s try it! 

length([])

 //=> 0

length(["foo"])

 //=> 1

length(["foo", "bar", "baz"])

 //=> 3

Our length function is  recursive, it calls itself. This makes sense because our definition of a list is recursive, and if a list is self-similar, it is natural to create an algorithm that is also self-similar. 

linear recursion

“Recursion” sometimes seems like an elaborate party trick. There’s even a joke about this:

When promising students are trying to choose between pure mathematics and applied

engineering, they are given a two-part aptitude test. In the first part, they are led

to a laboratory bench and told to follow the instructions printed on the card. They

find a bunsen burner, a sparker, a tap, an empty beaker, a stand, and a card with the

instructions “boil water.” 
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Of course, all the students know what to do: They fill the beaker with water, place the

stand on the burner and the beaker on the stand, then they turn the burner on and use

the sparker to ignite the flame. After a bit the water boils, and they turn off the burner

and are lead to a second bench. 

Once again, there is a card that reads, “boil water.” But this time, the beaker is on the

stand over the burner, as left behind by the previous student. The engineers light the

burner immediately. Whereas the mathematicians take the beaker off the stand and

empty it, thus reducing the situation to a problem they have already solved. 

There is more to recursive solutions that simply functions that invoke themselves. Recursive

algorithms follow the “divide and conquer” strategy for solving a problem:

1. Divide the problem into smaller problems

2. If a smaller problem is solvable, solve the small problem

3. If a smaller problem is not solvable, divide and conquer that problem

4. When all small problems have been solved, compose the solutions into one big solution

The big elements of divide and conquer are a method for decomposing a problem into smaller

problems, a test for the smallest possible problem, and a means of putting the pieces back together. 

Our solutions are a little simpler in that we don’t really break a problem down into multiple pieces, we break a piece off the problem that may or may not be solvable, and solve that before sticking it onto a solution for the rest of the problem. 

This simpler form of “divide and conquer” is called  linear recursion. It’s very useful and simple to understand. Let’s take another example. Sometimes we want to  flatten  an array, that is, an array of arrays needs to be turned into one array of elements that aren’t arrays.62

We already know how to divide arrays into smaller pieces. How do we decide whether a smaller

problem is solvable? We need a test for the terminal case. Happily, there is something along these lines provided for us:

Array.isArray("foo")

 //=> false

Array.isArray(["foo"])

 //=> true

The usual “terminal case” will be that flattening an empty array will produce an empty array. The next terminal case is that if an element isn’t an array, we don’t flatten it, and can put it together with the rest of our solution directly. Whereas if an element is an array, we’ll flatten it and put it together with the rest of our solution. 

So our first cut at a flatten function will look like this:

62flatten is a very simple unfold, a function that takes a seed value and turns it into an array. Unfolds can be thought of a “path” through a data structure, and flattening a tree is equivalent to a depth-first traverse. 
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const flatten = ([first, ...rest]) => {

if (first === undefined) {

return []; 

}

else if (!Array.isArray(first)) {

return [first, ...flatten(rest)]; 

}

else {

return [...flatten(first), ...flatten(rest)]; 

}

}

flatten(["foo", [3, 4, []]])

 //=> ["foo",3,4]

Once again, the solution directly displays the important elements: Dividing a problem into subproblems, detecting terminal cases, solving the terminal cases, and composing a solution from the solved portions. 

mapping

Another common problem is applying a function to every element of an array. JavaScript has a

built-in function for this, but let’s write our own using linear recursion. 

If we want to square each number in a list, we could write:

const squareAll = ([first, ...rest]) => first === undefined

? []

: [first * first, ...squareAll(rest)\

]; 

squareAll([1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

And if we wanted to “truthify” each element in a list, we could write:
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const truthyAll = ([first, ...rest]) => first === undefined

? []

: [!!first, ...truthyAll(rest)]; 

truthyAll([null, true, 25, false, "foo"])

 //=> [false,true,true,false,true]

This specific case of linear recursion is called “mapping,” and it is not necessary to constantly write out the same pattern again and again. Functions can take functions as arguments, so let’s “extract” 

the thing to do to each element and separate it from the business of taking an array apart, doing the thing, and putting the array back together. 

Given the signature:

const mapWith = (fn, array) =>  // ... 

We can write it out using a ternary operator. Even in this small function, we can identify the terminal condition, the piece being broken off, and recomposing the solution. 

const mapWith = (fn, [first, ...rest]) =>

first === undefined

? []

: [fn(first), ...mapWith(fn, rest)]; 

mapWith((x) => x * x, [1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

mapWith((x) => !!x, [null, true, 25, false, "foo"])

 //=> [false,true,true,false,true]

folding

With the exception of the length example at the beginning, our examples so far all involve rebuilding a solution using spreads. But they needn’t. A function to compute the sum of the squares of a list of numbers might look like this:
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const sumSquares = ([first, ...rest]) => first === undefined

? 0

: first * first + sumSquares(rest); 

sumSquares([1, 2, 3, 4, 5])

 //=> 55

There are two differences between sumSquares and our maps above:

1. Given the terminal case of an empty list, we return a 0 instead of an empty list, and; 

2. We catenate the square of each element to the result of applying sumSquares to the rest of the elements. 

Let’s rewrite mapWith so that we can use it to sum squares. 

const foldWith = (fn, terminalValue, [first, ...rest]) =>

first === undefined

? terminalValue

: fn(first, foldWith(fn, terminalValue, rest)); 

And now we supply a function that does slightly more than our mapping functions:

foldWith((number, rest) => number * number + rest, 0, [1, 2, 3, 4, 5])

 //=> 55

Our foldWith function is a generalization of our mapWith function. We can represent a map as a

fold, we just need to supply the array rebuilding code:

const squareAll = (array) => foldWith((first, rest) => [first * first, ...rest],\

[], array); 

squareAll([1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

And if we like, we can write mapWith using foldWith:
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const mapWith = (fn, array) => foldWith((first, rest) => [fn(first), ...rest], [\

], array), 

squareAll = (array) => mapWith((x) => x * x, array); 

squareAll([1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

And to return to our first example, our version of length can be written as a fold:

const length = (array) => foldWith((first, rest) => 1 + rest, 0, array); 

length([1, 2, 3, 4, 5])

 //=> 5

summary

Linear recursion is a basic building block of algorithms. Its basic form parallels the way linear data structures like lists are constructed: This helps make it understandable. Its specialized cases of mapping and folding are especially useful and can be used to build other functions. And finally, while folding is a special case of linear recursion, mapping is a special case of folding. 
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Tail Calls (and Default Arguments)

The mapWith and foldWith functions we wrote in Self-Similarity are useful for illustrating the basic principles behind using recursion to work with self-similar data structures, but they are not

“production-ready” implementations. One of the reasons they are not production-ready is that they consume memory proportional to the size of the array being folded. 

Let’s look at how. Here’s our extremely simple mapWith function again:

const mapWith = (fn, [first, ...rest]) =>

first === undefined

? []

: [fn(first), ...mapWith(fn, rest)]; 

mapWith((x) => x * x, [1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

Let’s step through its execution. First, mapWith((x) => x * x, [1, 2, 3, 4, 5]) is invoked. first is not undefined, so it evaluates [fn(first), …mapWith(fn, rest)]. To do that, it has to evaluate fn(first) and mapWith(fn, rest), then evaluate [fn(first), ...mapWith(fn, rest)]. 

This is roughly equivalent to writing:

const mapWith = function (fn, [first, ...rest]) {

if (first === undefined) {

return []; 

}

else {

const _temp1 = fn(first), 

_temp2 = mapWith(fn, rest), 

_temp3 = [_temp1, ..._temp2]; 

return _temp3; 

}

}

Note that while evaluating mapWith(fn, rest), JavaScript must retain the value first or fn(first), plus some housekeeping information so it remembers what to do with mapWith(fn, rest) when it

has a result. JavaScript cannot throw first away. So we know that JavaScript is going to hang on to 1. 

Next, JavaScript invokes mapWith(fn, rest), which is semantically equivalent to mapWith((x) =>

x * x, [2, 3, 4, 5]). And the same thing happens: JavaScript has to hang on to 2 (or 4, or both, 
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depending on the implementation), plus some housekeeping information so it remembers what to

do with that value, while it calls the equivalent of mapWith((x) => x * x, [3, 4, 5]). 

This keeps on happening, so that JavaScript collects the values 1, 2, 3, 4, and 5 plus housekeeping information by the time it calls mapWith((x) => x * x, []). It can start assembling the resulting array and start discarding the information it is saving. 

That information is saved on a  call stack, and it is quite expensive. Furthermore, doubling the length of an array will double the amount of space we need on the stack, plus double all the work required to set up and tear down the housekeeping data for each call (these are called  call frames, and they include the place where the function was called, an environment, and so on). 

In practice, using a method like this with more than about 50 items in an array may cause some

implementations to run very slow, run out of memory and freeze, or cause an error. 

mapWith((x) => x * x, [

0, 

1, 

2, 

3, 

4, 

5, 

6, 

7, 

8, 

9, 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 

0, 

1, 

2, 

3, 

4, 

5, 

6, 

7, 

8, 

9, 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 

90, 91, 92, 93, 94, 95, 96, 97, 98, 99

])

 //=> ??? 

Is there a better way? Yes. In fact, there are several better ways. Making algorithms faster is a very highly studied field of computer science. The one we’re going to look at here is called  tail-call optimization, or “TCO.” 
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tail-call optimization

A “tail-call” occurs when a function’s last act is to invoke another function, and then return whatever the other function returns. For example, consider the maybe function decorator:

const maybe = (fn) =>

function (...args) {

if (args.length === 0) {

return; 

}

else {

for (let arg of args) {

if (arg == null) return; 

}

return fn.apply(this, args); 

}

}

There are three places it returns. The first two don’t return anything, they don’t matter. But the third is fn.apply(this, args). This is a tail-call, because it invokes another function and returns its result. This is interesting, because after sorting out what to supply as arguments (this, args), JavaScript can throw away everything in its current stack frame. It isn’t going to do any more work, so it can throw its existing stack frame away. 

And in fact, it does exactly that: It throws the stack frame away, and does not consume extra

memory when making a maybe-wrapped call. This is a very important characteristic of JavaScript: If a function makes a call in tail position, JavaScript optimizes away the function call overhead and stack space. 

That is excellent, but one wrapping is not a big deal. When would we really care? Consider this implementation of length:

const length = ([first, ...rest]) =>

first === undefined

? 0

: 1 + length(rest); 

The length function calls itself, but it is not a tail-call, because it returns 1 + length(rest), not length(rest). 

The problem can be stated in such a way that the answer is obvious: length does not call itself in tail position, because it has to do two pieces of work, and while one of them is in the recursive call to length, the other happens after the recursive call. 

The obvious solution? 
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converting non-tail-calls to tail-calls

The obvious solution is push the 1 + work into the call to length. Here’s our first cut:

const lengthDelaysWork = ([first, ...rest], numberToBeAdded) =>

first === undefined

? 0 + numberToBeAdded

: lengthDelaysWork(rest, 1 + numberToBeAdded)

lengthDelaysWork(["foo", "bar", "baz"], 0)

 //=> 3

This lengthDelaysWork function calls itself in tail position. The 1 + work is done before calling itself, and by the time it reaches the terminal position, it has the answer. Now that we’ve seen how it works, we can clean up the 0 + numberToBeAdded business. But while we’re doing that, it’s annoying to

remember to call it with a zero. Let’s fix that:

const lengthDelaysWork = ([first, ...rest], numberToBeAdded) =>

first === undefined

? numberToBeAdded

: lengthDelaysWork(rest, 1 + numberToBeAdded)

const length = (n) =>

lengthDelaysWork(n, 0); 

Or we could use partial application:

const callLast = (fn, ...args) =>

(...remainingArgs) =>

fn(...remainingArgs, ...args); 

const length = callLast(lengthDelaysWork, 0); 

length(["foo", "bar", "baz"])

 //=> 3

This version of length calls uses lengthDelaysWork, and JavaScript optimizes that not to take up memory proportional to the length of the string. We can use this technique with mapWith:
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const mapWithDelaysWork = (fn, [first, ...rest], prepend) =>

first === undefined

? prepend

: mapWithDelaysWork(fn, rest, [...prepend, fn(first)]); 

const mapWith = callLast(mapWithDelaysWork, []); 

mapWith((x) => x * x, [1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

We can use it with ridiculously large arrays:

mapWith((x) => x * x, [

0, 

1, 

2, 

3, 

4, 

5, 

6, 

7, 

8, 

9, 

10, 

11, 

12, 

13, 

14, 

15, 

16, 

17, 

18, 

19, 

20, 

21, 

22, 

23, 

24, 

25, 

26, 

27, 

28, 

29, 

30, 

31, 

32, 

33, 

34, 

35, 

36, 

37, 

38, 

39, 

40, 

41, 

42, 

43, 

44, 

45, 

46, 

47, 

48, 

49, 

50, 

51, 

52, 

53, 

54, 

55, 

56, 

57, 

58, 

59, 

60, 

61, 

62, 

63, 

64, 

65, 

66, 

67, 

68, 

69, 

70, 

71, 

72, 

73, 

74, 

75, 

76, 

77, 

78, 

79, 

80, 

81, 

82, 

83, 

84, 

85, 

86, 

87, 

88, 

89, 

90, 

91, 

92, 

93, 

94, 

95, 

96, 

97, 

98, 

99, 

 // ... 

2980, 2981, 2982, 2983, 2984, 2985, 2986, 2987, 2988, 2989, 

2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999 ])

 //=> [0,1,4,9,16,25,36,49,64,81,100,121,144,169,196, ... 

Brilliant! We can map over large arrays without incurring all the memory and performance overhead of non-tail-calls. And this basic transformation from a recursive function that does not make a tail call, into a recursive function that calls itself in tail position, is a bread-and-butter pattern for programmers using a language that incorporates tail-call optimization. 

factorials

Introductions to recursion often mention calculating factorials:

In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product

of all positive integers less than or equal to n. For example:
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5! = 5

x

4

x

3

x

2

x

1 = 120. 

The naïve function for calcuating the factorial of a positive integer follows directly from the definition:

const factorial = (n) =>

n == 1

? n

: n * factorial(n - 1); 

factorial(1)

 //=> 1

factorial(5)

 //=> 120

While this is mathematically elegant, it is computational filigree63. 

Once again, it is not tail-recursive, it needs to save the stack with each invocation so that it can take the result returned and compute n * factorial(n - 1). We can do the same conversion, pass in

the work to be done:

const factorialWithDelayedWork = (n, work) =>

n === 1

? work

: factorialWithDelayedWork(n - 1, n * work); 

const factorial = (n) =>

factorialWithDelayedWork(n, 1); 

Or we could use partial application:

63https://en.wikipedia.org/wiki/Filigree
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const callLast = (fn, ...args) =>

(...remainingArgs) =>

fn(...remainingArgs, ...args); 

const factorial = callLast(factorialWithDelayedWork, 1); 

factorial(1)

 //=> 1

factorial(5)

 //=> 120

As before, we wrote a factorialWithDelayedWork function, then used partial application (callLast) to make a factorial function that took just the one argument and supplied the initial work value. 

default arguments

Our problem is that we can directly write:

const factorial = (n, work) =>

n === 1

? work

: factorial(n - 1, n * work); 

factorial(1, 1)

 //=> 1

factorial(5, 1)

 //=> 120

But it is hideous to have to always add a 1 parameter, we’d be demanding that everyone using the factorial function know that we are using a tail-recursive implementation. 

What we really want is this: We want to write something like factorial(6), and have JavaScript

automatically know that we really mean factorial(6, 1). But when it calls itself, it will call

factorial(5, 6) and that will not mean factorial(5, 1). 

JavaScript provides this exact syntax, it’s called a  default argument, and it looks like this:
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const factorial = (n, work = 1) =>

n === 1

? work

: factorial(n - 1, n * work); 

factorial(1)

 //=> 1

factorial(6)

 //=> 720

By writing our parameter list as (n, work = 1) =>, we’re stating that if a second parameter is not provided, work is to be bound to 1. We can do similar things with our other tail-recursive functions: const length = ([first, ...rest], numberToBeAdded = 0) =>

first === undefined

? numberToBeAdded

: length(rest, 1 + numberToBeAdded)

length(["foo", "bar", "baz"])

 //=> 3

const mapWith = (fn, [first, ...rest], prepend = []) =>

first === undefined

? prepend

: mapWith(fn, rest, [...prepend, fn(first)]); 

mapWith((x) => x * x, [1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

Now we don’t need to use two functions. A default argument is concise and readable. 

defaults and destructuring

We saw earlier that destructuring parameters works the same way as destructuring assignment. Now we learn that we can create a default parameter argument. Can we create a default destructuring assignment? 
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const [first, second = "two"] = ["one"]; 

`${first} . ${second}`

 //=> "one . two" 

const [first, second = "two"] = ["primus", "secundus"]; 

`${first} . ${second}`

 //=> "primus . secundus" 

How very useful: defaults can be supplied for destructuring assignments, just like defaults for parameters. 
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Garbage, Garbage Everywhere

Garbage Day

We have now seen how to use Tail Calls to execute mapWith in constant space: const mapWith = (fn, [first, ...rest], prepend = []) =>

first === undefined

? prepend

: mapWith(fn, rest, [...prepend, fn(first)]); 

mapWith((x) => x * x, [1, 2, 3, 4, 5])

 //=> [1,4,9,16,25]

But when we try it on very large arrays, we discover that it is  still  very slow. Much slower than the built-in .map method for arrays. The right tool to discover why it’s still slow is a memory profiler, but a simple inspection of the program will reveal the following:

Every time we call mapWith, we’re calling [...prepend, fn(first)]. To do that, we take the array in prepend and push fn(first) onto the end, creating a new array that will be passed to the next invocation of mapWith. 
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Worse, the JavaScript Engine actually copies the elements from prepend into the new array one at a time. That is very laborious.64

The array we had in prepend is no longer used. In GC environments, it is marked as no longer being used, and eventually the garbage collector recycles the memory it is using. Lather, rinse, repeat: Ever time we call mapWith, we’re creating a new array, copying all the elements from prepend into the new array, and then we no longer use prepend. 

We may not be creating 3,000 stack frames, but we are creating three thousand new arrays and

copying elements into each and every one of them. Although the maximum amount of memory

does not grow, the thrashing as we create short-lived arrays is very bad, and we do a lot of work copying elements from one array to another. 

Key Point: Our [first, ...rest] approach to recursion is slow because that it creates

a lot of temporary arrays, and it spends an enormous amount of time copying elements

into arrays that end up being discarded. 

So here’s a question: If this is such a slow approach, why do some examples of “functional” 

algorithms work this exact way? 

64It needn’t always be so: Programmers have developed specialized data structures that make operations like this cheap, often by arranging for structures to share common elements by default, and only making copies when changes are made. But this is not how JavaScript’s built-in arrays work. 



Composing and Decomposing Data

105

The IBM 704

some history

Once upon a time, there was a programming language called Lisp65, an acronym for LISt Processing. 66 Lisp was one of the very first high-level languages, the very first implementation was written for the IBM 70467 computer. (The very first FORTRAN implementation was also written for the 704). 

The 704 had a 36-bit word, meaning that it was very fast to store and retrieve 36-bit values. The CPU’s instruction set featured two important macros: CAR would fetch 15 bits representing the Contents of the Address part of the Register, while CDR would fetch the Contents of the Decrement part of the Register. 

65https://en.wikipedia.org/wiki/Lisp_

66Lisp is still very much alive, and one of the most interesting and exciting programming languages in use today is Clojure, a Lisp dialect that runs on the JVM, along with its sibling ClojureScript, Clojure that transpiles to JavaScript. 

67https://en.wikipedia.org/wiki/IBM_704
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In broad terms, this means that a single 36-bit word could store two separate 15-bit values and it was very fast to save and retrieve pairs of values. If you had two 15-bit values and wished to write them to the register, the CONS macro would take the values and write them to a 36-bit word. 

Thus, CONS put two values together, CAR extracted one, and CDR extracted the other. Lisp’s basic data type is often said to be the list, but in actuality it was the “cons cell,” the term used to describe two 15-bit values stored in one word. The 15-bit values were used as pointers that could refer to a location in memory, so in effect, a cons cell was a little data structure with two pointers to other cons cells. 

Lists were represented as linked lists of cons cells, with each cell’s head pointing to an element and the tail pointing to another cons cell. 

Having these instructions be very fast was important to those early designers: They

were working on one of the first high-level languages (COBOL and FORTRAN being

the others), and computers in the late 1950s were extremely small and slow by today’s

standards. Although the 704 used core memory, it still used vacuum tubes for its logic. 

Thus, the design of programming languages and algorithms was driven by what could

be accomplished with limited memory and performance. 

Here’s the scheme in JavaScript, using two-element arrays to represent cons cells:

const cons = (a, d) => [a, d], 

car

= ([a, d]) => a, 

cdr

= ([a, d]) => d; 

We can make a list by calling cons repeatedly, and terminating it with null:

const oneToFive = cons(1, cons(2, cons(3, cons(4, cons(5, null))))); 

oneToFive

 //=> [1,[2,[3,[4,[5,null]]]]]

Notice that though JavaScript displays our list as if it is composed of arrays nested within each other like Russian Dolls, in reality the arrays refer to each other with references, so [1,[2,[3,[4,[5,null]]]]]

is actually more like:
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const node5 = [5, null], 

node4 = [4, node5], 

node3 = [3, node4], 

node2 = [2, node3], 

node1 = [1, node2]; 

const oneToFive = node1; 

This is a Linked List68, it’s just that those early Lispers used the names car and cdr after the hardware instructions, whereas today we use words like data and reference. But it works the same way: If we want the head of a list, we call car on it:

car(oneToFive)

 //=> 1

car is very fast, it simply extracts the first element of the cons cell. 

But what about the rest of the list? cdr does the trick:

cdr(oneToFive)

 //=> [2,[3,[4,[5,null]]]]

Again, it’s just extracting a reference from a cons cell, it’s very fast. In Lisp, it’s blazingly fast because it happens in hardware. There’s no making copies of arrays, the time to cdr a list with five elements is the same as the time to cdr a list with 5,000 elements, and no temporary arrays are needed. In JavaScript, it’s still much, much, much faster to get all the elements except the head from a linked list than from an array. Getting one reference to a structure that already exists is faster than copying a bunch of elements. 

So now we understand that in Lisp, a lot of things use linked lists, and they do that in part because it was what the hardware made possible. 

Getting back to JavaScript now, when we write [first, ...rest] to gather or spread arrays, 

we’re emulating the semantics of car and cdr, but not the implementation. We’re doing something laborious and memory-inefficient compared to using a linked list as Lisp did and as we can still do if we choose. 

That being said, it is easy to understand and helps us grasp how literals and destructuring works, and how recursive algorithms ought to mirror the self-similarity of the data structures they manipulate. 

And so it is today that languages like JavaScript have arrays that are slow to split into the equivalent of a car/cdr pair, but instructional examples of recursive programs still have echoes of their Lisp origins. 

We’ll look at linked lists again when we look at Plain Old JavaScript Objects. 

68https://en.wikipedia.org/wiki/Linked_list
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so why arrays

If [first, ...rest] is so slow, why does JavaScript use arrays instead of making everything a

linked list? 

Well, linked lists are fast for a few things, like taking the front element off a list, and taking the remainder of a list. But not for iterating over a list: Pointer chasing through memory is quite a bit slower than incrementing an index. In addition to the extra fetches to dereference pointers, pointer chasing suffers from cache misses. And if you want an arbitrary item from a list, you have to iterate through the list element by element, whereas with the indexed array you just fetch it. 

We have avoided discussing rebinding and mutating values, but if we want to change elements of

our lists, the naïve linked list implementation suffers as well: When we take the cdr of a linked list, we are sharing the elements. If we make any change other than cons-ing a new element to the front, we are changing both the new list and the old list. 

Arrays avoid this problem by pessimistically copying all the references whenever we extract an

element or sequence of elements from them (We’ll see this explained later in Mutation). 

For these and other reasons, almost all languages today make it possible to use a fast array or vector type that is optimized for iteration, and even Lisp now has a variety of data structures that are optimized for specific use cases. 

summary

Although we showed how to use tail calls to map and fold over arrays with [first, ...rest], in

reality this is not how it ought to be done. But it is an extremely simple illustration of how recursion works when you have a self-similar means of constructing a data structure. 
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Plain Old JavaScript Objects

Lists are not the only way to represent collections of things, but they are the “oldest” data structure in the history of high level languages, because they map very closely to the way the hardware is organized in a computer. Lists are obviously very handy for homogeneous collections of things, like a shopping list:

const remember = ["the milk", "the coffee beans", "the biscotti"]; 

And they can be used to store heterogeneous things in various levels of structure:

const user = [["Reginald", "Braithwaite"],[ "author", ["JavaScript Allongé", "Ja\

vaScript Spessore", "CoffeeScript Ristretto"]]]; 

Remembering that the name is the first item is error-prone, and being expected to look at user[0][1]

and know that we are talking about a surname is unreasonable. So back when lists were the only

things available, programmers would introduce constants to make things easier on themselves:

const NAME = 0, 

FIRST = 0, 

LAST = 1, 

OCCUPATION = 1, 

TITLE = 0, 

RESPONSIBILITIES = 1; 

const user = [["Reginald", "Braithwaite"],[ "author", ["JavaScript Allongé", "Ja\

vaScript Spessore", "CoffeeScript Ristretto"]]]; 

Now they could write user[NAME][LAST] or user[OCCUPATION][TITLE] instead of user[0][1] or

user[1][0]. Over time, this need to build heterogeneous data structures with access to members by name evolved into the Dictionary69 data type, a mapping from a unique set of objects to another set of objects. 

Dictionaries store key-value pairs, so instead of binding NAME to 0 and then storing a name in an array at index 0, we can bind a name directly to name in a dictionary, and we let JavaScript sort out whether the implementation is a list of key-value pairs, a hashed collection, a tree of some sort, or anything else. 

JavaScript has dictionaries, and it calls them “objects.” The word “object” is loaded in programming circles, due to the widespread use of the term “object-oriented programming” that was coined by Alan Kay but has since come to mean many, many things to many different people. 

In JavaScript, an object is a map from string keys to values. 

69https://en.wikipedia.org/wiki/Associative_array
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literal object syntax

JavaScript has a literal syntax for creating objects. This object maps values to the keys year, month, and day:

{ year: 2012, month: 6, day: 14 }

Two objects created with separate evaluations have differing identities, just like arrays:

{ year: 2012, month: 6, day: 14 } === { year: 2012, month: 6, day: 14 }

 //=> false

Objects use [] to access the values by name, using a string:

{ year: 2012, month: 6, day: 14 }['day']

 //=> 14

Values contained within an object work just like values contained within an array, we access them by reference to the original:

const unique = () => [], 

x = unique(), 

y = unique(), 

z = unique(), 

o = { a: x, b: y, c: z }; 

o['a'] === x && o['b'] === y && o['c'] === z

 //=> true

Names needn’t be alphanumeric strings. For anything else, enclose the label in quotes:

{ 'first name': 'reginald', 'last name': 'lewis' }['first name']

 //=> 'reginald' 

If the name is an alphanumeric string conforming to the same rules as names of variables, there’s a simplified syntax for accessing the values:
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const date = { year: 2012, month: 6, day: 14 }; 

date['day'] === date.day

 //=> true

Expressions can be used for keys as well. The syntax is to enclose the key’s expression in [ and ]:

{

["p" + "i"]: 3.14159265

}

 //=> {"pi":3.14159265}

All containers can contain any value, including functions or other containers, like a fat arrow function:

const Mathematics = {

abs: (a) => a < 0 ? -a : a

}; 

Mathematics.abs(-5)

 //=> 5

Or proper functions:

const SecretDecoderRing = {

encode: function (plaintext) {

return plaintext

.split('')

.map( char => char.charCodeAt() )

.map( code => code + 1 )

.map( code => String.fromCharCode(code) )

.join(''); 

}, 

decode: function (cyphertext) {

return cyphertext

.split('')

.map( char => char.charCodeAt() )

.map( code => code - 1 )

.map( code => String.fromCharCode(code) )

.join(''); 

}

}

Or named function expressions:
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const SecretDecoderRing = {

encode: function encode (plaintext) {

return plaintext

.split('')

.map( char => char.charCodeAt() )

.map( code => code + 1 )

.map( code => String.fromCharCode(code) )

.join(''); 

}, 

decode: function decode (cyphertext) {

return cyphertext

.split('')

.map( char => char.charCodeAt() )

.map( code => code - 1 )

.map( code => String.fromCharCode(code) )

.join(''); 

}

}

It is very common to associate named function expressions with keys in objects, and there is a

“compact method syntax” for binding named function expressions to keywords:

const SecretDecoderRing = {

encode (plaintext) {

return plaintext

.split('')

.map( char => char.charCodeAt() )

.map( code => code + 1 )

.map( code => String.fromCharCode(code) )

.join(''); 

}, 

decode (cyphertext) {

return cyphertext

.split('')

.map( char => char.charCodeAt() )

.map( code => code - 1 )

.map( code => String.fromCharCode(code) )

.join(''); 

}

}

(There are some other technical differences between binding a named function expression and using
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compact method syntax, but they are not relevant here. We will generally prefer compact method

syntax whenever we can.)

destructuring objects

Just as we saw with arrays, we can write destructuring assignments with literal object syntax. So, we can write:

const user = {

name: { first: "Reginald", 

last: "Braithwaite" 

}, 

occupation: { title: "Author", 

responsibilities: [ "JavaScript Allongé", 

"JavaScript Spessore", 

"CoffeeScript Ristretto" 

]

}

}; 

user.name.last

 //=> "Braithwaite" 

user.occupation.title

 //=> "Author" 

And we can also write:

const {name: { first: given, last: surname}, occupation: { title: title } } = us\

er; 

surname

 //=> "Braithwaite" 

title

 //=> "Author" 

And of course, we destructure parameters:
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const description = ({name: { first: given }, occupation: { title: title } }) =>

`${given} is a ${title}`; 

description(user)

 //=> "Reginald is a Author" 

Terrible grammar and capitalization, but let’s move on. It is very common to write things like

title: title when destructuring objects. When the label is a valid variable name, it’s often the most obvious variable name as well. So JavaScript supports a further syntactic optimization:

const description = ({name: { first }, occupation: { title } }) =>

`${first} is a ${title}`; 

description(user)

 //=> "Reginald is a Author" 

And that same syntax works for literals:

const abbrev = ({name: { first, last }, occupation: { title } }) => {

return { first, last, title}; 

}

abbrev(user)

 //=> {"first":"Reginald","last":"Braithwaite","title":"Author"}

revisiting linked lists

Earlier, we used two-element arrays as nodes in a linked list:

const cons = (a, d) => [a, d], 

car

= ([a, d]) => a, 

cdr

= ([a, d]) => d; 

In essence, this simple implementation used functions to create an abstraction with named elements. 

But now that we’ve looked at objects, we can use an object instead of a two-element array. While we’re at it, let’s use contemporary names. So our linked list nodes will be formed from { first, rest }

In that case, a linked list of the numbers 1, 2, and 3 will look like this: { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY } } }. 

We can then perform the equivalent of [first, ...rest] with direct property accessors:
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const EMPTY = {}; 

const OneTwoThree = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY \

} } }; 

OneTwoThree.first

 //=> 1

OneTwoThree.rest

 //=> {"first":2,"rest":{"first":3,"rest":{}}}

OneTwoThree.rest.rest.first

 //=> 3

Taking the length of a linked list is easy:

const length = (node, delayed = 0) =>

node === EMPTY

? delayed

: length(node.rest, delayed + 1); 

length(OneTwoThree)

 //=> 3

What about mapping? Well, let’s start with the simplest possible thing, making a  copy  of a list. As we saw above, and discussed in Garbage, Garbage Everywhere, it is fast to iterate forward through a linked list. What isn’t fast is naïvely copying a list:

const slowcopy = (node) =>

node === EMPTY

? EMPTY

: { first: node.first, rest: slowcopy(node.rest)}; 

slowcopy(OneTwoThree)

 //=> {"first":1,"rest":{"first":2,"rest":{"first":3,"rest":{}}}}

The problem here is that linked lists are constructed back-to-front, but we iterate over them front-to-back. So to copy a list, we have to save all the bits on the call stack and then construct the list from back-to-front as all the recursive calls return. 

We could follow the strategy of delaying the work. Let’s write that naively:
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const copy2 = (node, delayed = EMPTY) =>

node === EMPTY

? delayed

: copy2(node.rest, { first: node.first, rest: delayed }); 

copy2(OneTwoThree)

 //=> {"first":3,"rest":{"first":2,"rest":{"first":1,"rest":{}}}}

Well, well, well. We have unwittingly  reversed  the list. This makes sense, if lists are constructed from back to front, and we make a linked list out of items as we iterate through it, we’re going to get a backwards copy of the list. This isn’t a bad thing by any stretch of the imagination. Let’s call it what it is:

const reverse = (node, delayed = EMPTY) =>

node === EMPTY

? delayed

: reverse(node.rest, { first: node.first, rest: delayed }); 

And now, we can make a reversing map:

const reverseMapWith = (fn, node, delayed = EMPTY) =>

node === EMPTY

? delayed

: reverseMapWith(fn, node.rest, { first: fn(node.first), rest: delayed }); 

reverseMapWith((x) => x * x, OneTwoThree)

 //=> {"first":9,"rest":{"first":4,"rest":{"first":1,"rest":{}}}}

And a regular mapWith follows:

const reverse = (node, delayed = EMPTY) =>

node === EMPTY

? delayed

: reverse(node.rest, { first: node.first, rest: delayed }); 

const mapWith = (fn, node, delayed = EMPTY) =>

node === EMPTY

? reverse(delayed)

: mapWith(fn, node.rest, { first: fn(node.first), rest: delayed }); 

mapWith((x) => x * x, OneTwoThree)

 //=> {"first":1,"rest":{"first":4,"rest":{"first":9,"rest":{}}}}

Composing and Decomposing Data

117

Our mapWith function takes twice as long as a straight iteration, because it iterates over the entire list twice, once to map, and once to reverse the list. Likewise, it takes twice as much memory, because it constructs a reverse of the desired result before throwing it away. 

Mind you, this is still much, much faster than making partial copies of arrays. For a list of length  n, we created  n  superfluous nodes and copied  n  superfluous values. Whereas our naïve array algorithm created 2 n  superfluous arrays and copied  n 2 superfluous values. 
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Mutation

Cupping Grinds

In JavaScript, almost every type of value can  mutate. Their identities stay the same, but not their structure. Specifically, arrays and objects can mutate. Recall that you can access a value from within an array or an object using []. You can reassign a value using [] =:

const oneTwoThree = [1, 2, 3]; 

oneTwoThree[0] = 'one'; 

oneTwoThree

 //=> [ 'one', 2, 3 ]

You can even add a value:
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const oneTwoThree = [1, 2, 3]; 

oneTwoThree[3] = 'four'; 

oneTwoThree

 //=> [ 1, 2, 3, 'four' ]

You can do the same thing with both syntaxes for accessing objects:

const name = {firstName: 'Leonard', lastName: 'Braithwaite'}; 

name.middleName = 'Austin' 

name

 //=> { firstName: 'Leonard', 

#

lastName: 'Braithwaite', 

#

middleName: 'Austin' }

We have established that JavaScript’s semantics allow for two different bindings to refer to the same value. For example:

const allHallowsEve = [2012, 10, 31]

const halloween = allHallowsEve; 

Both halloween and allHallowsEve are bound to the same array value within the local environment. 

And also:

const allHallowsEve = [2012, 10, 31]; 

(function (halloween) {

 // ... 

})(allHallowsEve); 

There are two nested environments, and each one binds a name to the exact same array value. In

each of these examples, we have created two  aliases  for the same value. Before we could reassign things, the most important point about this is that the identities were the same, because they were the same value. 

This is vital. Consider what we already know about shadowing:
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const allHallowsEve = [2012, 10, 31]; 

(function (halloween) {

halloween = [2013, 10, 31]; 

})(allHallowsEve); 

allHallowsEve

 //=> [2012, 10, 31]

The outer value of allHallowsEve was not changed because all we did was rebind the name

halloween within the inner environment. However, what happens if we  mutate  the value in the inner environment? 

const allHallowsEve = [2012, 10, 31]; 

(function (halloween) {

halloween[0] = 2013; 

})(allHallowsEve); 

allHallowsEve

 //=> [2013, 10, 31]

This is different. We haven’t rebound the inner name to a different variable, we’ve mutated the value that both bindings share. Now that we’ve finished with mutation and aliases, let’s have a look at it. 

JavaScript permits the reassignment of new values to existing bindings, as well as the

reassignment and assignment of new values to elements of containers such as arrays and

objects. Mutating existing objects has special implications when two bindings are aliases

of the same value. 

Note well: Declaring a variable const does not prevent us from mutating its value, only

from rebinding its name. This is an important distinction. 

mutation and data structures

Mutation is a surprisingly complex subject. It is possible to compute anything without ever mutating an existing entity. Languages like Haskell70 don’t permit mutation at all. In general, mutation makes some algorithms shorter to write and possibly faster, but harder to reason about. 

One pattern many people follow is to be liberal with mutation when constructing data, but

conservative with mutation when consuming data. Let’s recall linked lists from Plain Old JavaScript

Objects. While we’re executing the mapWith function, we’re constructing a new linked list. By this pattern, we would be happy to use mutation to construct the list while running mapWith. 

But after returning the new list, we then become conservative about mutation. This also makes sense: Linked lists often use structure sharing. For example:

70https://en.wikipedia.org/wiki/Haskell_
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const EMPTY = {}; 

const OneToFive = { first: 1, 

rest: {

first: 2, 

rest: {

first: 3, 

rest: {

first: 4, 

rest: {

first: 5, 

rest: EMPTY } } } } }; 

OneToFive

 //=> {"first":1,"rest":{"first":2,"rest":{"first":"three","rest":{"first":"fou\

r","rest":{"first":"five","rest":{}}}}}}

const ThreeToFive = OneToFive.rest.rest; 

ThreeToFive

//=> {"first":3,"rest":{"first":4,"rest":{"first":5,"rest":{}}}}

ThreeToFive.first = "three"; 

ThreeToFive.rest.first = "four"; 

ThreeToFive.rest.rest.first = "five"; 

ThreeToFive

//=> {"first":"three","rest":{"first":"four","rest":{"first":"five","rest":{}}\

}}

OneToFive

//=> {"first":1,"rest":{"first":2,"rest":{"first":"three","rest":{"first":"fou\

r","rest":{"first":"five","rest":{}}}}}}

Changes made to ThreeToFive affect OneToFive, because they share the same structure. When we

wrote ThreeToFive = OneToFive.rest.rest;, we weren’t making a brand new copy of {"first":3,"rest":{"first":4,"rest":{"first":5,"rest":{}}}}, we were getting a reference to the same chain of nodes. 

Structure sharing like this is what makes linked lists so fast for taking everything but the first item of a list: We aren’t making a new list, we’re using some of the old list. Whereas destructuring an array with [first, ...rest] does make a copy, so:
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const OneToFive = [1, 2, 3, 4, 5]; 

OneToFive

 //=> [1,2,3,4,5]

const [a, b, ...ThreeToFive] = OneToFive; 

ThreeToFive

 //=> [3, 4, 5]

ThreeToFive[0] = "three"; 

ThreeToFive[1] = "four"; 

ThreeToFive[2] = "five"; 

ThreeToFive

 //=> ["three","four","five"]

OneToFive

 //=> [1,2,3,4,5]

The gathering operation [a, b, ...ThreeToFive] is slower, but “safer.” 

So back to avoiding mutation. In general, it’s easier to reason about data that doesn’t change. We don’t have to remember to use copying operations when we pass it as a value to a function, or extract some data from it. We just use the data, and the less we mutate it, the fewer the times we have to think about whether making changes will be “safe.” 

building with mutation

As noted, one pattern is to be more liberal about mutation when building a data structure. Consider our copy algorithm. Without mutation, a copy of a linked list can be made in constant space by

reversing a reverse of the list:

const reverse = (node, delayed = EMPTY) =>

node === EMPTY

? delayed

: reverse(node.rest, { first: node.first, rest: delayed }); 

const copy = (node) => reverse(reverse(node)); 

If we want to make a copy of a linked list without iterating over it twice and making a copy we discard later, we can use mutation:
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const copy = (node, head = null, tail = null) => {

if (node === EMPTY) {

return head; 

}

else if (tail === null) {

const { first, rest } = node; 

const newNode = { first, rest }; 

return copy(rest, newNode, newNode); 

}

else {

const { first, rest } = node; 

const newNode = { first, rest }; 

tail.rest = newNode; 

return copy(node.rest, head, newNode); 

}

}

This algorithm makes copies of nodes as it goes, and mutates the last node in the list so that it can splice the next one on. Adding a node to an existing list is risky, as we saw when considering the fact that OneToFive and ThreeToFive share the same nodes. But when we’re in the midst of creating a brand new list, we aren’t sharing any nodes with any other lists, and we can afford to be more liberal about using mutation to save space and/or time. 

Armed with this basic copy implementation, we can write mapWith:

const mapWith = (fn, node, head = null, tail = null) => {

if (node === EMPTY) {

return head; 

}

else if (tail === null) {

const { first, rest } = node; 

const newNode = { first: fn(first), rest }; 

return mapWith(fn, rest, newNode, newNode); 

}

else {

const { first, rest } = node; 

const newNode = { first: fn(first), rest }; 

tail.rest = newNode; 

return mapWith(fn, node.rest, head, newNode); 

}

}

mapWith((x) => 1.0 / x, OneToFive)
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 //=> {"first":1,"rest":{"first":0.5,"rest":{"first":0.3333333333333333,"rest":\

{"first":0.25,"rest":{"first":0.2,"rest":{}}}}}}
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Reassignment

Like some imperative programming languages, JavaScript allows you to re-assign the value bound

to parameters. We saw this earlier in rebinding:

By default, JavaScript permits us to  rebind  new values to names bound with a parameter. For example, we can write:

const evenStevens = (n) => {

if (n === 0) {

return true; 

}

else if (n == 1) {

return false; 

}

else {

n = n - 2; 

return evenStevens(n); 

}

}

evenStevens(42)

 //=> true

The line n = n - 2;  rebinds  a new value to the name n. We will discuss this at much greater length in Reassignment, but long before we do, let’s try a similar thing with a name bound using const. 

We’ve already bound evenStevens using const, let’s try rebinding it:

evenStevens = (n) => {

if (n === 0) {

return true; 

}

else if (n == 1) {

return false; 

}

else {

return evenStevens(n - 2); 

}

}

 //=> ERROR, evenStevens is read-only
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JavaScript does not permit us to rebind a name that has been bound with const. We can  shadow  it by using const to declare a new binding with a new function or block scope, but we cannot rebind a name that was bound with const in an existing scope. 

Rebinding parameters is usually avoided, but what about rebinding names we declare within a

function? What we want is a statement that works like const, but permits us to rebind variables. 

JavaScript has such a thing, it’s called let:

let age = 52; 

age = 53; 

age

 //=> 53

We took the time to carefully examine what happens with bindings in environments. Let’s take the time to explore what happens with reassigning values to variables. The key is to understand that we are rebinding a different value to the same name in the same environment. 

So let’s consider what happens with a shadowed variable:

(() => {

let age = 49; 

if (true) {

let age = 50; 

}

return age; 

})()

 //=> 49

Using let to bind 50 to age within the block does not change the binding of age in the outer

environment because the binding of age in the block shadows the binding of age in the outer

environment, just like const. We go from:

{age: 49, '..': global-environment}

To:

{age: 50, '..': {age: 49, '..': global-environment}}

Then back to:
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{age: 49, '..': global-environment}

However, if we don’t shadow age with let, reassigning within the block changes the original:

(() => {

let age = 49; 

if (true) {

age = 50; 

}

return age; 

})()

 //=> 50

Like evaluating variable labels, when a binding is rebound, JavaScript searches for the binding in the current environment and then each ancestor in turn until it finds one. It then rebinds the name in that environment. 

mixing let and const

Some programmers dislike deliberately shadowing variables. The suggestion is that shadowing a

variable is confusing code. If you buy that argument, the way that shadowing works in JavaScript exists to protect us from accidentally shadowing a variable when we move code around. 

If you dislike deliberately shadowing variables, you’ll probably take an even more opprobrious view of mixing const and let semantics with a shadowed variable:

(() => {

let age = 49; 

if (true) {

const age = 50; 

}

age = 51; 

return age; 

})()

 //=> 51

Shadowing a let with a const does not change our ability to rebind the variable in its original scope. 

And:
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(() => {

const age = 49; 

if (true) {

let age = 50; 

}

age = 52; 

return age; 

})()

 //=> ERROR: age is read-only

Shadowing a const with a let does not permit it to be rebound in its original scope. 

var

JavaScript has one  more  way to bind a name to a value, var.71

var looks a lot like let:

const factorial = (n) => {

let x = n; 

if (x === 1) {

return 1; 

}

else {

--x; 

return n * factorial(x); 

}

}

factorial(5)

 //=> 120

const factorial2 = (n) => {

var x = n; 

if (x === 1) {

return 1; 

}

else {

--x; 

71How many have we seen so far? Well, parameters bind names. Function declarations bind names. Named function expressions bind names. 

const and let bind names. So that’s five different ways so far. And there are more! 
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return n * factorial2(x); 

}

}

factorial2(5)

 //=> 120

But of course, it’s not exactly like let. It’s just different enough to present a source of confusion. 

First, var is not block scoped, it’s function scoped, just like function declarations:

(() => {

var age = 49; 

if (true) {

var age = 50; 

}

return age; 

})()

 //=> 50

Declaring age twice does not cause an error(!), and the inner declaration does not shadow the outer declaration. All var declarations behave as if they were hoisted to the top of the function, a little like function declarations. 

But, again, it is unwise to expect consistency. A function declaration can appear anywhere within a function, but the declaration  and  the definition are hoisted. Note this example of a function that uses a helper:

const factorial = (n) => {

return innerFactorial(n, 1); 

function innerFactorial (x, y) {

if (x == 1) {

return y; 

}

else {

return innerFactorial(x-1, x * y); 

}

}

}

factorial(4)

 //=> 24
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JavaScript interprets this code as if we had written:

const factorial = (n) => {

let innerFactorial = function innerFactorial (x, y) {

if (x == 1) {

return y; 

}

else {

return innerFactorial(x-1, x * y); 

}

}

return innerFactorial(n, 1); 

}

JavaScript hoists the let and the assignment. But not so with var:

const factorial = (n) => {

return innerFactorial(n, 1); 

var innerFactorial = function innerFactorial (x, y) {

if (x == 1) {

return y; 

}

else {

return innerFactorial(x-1, x * y); 

}

}

}

factorial(4)

 //=> undefined is not a function (evaluating 'innerFactorial(n, 1)')

JavaScript hoists the declaration, but not the assignment. It is as if we’d written:
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const factorial = (n) => {

let innerFactorial = undefined; 

return innerFactorial(n, 1); 

innerFactorial = function innerFactorial (x, y) {

if (x == 1) {

return y; 

}

else {

return innerFactorial(x-1, x * y); 

}

}

}

factorial(4)

 //=> undefined is not a function (evaluating 'innerFactorial(n, 1)')

In that way, var is a little like const and let, we should always declare and bind names before using them. But it’s not like const and let in that it’s function scoped, not block scoped. 

why const and let were invented

const and let are recent additions to JavaScript. For nearly twenty years, variables were declared with var (not counting parameters and function declarations, of course). However, its functional scope was a problem. 

We haven’t looked at it yet, but JavaScript provides a for loop for your iterating pleasure and convenience. It looks a lot like the for loop in C. Here it is with var:

var sum = 0; 

for (var i = 1; i <= 100; i++) {

sum = sum + i

}

sum

#=> 5050

Hopefully, you can think of a faster way to calculate this sum.72 And perhaps you have noticed that var i = 1 is tucked away instead of being at the top as we prefer. But is this ever a problem? 

72There is a well known story about Karl Friedrich Gauss when he was in elementary school. His teacher got mad at the class and told them to add the numbers 1 to 100 and give him the answer by the end of the class. About 30 seconds later Gauss gave him the answer. The other kids were adding the numbers like this: 1 + 2 + 3 + . . . . + 99 + 100 = ? But Gauss rearranged the numbers to add them like this: (1 + 100) + (2 +

99) + (3 + 98) + . . . . + (50 + 51) = ? If you notice every pair of numbers adds up to 101. There are 50 pairs of numbers, so the answer is 50*101 = 5050. Of course Gauss came up with the answer about 20 times faster than the other kids. 
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Yes. Consider this variation:

var introductions = [], 

names = ['Karl', 'Friedrich', 'Gauss']; 

for (var i = 0; i < 3; i++) {

introductions[i] = "Hello, my name is " + names[i]

}

introductions

 //=> [ 'Hello, my name is Karl', 

 //

 'Hello, my name is Friedrich', 

 //

 'Hello, my name is Gauss' ]

So far, so good. Hey, remember that functions in JavaScript are values? Let’s get fancy! 

var introductions = [], 

names = ['Karl', 'Friedrich', 'Gauss']; 

for (var i = 0; i < 3; i++) {

introductions[i] = (soAndSo) =>

`Hello, ${soAndSo}, my name is ${names[i]}`

}

introductions

 //=> [ [Function], 

 //

 [Function], 

 //

 [Function] ]

Again, so far, so good. Let’s try one of our functions:

introductions[1]('Raganwald')

 //=> 'Hello, Raganwald, my name is undefined' 

What went wrong? Why didn’t it give us ‘Hello, Raganwald, my name is Friedrich’? The answer is

that pesky var i. Remember that i is bound in the surrounding environment, so it’s as if we wrote:
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var introductions = [], 

names = ['Karl', 'Friedrich', 'Gauss'], 

i = undefined; 

for (i = 0; i < 3; i++) {

introductions[i] = function (soAndSo) {

return "Hello, " + soAndSo + ", my name is " + names[i]

}

}

introductions

Now, at the time we created each function, i had a sensible value, like 0, 1, or 2. But at the time we call  one of the functions, i has the value 3, which is why the loop terminated. So when the function is called, JavaScript looks i up in its enclosing environment (its closure, obviously), and gets the value 3. That’s not what we want at all. 

The error wouldn’t exist at all if we’d used let in the first place

let introductions = [], 

names = ['Karl', 'Friedrich', 'Gauss']; 

for (let i = 0; i < 3; i++) {

introductions[i] = (soAndSo) =>

`Hello, ${soAndSo}, my name is ${names[i]}`

}

introductions[1]('Raganwald')

 //=> 'Hello, Raganwald, my name is Friedrich' 

This small error was a frequent cause of confusion, and in the days when there was no block-scoped let, programmers would need to know how to fake it, usually with an IIFE:

var introductions = [], 

names = ['Karl', 'Friedrich', 'Gauss']; 

for (var i = 0; i < 3; i++) {

((i) => {

introductions[i] = (soAndSo) =>

`Hello, ${soAndSo}, my name is ${names[i]}`

}

})(i)

}

introductions[1]('Raganwald')

 //=> 'Hello, Raganwald, my name is Friedrich' 
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Now we’re creating a new inner parameter, i and binding it to the value of the outer i. This works, but let is so much simpler and cleaner that it was added to the language in the ECMAScript 2015

specification. 

In this book, we will use function declarations sparingly, and not use var at all. That does not mean that you should follow the exact same practice in your own code: The purpose of this book is to illustrate certain principles of programming. The purpose of your own code is to get things done. 

The two goals are often, but not always, aligned. 
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Copy on Write

The Coffee Cow

We’ve seen how to build lists with arrays and with linked lists. We’ve touched on an important

difference between them:

• When you take the rest of an array with destructuring ([first, ...rest]), you are given a

 copy  of the elements of the array. 

• When you take the rest of a linked list with its reference, you are given the exact same nodes of the elements of the original list. 

The consequence of this is that if you have an array, and you take it’s “rest,” your “child” array is a copy of the elements of the parent array. And therefore, modifications to the parent do not affect the child, and modifications to the child do not affect the parent. 
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Whereas if you have a linked list, and you take it’s “rest,” your “child” list shares its nodes with the

“parent” list. And therefore, modifications to the parent also modify the child, and modifications to the child also modify the parent. 

Let’s confirm our understanding:

const parentArray = [1, 2, 3]; 

const [aFirst, ...childArray] = parentArray; 

parentArray[2] = "three"; 

childArray[0] = "two"; 

parentArray

 //=> [1,2,"three"]

childArray

 //=> ["two",3]

const EMPTY = { first: {}, rest: {} }; 

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }\

}}; 

const childList = parentList.rest; 

parentList.rest.rest.first = "three"; 

childList.first = "two"; 

parentList

 //=> {"first":1,"rest":{"first":"two","rest":{"first":"three","rest":{"first":\

{},"rest":{}}}}}

childList

 //=> {"first":"two","rest":{"first":"three","rest":{"first":{},"rest":{}}}}

This is remarkably unsafe. If we  know  that a list doesn’t share any elements with another list, we can safely modify it. But how do we keep track of that? Add a bunch of bookkeeping to track references? 

We’ll end up reinventing reference counting and garbage collection. 

a few utilities

before we go any further, let’s write a few naïve list utilities so that we can work at a slightly higher level of abstraction:
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const copy = (node, head = null, tail = null) => {

if (node === EMPTY) {

return head; 

}

else if (tail === null) {

const { first, rest } = node; 

const newNode = { first, rest }; 

return copy(rest, newNode, newNode); 

}

else {

const { first, rest } = node; 

const newNode = { first, rest }; 

tail.rest = newNode; 

return copy(node.rest, head, newNode); 

}

}

const first = ({first, rest}) => first; 

const rest = ({first, rest}) => rest; 

const reverse = (node, delayed = EMPTY) =>

node === EMPTY

? delayed

: reverse(rest(node), { first: first(node), rest: delayed }); 

const mapWith = (fn, node, delayed = EMPTY) =>

node === EMPTY

? reverse(delayed)

: mapWith(fn, rest(node), { first: fn(first(node)), rest: delayed }); 

const at = (index, list) =>

index === 0

? first(list)

: at(index - 1, rest(list)); 

const set = (index, value, list, originalList = list) =>

index === 0

? (list.first = value, originalList)

: set(index - 1, value, rest(list), originalList)

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }\

}}; 
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const childList = rest(parentList); 

set(2, "three", parentList); 

set(0, "two", childList); 

parentList

 //=> {"first":1,"rest":{"first":"two","rest":{"first":"three","rest":{"first":\

{},"rest":{}}}}}

childList

 //=> {"first":"two","rest":{"first":"three","rest":{"first":{},"rest":{}}}}

Our new at and set functions behave similarly to array[index] and array[index] = value. The

main difference is that array[index] = value evaluates to value, while set(index, value, list)

evaluates to the modified list. 

copy-on-read

So back to the problem of structure sharing. One strategy for avoiding problems is to be  pessimistic. 

Whenever we take the rest of a list, make a copy. 

const rest = ({first, rest}) => copy(rest); 

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }\

}}; 

const childList = rest(parentList); 

const newParentList = set(2, "three", parentList); 

set(0, "two", childList); 

parentList

 //=> {"first":1,"rest":{"first":2,"rest":{"first":"three","rest":{"first":{},"\

rest":{}}}}}

childList

//=> {"first":"two","rest":{"first":3,"rest":{"first":{},"rest":{}}}}

This strategy is called “copy-on-read”, because when we attempt the parent to “read” the value of a child of the list, we make a copy and read the copy of the child. Thereafter, we can write to the parent or the copy of the child freely. 

As we expected, making a copy lets us modify the copy without interfering with the original. This is, however, expensive. Sometimes we don’t need to make a copy because we won’t be modifying the

list. Our mapWith function would be very expensive if we make a copy every time we call rest(node). 

There’s also a bug: What happens when we modify the first element of a list? But before we fix that, let’s try being lazy about copying. 
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copy-on-write

Why are we copying? In case we modify a child list. Ok, what if we do this: Make the copy when

we know we are modifying the list. When do we know that? When we call set. We’ll restore our

original definition for rest, but change set:

const rest = ({first, rest}) => rest; 

const set = (index, value, list) =>

index === 0

? { first: value, rest: list.rest }

: { first: list.first, rest: set(index - 1, value, list.rest) }; 

const parentList = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY }\

}}; 

const childList = rest(parentList); 

const newParentList = set(2, "three", parentList); 

const newChildList = set(0, "two", childList); 

Our original parent and child lists remain unmodified:

parentList

 //=> {"first":1,"rest":{"first":2,"rest":{"first":3,"rest":{"first":{},"rest":\

{}}}}}

childList

 //=> {"first":2,"rest":{"first":3,"rest":{"first":{},"rest":{}}}}

But our new parent and child lists are copies that contain the desired modifications, without



interfering with each other:

newParentList

 //=> {"first":1,"rest":{"first":2,"rest":{"first":"three","rest":{"first":{},"\

rest":{}}}}}

newChildList

//=> {"first":"two","rest":{"first":3,"rest":{"first":{},"rest":{}}}}

And now functions like mapWith that make copies without modifying anything, work at full speed. 

This strategy of waiting to copy until you are writing is called copy-on-write, or “COW:” 
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Copy-on-write is the name given to the policy that whenever a task attempts to make

a change to the shared information, it should first create a separate (private) copy of

that information to prevent its changes from becoming visible to all the other tasks.—

Wikipedia73

Like all strategies, it makes a tradeoff: It’s much cheaper than pessimistically copying structures when you make an infrequent number of small changes, but if you tend to make a lot of changes to some that you aren’t sharing, it’s more expensive. 

Looking at the code again, you see that the copy function doesn’t copy on write: It follows the pattern that while constructing something, we own it and can be liberal with mutation. Once we’re done

with it and give it to someone else, we need to be conservative and use a strategy like copy-on-read or copy-on-write. 

73https://en.wikipedia.org/wiki/Copy-on-write
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Tortoises, Hares, and Teleporting Turtles

A good long while ago (The First Age of Internet Startups), someone asked me one of those pet

algorithm questions. It was, “Write an algorithm to detect a loop in a linked list, in constant space.” 

I’m not particularly surprised that I couldn’t think up an answer in a few minutes at the time. And to the interviewer’s credit, he didn’t terminate the interview on the spot, he asked me to describe the kinds of things going through my head. 

I think I told him that I was trying to figure out if I could adapt a hashing algorithm such as XORing everything together. This is the “trick answer” to a question about finding a missing integer from a list, so I was trying the old, “Transform this into a problem you’ve already solved74” meta-algorithm. 

We moved on from there, and he didn’t reveal the “solution.” 

I went home and pondered the problem. I wanted to solve it. Eventually, I came up with something and tried it (In Java!) on my home PC. I sent him an email sharing my result, to demonstrate my ability to follow through. I then forgot about it for a while. Some time later, I was told that the correct solution was:

const EMPTY = null; 

const isEmpty = (node) => node === EMPTY; 

const pair = (first, rest = EMPTY) => ({first, rest}); 

const list = (...elements) => {

const [first, ...rest] = elements; 

return elements.length === 0

? EMPTY

: pair(first, list(...rest))

}

const forceAppend = (list1, list2) => {

if (isEmpty(list1)) {

return "FAIL!" 

}

if (isEmpty(list1.rest)) {

list1.rest = list2; 

}

else {

forceAppend(list1.rest, list2); 

74http://www-users.cs.york.ac.uk/susan/joke/3.htm#boil
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}

}

const tortoiseAndHare = (aPair) => {

let tortoisePair = aPair, 

harePair = aPair.rest; 

while (true) {

if (isEmpty(tortoisePair) || isEmpty(harePair)) {

return false; 

}

if (tortoisePair.first === harePair.first) {

return true; 

}

harePair = harePair.rest; 

if (isEmpty(harePair)) {

return false; 

}

if (tortoisePair.first === harePair.first) {

return true; 

}

tortoisePair = tortoisePair.rest; 

harePair = harePair.rest; 

}

}; 

const aList = list(1, 2, 3, 4, 5); 

tortoiseAndHare(aList)

 //=> false

forceAppend(aList, aList.rest.rest); 

tortoiseAndHare(aList); 

 //=> true

This algorithm is called “The Tortoise and the Hare,” and was discovered by Robert Floyd in the 1960s. You have two node references, and one traverses the list at twice the speed of the other. No matter how large it is, you will eventually have the fast reference equal to the slow reference, and thus you’ll detect the loop. 
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At the time, I couldn’t think of any way to use hashing to solve the problem, so I gave up and tried to fit this into a powers-of-two algorithm. My first pass at it was clumsy, but it was roughly equivalent to this:

const teleportingTurtle = (list) => {

let speed = 1, 

rabbit = list, 

turtle = rabbit; 

while (true) {

for (let i = 0; i <= speed; i += 1) {

rabbit = rabbit.rest; 

if (rabbit == null) {

return false; 

}

if (rabbit === turtle) {

return true; 

}

}

turtle = rabbit; 

speed *= 2; 

}

return false; 

}; 

const aList = list(1, 2, 3, 4, 5); 

teleportingTurtle(aList)

 //=> false

forceAppend(aList, aList.rest.rest); 

teleportingTurtle(aList); 

 //=> true

Years later, I came across a discussion of this algorithm, The Tale of the Teleporting Turtle75. It seems to be faster under certain circumstances, depending on the size of the loop and the relative costs of certain operations. 

What’s interesting about these two algorithms is that they both  tangle  two separate concerns: How to traverse a data structure, and what to do with the elements that you encounter. In Functional

Iterators, we’ll investigate one pattern for separating these concerns. 

75http://www.penzba.co.uk/Writings/TheTeleportingTurtle.html
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Functional Iterators

Let’s consider a remarkably simple problem: Finding the sum of the elements of an array. In tail-recursive style, it looks like this:

const arraySum = ([first, ...rest], accumulator = 0) =>

first === undefined

? accumulator

: arraySum(rest, first + accumulator)

arraySum([1, 4, 9, 16, 25])

 //=> 55

As we saw earlier, this entangles the mechanism of traversing the array with the business of

summing the bits. So we can separate them using fold:

const callLeft = (fn, ...args) =>

(...remainingArgs) =>

fn(...args, ...remainingArgs); 

const foldArrayWith = (fn, terminalValue, [first, ...rest]) =>

first === undefined

? terminalValue

: fn(first, foldArrayWith(fn, terminalValue, rest)); 

const arraySum = callLeft(foldArrayWith, (a, b) => a + b, 0); 

arraySum([1, 4, 9, 16, 25])

 //=> 55

The nice thing about this is that the definition for arraySum mostly concerns itself with summing, and not with traversing over a collection of data. But it still relies on foldArrayWith, so it can only sum arrays. 

What happens when we want to sum a tree of numbers? Or a linked list of numbers? 

Well, we call arraySum with an array, and it has baked into it a method for traversing the array. 

Perhaps we could extract both of those things. Let’s rearrange our code a bit:
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const callRight = (fn, ...args) =>

(...remainingArgs) =>

fn(...remainingArgs, ...args); 

const foldArrayWith = (fn, terminalValue, [first, ...rest]) =>

first === undefined

? terminalValue

: fn(first, foldArrayWith(fn, terminalValue, rest)); 

const foldArray = (array) => callRight(foldArrayWith, array); 

const sumFoldable = (folder) => folder((a, b) => a + b, 0); 

sumFoldable(foldArray([1, 4, 9, 16, 25]))

 //=> 55

What we’ve done is turn an array into a function that folds an array with const foldArray =

(array) => callRight(foldArrayWith, array);. The sumFoldable function doesn’t care what

kind of data structure we have, as long as it’s foldable. 

Here it is summing a tree of numbers:

const callRight = (fn, ...args) =>

(...remainingArgs) =>

fn(...remainingArgs, ...args); 

const foldTreeWith = (fn, terminalValue, [first, ...rest]) =>

first === undefined

? terminalValue

: Array.isArray(first)

? fn(foldTreeWith(fn, terminalValue, first), foldTreeWith(fn, terminalValu\

e, rest))

: fn(first, foldTreeWith(fn, terminalValue, rest)); 

const foldTree = (tree) => callRight(foldTreeWith, tree); 

const sumFoldable = (folder) => folder((a, b) => a + b, 0); 

sumFoldable(foldTree([1, [4, [9, 16]], 25]))

 //=> 55

We’ve found another way to express the principle of separating traversing a data structure from the operation we want to perform on that data structure, we’ve completely separated the knowledge of how to sum from the knowledge of how to fold an array or tree (or anything else, really). 
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iterating

Folding is a universal operation, and with care we can accomplish any task with folds that could be accomplished with that stalwart of structured programming, the for loop. Nevertheless, there is some value in being able to express some algorithms as iteration. 

JavaScript has a particularly low-level version of for loop that mimics the semantics of the C

language. Summing the elements of an array can be accomplished with:

const arraySum = (array) => {

let sum = 0; 

for (let i = 0; i < array.length; ++i) {

sum += array[i]; 

}

return sum

}

arraySum([1, 4, 9, 16, 25])

 //=> 55

Once again, we’re mixing the code for iterating over an array with the code for calculating a sum. 

And worst of all, we’re getting really low-level with details like knowing that the elements of an array are indexed with consecutive integers that begin with 0. 

We can write this a slightly different way, using a while loop:

const arraySum = (array) => {

let done, 

sum = 0, 

i = 0; 

while ((done = i == array.length, !done)) {

const value = array[i++]; 

sum += value; 

}

return sum

}

arraySum([1, 4, 9, 16, 25])

 //=> 55

Notice that buried inside our loop, we have bound the names done and value. We can put those into a POJO (a Plain Old JavaScript Object). It’ll be a little awkward, but we’ll be patient:
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const arraySum = (array) => {

let iter, 

sum = 0, 

index = 0; 

while (

(eachIteration = {

done: index === array.length, 

value: index < array.length ? array[index] : undefined

}, 

++index, 

!eachIteration.done)

) {

sum += eachIteration.value; 

}

return sum; 

}

arraySum([1, 4, 9, 16, 25])

 //=> 55

With this code, we make a POJO that has done and value keys. All the summing code needs to know is to add eachIteration.value. Now we can extract the ickiness into a separate function:

const arrayIterator = (array) => {

let i = 0; 

return () => {

const done = i === array.length; 

return {

done, 

value: done ? undefined : array[i++]

}

}

}

const iteratorSum = (iterator) => {

let eachIteration, 

sum = 0; 

while ((eachIteration = iterator(), !eachIteration.done)) {
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sum += eachIteration.value; 

}

return sum; 

}

iteratorSum(arrayIterator([1, 4, 9, 16, 25]))

 //=> 55

Now this is something else. The arrayIterator function takes an array and returns a function we can call repeatedly to obtain the elements of the array. The iteratorSum function iterates over the elements by calling the iterator function repeatedly until it returns { done: true }. 

We can write a different iterator for a different data structure. Here’s one for linked lists:

const EMPTY = null; 

const isEmpty = (node) => node === EMPTY; 

const pair = (first, rest = EMPTY) => ({first, rest}); 

const list = (...elements) => {

const [first, ...rest] = elements; 

return elements.length === 0

? EMPTY

: pair(first, list(...rest))

}

const print = (aPair) =>

isEmpty(aPair)

? "" 

: `${aPair.first} ${print(aPair.rest)}`

const listIterator = (aPair) =>

() => {

const done = isEmpty(aPair); 

if (done) {

return {done}; 

}

else {

const {first, rest} = aPair; 

aPair = aPair.rest; 
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return { done, value: first }

}

}

const iteratorSum = (iterator) => {

let eachIteration, 

sum = 0;; 

while ((eachIteration = iterator(), !eachIteration.done)) {

sum += eachIteration.value; 

}

return sum

}

const aListIterator = listIterator(list(1, 4, 9, 16, 25)); 

iteratorSum(aListIterator)

 //=> 55

unfolding and laziness

Iterators are functions. When they iterate over an array or linked list, they are traversing something that is already there. But they could just as easily manufacture the data as they go. Let’s consider the simplest example:

const NumberIterator = (number = 0) =>

() => ({ done: false, value: number++ })

fromOne = NumberIterator(1); 

fromOne().value; 

 //=> 1

fromOne().value; 

 //=> 2

fromOne().value; 

 //=> 3

fromOne().value; 

 //=> 4

fromOne().value; 

 //=> 5

And here’s another one:
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const FibonacciIterator

= () => {

let previous = 0, 

current = 1; 

return () => {

const value = current; 

[previous, current] = [current, current + previous]; 

return {done: false, value}; 

}; 

}; 

const fib = FibonacciIterator()

fib().value

 //=> 1

fib().value

 //=> 1

fib().value

 //=> 2

fib().value

 //=> 3

fib().value

 //=> 5

A function that starts with a seed and expands it into a data structure is called an  unfold. It’s the opposite of a fold. It’s possible to write a generic unfold mechanism, but let’s pass on to what we can do with unfolded iterators. 

For starters, we can map an iterator, just like we map a collection:

const mapIteratorWith = (fn, iterator) =>

() => {

const {done, value} = iterator(); 

return ({done, value: done ? undefined : fn(value)}); 

}

const squares = mapIteratorWith((x) => x * x, NumberIterator(1)); 

squares().value

 //=> 1

squares().value
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 //=> 4

squares().value

 //=> 9

This business of going on forever has some drawbacks. Let’s introduce an idea: A function that takes an iterator and returns another iterator. We can start with take, an easy function that returns an iterator that only returns a fixed number of elements:

const take = (iterator, numberToTake) => {

let count = 0; 

return () => {

if (++count <= numberToTake) {

return iterator(); 

} else {

return {done: true}; 

}

}; 

}; 

const toArray = (iterator) => {

let eachIteration, 

array = []; 

while ((eachIteration = iterator(), !eachIteration.done)) {

array.push(eachIteration.value); 

}

return array; 

}

toArray(take(FibonacciIterator(), 5))

 //=> [1, 1, 2, 3, 5]

toArray(take(squares, 5))

 //=> [1, 4, 9, 16, 25]

How about the squares of the first five odd numbers? We’ll need an iterator that produces odd

numbers. We can write that directly:
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const odds = () => {

let number = 1; 

return () => {

const value = number; 

number += 2; 

return {done: false, value}; 

}

}

const squareOf = callLeft(mapIteratorWith, (x) => x * x)

toArray(take(squareOf(odds()), 5))

 //=> [1, 9, 25, 49, 81]

We could also write a filter for iterators to accompany our mapping function:

const filterIteratorWith = (fn, iterator) =>

() => {

do {

const {done, value} = iterator(); 

} while (!done && !fn(value)); 

return {done, value}; 

}

const oddsOf = callLeft(filterIteratorWith, (n) => n % 2 === 1); 

toArray(take(squareOf(oddsOf(NumberIterator(1))), 5))

 //=> [1, 9, 25, 49, 81]

Mapping and filtering iterators allows us to compose the parts we already have, rather than writing a tricky bit of code with ifs and whiles and boundary conditions. 

bonus

Many programmers coming to JavaScript from other languages are familiar with three “canonical” 

operations on collections: folding, filtering, and finding. In Smalltalk, for example, they are known as collect, select, and detect. 

We haven’t written anything that finds the first element of an iteration that meets a certain criteria. 

Or have we? 
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const firstInIteration = (fn, iterator) =>

take(filterIteratorWith(fn, iterator), 1); 

This is interesting, because it is lazy: It doesn’t apply fn to every element in an iteration, just enough to find the first that passes the test. Whereas if we wrote something like:

const firstInArray = (fn, array) =>

array.filter(fn)[0]; 

JavaScript would apply fn to every element. If array was very large, and fn very slow, this would consume a lot of unnecessary time. And if fn had some sort of side-effect, the program could be buggy. 

caveat

Please note that unlike most of the other functions discussed in this book, iterators are  stateful. There are some important implications of stateful functions. One is that while functions like take(...) appear to create an entirely new iterator, in reality they return a decorated reference to the original iterator. So as you traverse the new decorator, you’re changing the state of the original! 

For all intents and purposes, once you pass an iterator to a function, you can expect that you no longer “own” that iterator, and that its state either has changed or will change. 
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Making Data Out Of Functions

Coffee served at the CERN particle accelerator

In our code so far, we have used arrays and objects to represent the structure of data, and we have extensively used the ternary operator to write algorithms that terminate when we reach a base case. 

For example, this length function uses a functions to bind values to names, POJOs to structure

nodes, and the ternary function to detect the base case, the empty list. 
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const EMPTY = {}; 

const OneTwoThree = { first: 1, rest: { first: 2, rest: { first: 3, rest: EMPTY \

} } }; 

OneTwoThree.first

 //=> 1

OneTwoThree.rest.first

 //=> 2

OneTwoThree.rest.rest.first

 //=> 3

const length = (node, delayed = 0) =>

node === EMPTY

? delayed

: length(node.rest, delayed + 1); 

length(OneTwoThree)

 //=> 3

A very long time ago, mathematicians like Alonzo Church, Moses Schönfinkel, Alan Turning, and

Haskell Curry and asked themselves if we really needed all these features to perform computations. 

They searched for a radically simpler set of tools that could accomplish all of the same things. 

They established that arbitrary computations could be represented a small set of axiomatic components. For example, we don’t need arrays to represent lists, or even POJOs to represent nodes in a linked list. We can model lists just using functions. 

To Mock a Mockingbird76 established the metaphor of songbirds for the combinators, and ever since then logicians have called the K combinator a “kestrel,” the B combinator

a “bluebird,” and so forth. 

The oscin.es77 library contains code for all of the standard combinators and for experimenting using the standard notation. 

Let’s start with some of the building blocks of combinatory logic, the K, I, and V combinators, nicknamed the “Kestrel”, the “Idiot Bird”, and the “Vireo:” 

76http://www.amazon.com/gp/product/0192801422/ref=as_li_ss_tl?ie=UTF8&tag=raganwald001-20&linkCode=as2&camp=1789&creative=

390957&creativeASIN=0192801422

77http://oscin.es
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const K = (x) => (y) => x; 

const I = (x) => (x); 

const V = (x) => (y) => (z) => z(x)(y); 

the kestrel and the idiot

A  constant function  is a function that always returns the same thing, no matter what you give it. 

For example, (x) => 42 is a constant function that always evaluates to 42. The kestrel, or K, is a function that makes constant functions. You give it a value, and it returns a constant function that gives that value. 

For example:

const K = (x) => (y) => x; 

const fortyTwo = K(42); 

fortyTwo(6)

 //=> 42

fortyTwo("Hello")

 //=> 42

The  identity function  is a function that evaluates to whatever parameter you pass it. So I(42) =>

42. Very simple, but useful. Now we’ll take it one more step forward: Passing a value to K gets a function back, and passing a value to that function gets us a value. 

Like so:

K(6)(7)

 //=> 6

K(12)(24)

 //=> 12

This is very interesting. Given two values, we can say that K always returns the  first  value: K(x)(y)

=> x (that’s not valid JavaScript, but it’s essentially how it works). 

Now, an interesting thing happens when we pass functions to each other. Consider K(I). From what we just wrote, K(x)(y) => x So K(I)(x) => I. Makes sense. Now let’s tack one more invocation

on: What is K(I)(x)(y)? If K(I)(x) => I, then K(I)(x)(y) === I(y) which is y. 

Therefore, K(I)(x)(y) => y:

Composing and Decomposing Data

157

K(I)(6)(7)

 //=> 7

K(I)(12)(24)

 //=> 24

Aha! Given two values, K(I) always returns the  second  value. 

K("primus")("secundus")

 //=> "primus" 

K(I)("primus")("secundus")

 //=> "secundus" 

If we are not feeling particularly academic, we can name our functions:

const first = K, 

second = K(I); 

first("primus")("secundus")

 //=> "primus" 

second("primus")("secundus")

 //=> "secundus" 

This is very interesting. Given two values, we can say that K always returns the  first

value, and given two values, K(I) always returns the  second  value. 

backwardness

Our first and second functions are a little different than what most people are used to when we talk about functions that access data. If we represented a pair of values as an array, we’d write them like this:
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const first = ([first, second]) => first, 

second = ([first, second]) => second; 

const latin = ["primus", "secundus"]; 

first(latin)

 //=> "primus" 

second(latin)

 //=> "secundus" 

Or if we were using a POJO, we’d write them like this:

const first = ({first, second}) => first, 

second = ({first, second}) => second; 

const latin = {first: "primus", second: "secundus"}; 

first(latin)

 //=> "primus" 

second(latin)

 //=> "secundus" 

In both cases, the functions first and second know how the data is represented, whether it be an array or an object. You pass the data to these functions, and they extract it. 

But the first and second we built out of K and I don’t work that way. You call them and pass them the bits, and they choose what to return. So if we wanted to use them with a two-element array, we’d need to have a piece of code that calls some code. 

Here’s the first cut:

const first = K, 

second = K(I); 

const latin = (selector) => selector("primus")("secundus"); 

latin(first)

 //=> "primus" 

latin(second)

 //=> "secundus" 
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Our latin data structure is no longer a dumb data structure, it’s a function. And instead of passing latin to first or second, we pass first or second to latin. It’s  exactly backwards  of the way we write functions that operate on data. 

the vireo

Given that our latin data is represented as the function (selector) => selector("primus")("secundus"), our obvious next step is to make a function that makes data. For arrays, we’d write cons = (first, second) => [first, second]. For objects we’d write: cons = (first, second) => {first, second}. In both cases, we take two parameters, and return the form of the data. 

For “data” we access with K and K(I), our “structure” is the function (selector) => selec-

tor("primus")("secundus"). Let’s extract those into parameters:

(first, second) => (selector) => selector(first)(second)

For consistency with the way combinators are written as functions taking just one parameter, we’ll

curry78 the function:

(first) => (second) => (selector) => selector(first)(second)

Let’s try it, we’ll use the word pair for the function that makes data (When we need to refer to a specific pair, we’ll use the name aPair by default):

const first = K, 

second = K(I), 

pair = (first) => (second) => (selector) => selector(first)(second); 

const latin = pair("primus")("secundus"); 

latin(first)

 //=> "primus" 

latin(second)

 //=> "secundus" 

It works! Now what is this pair function? If we change the names to x, y, and z, we get: (x) => (y)

=> (z) => z(x)(y). That’s the V combinator, the Vireo! So we can write:

78https://en.wikipedia.org/wiki/Currying
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const first = K, 

second = K(I), 

pair = V; 

const latin = pair("primus")("secundus"); 

latin(first)

 //=> "primus" 

latin(second)

 //=> "secundus" 

As an aside, the Vireo is a little like JavaScript’s .apply function. It says, “take these

two values and apply them to this function.” There are other, similar combinators that

apply values to functions. One notable example is the “thrush” or T combinator: It takes

one value and applies it to a function. It is known to most programmers as .tap. 

Armed with nothing more than K, I, and V, we can make a little data structure that holds two values, the cons cell of Lisp and the node of a linked list. Without arrays, and without objects, just with functions. We’d better try it out to check. 

lists with functions as data

Here’s another look at linked lists using POJOs. We use the term rest instead of second, but it’s otherwise identical to what we have above:

const first = ({first, rest}) => first, 

rest

= ({first, rest}) => rest, 

pair = (first, rest) => ({first, rest}), 

EMPTY = ({}); 

const l123 = pair(1, pair(2, pair(3, EMPTY))); 

first(l123)

 //=> 1

first(rest(l123))

 //=> 2

first(rest(rest(l123)))

 //=3

We can write length and mapWith functions over it:
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const length = (aPair) =>

aPair === EMPTY

? 0

: 1 + length(rest(aPair)); 

length(l123)

 //=> 3

const reverse = (aPair, delayed = EMPTY) =>

aPair === EMPTY

? delayed

: reverse(rest(aPair), pair(first(aPair), delayed)); 

const mapWith = (fn, aPair, delayed = EMPTY) =>

aPair === EMPTY

? reverse(delayed)

: mapWith(fn, rest(aPair), pair(fn(first(aPair)), delayed)); 

const doubled = mapWith((x) => x * 2, l123); 

first(doubled)

 //=> 2

first(rest(doubled))

 //=> 4

first(rest(rest(doubled)))

 //=> 6

Can we do the same with the linked lists we build out of functions? Yes:

const first = K, 

rest

= K(I), 

pair = V, 

EMPTY = (() => {}); 

const l123 = pair(1)(pair(2)(pair(3)(EMPTY))); 

l123(first)

 //=> 1

l123(rest)(first)
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 //=> 2

return l123(rest)(rest)(first)

 //=> 3

We write them in a backwards way, but they seem to work. How about length? 

const length = (aPair) =>

aPair === EMPTY

? 0

: 1 + length(aPair(rest)); 

length(l123)

 //=> 3

And mapWith? 

const reverse = (aPair, delayed = EMPTY) =>

aPair === EMPTY

? delayed

: reverse(aPair(rest), pair(aPair(first))(delayed)); 

const mapWith = (fn, aPair, delayed = EMPTY) =>

aPair === EMPTY

? reverse(delayed)

: mapWith(fn, aPair(rest), pair(fn(aPair(first)))(delayed)); 

const doubled = mapWith((x) => x * 2, l123)

doubled(first)

 //=> 2

doubled(rest)(first)

 //=> 4

doubled(rest)(rest)(first)

 //=> 6

Presto, we can use pure functions to represent a linked list. And with care, we can do amazing things like use functions to represent numbers, build more complex data structures like trees, and in fact, anything that can be computed can be computed using just functions and nothing else. 
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But without building our way up to something insane like writing a JavaScript interpreter using JavaScript functions and no other data structures, let’s take things another step in a slightly different direction. 

We used functions to replace arrays and POJOs, but we still use JavaScript’s built-in operators to test for equality (===) and to branch ?:. 

say “please” 

We keep using the same pattern in our functions: aPair === EMPTY ? doSomething : doSomethin-

gElse. This follows the philosophy we used with data structures: The function doing the work

inspects the data structure. 

We can reverse this: Instead of asking a pair if it is empty and then deciding what to do, we can ask the pair to do it for us. Here’s length again:

const length = (aPair) =>

aPair === EMPTY

? 0

: 1 + length(aPair(rest)); 

Let’s presume we are working with a slightly higher abstraction, we’ll call it a list. Instead of writing length(list) and examining a list, we’ll write something like:

const length = (list) => list(

() => 0, 

(aPair) => 1 + length(aPair(rest)))

); 

Now we’ll need to write first and rest functions for a list, and those names will collide with the first and rest we wrote for pairs. So let’s disambiguate our names:

const pairFirst = K, 

pairRest

= K(I), 

pair = V; 

const first = (list) => list(

() => "ERROR: Can't take first of an empty list", 

(aPair) => aPair(pairFirst)

); 

const rest = (list) => list(
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() => "ERROR: Can't take first of an empty list", 

(aPair) => aPair(pairRest)

); 

const length = (list) => list(

() => 0, 

(aPair) => 1 + length(aPair(pairRest)))

); 

We’ll also write a handy list printer:

const print = (list) => list(

() => "", 

(aPair) => `${aPair(pairFirst)} ${print(aPair(pairRest))}`

); 

How would all this work? Let’s start with the obvious. What is an empty list? 

const EMPTYLIST = (whenEmpty, unlessEmpty) => whenEmpty()

And what is a node of a list? 

const node = (x) => (y) =>

(whenEmpty, unlessEmpty) => unlessEmpty(pair(x)(y)); 

Let’s try it:

const l123 = node(1)(node(2)(node(3)(EMPTYLIST))); 

print(l123)

 //=> 1 2 3

We can write reverse and mapWith as well. We aren’t being super-strict about emulating combina-

tory logic, we’ll use default parameters:
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const reverse = (list, delayed = EMPTYLIST) => list(

() => delayed, 

(aPair) => reverse(aPair(pairRest), node(aPair(pairFirst))(delayed))

); 

print(reverse(l123)); 

 //=> 3 2 1

const mapWith = (fn, list, delayed = EMPTYLIST) =>

list(

() => reverse(delayed), 

(aPair) => mapWith(fn, aPair(pairRest), node(fn(aPair(pairFirst)))(delayed))

); 

print(mapWith(x => x * x, reverse(l123)))

 //=> 941

We have managed to provide the exact same functionality that === and ?: provided, but using

functions and nothing else. 

functions are not the real point

There are lots of similar texts explaining how to construct complex semantics out of functions. 

You can establish that K and K(I) can represent true and false, model magnitudes with Church

Numerals79 or Surreal Numbers80, and build your way up to printing FizzBuzz. 

The superficial conclusion reads something like this:

Functions are a fundamental building block of computation. They are “axioms” of

combinatory logic, and can be used to compute anything that JavaScript can compute. 

However, that is not the interesting thing to note here. Practically speaking, languages like JavaScript already provide arrays with mapping and folding methods, choice operations, and other rich

constructs. Knowing how to make a linked list out of functions is not really necessary for the working programmer. (Knowing that it can be done, on the other hand, is very important to understanding computer science.)

Knowing how to make a list out of just functions is a little like knowing that photons are the

Gauge Bosons81 of the electromagnetic force. It’s the QED of physics that underpins the Maxwell’s Equations of programming. Deeply important, but not practical when you’re building a bridge. 

79https://en.wikipedia.org/wiki/Church_encoding

80https://en.wikipedia.org/wiki/Surreal_number

81https://en.wikipedia.org/wiki/Gauge_boson
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So what  is  interesting about this? What nags at our brain as we’re falling asleep after working our way through this? 

a return to backward thinking

To make pairs work, we did things  backwards, we passed the first and rest functions to the pair, and the pair called our function. As it happened, the pair was composed by the vireo (or V

combinator): (x) => (y) => (z) => z(x)(y). 

But we could have done something completely different. We could have written a pair that stored its elements in an array, or a pair that stored its elements in a POJO. All we know is that we can pass the pair function a function of our own, at it will be called with the elements of the pair. 

The exact implementation of a pair is hidden from the code that uses a pair. Here, we’ll prove it: const first = K, 

second = K(I), 

pair = (first) => (second) => {

const pojo = {first, second}; 

return (selector) => selector(pojo.first)(pojo.second); 

}; 

const latin = pair("primus")("secundus"); 

latin(first)

 //=> "primus" 

latin(second)

 //=> "secundus" 

This is a little gratuitous, but it makes the point: The code that uses the data doesn’t reach in and touch it: The code that uses the data provides some code and asks the data to do something with it. 

The same thing happens with our lists. Here’s length for lists:

const length = (list) => list(

() => 0, 

(aPair) => 1 + length(aPair(pairRest)))

); 

We’re passing list what we want done with an empty list, and what we want done with a list that has at least one element. We then ask list to do it, and provide a way for list to call the code we pass in. 
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We won’t bother here, but it’s easy to see how to swap our functions out and replace them with

an array. Or a column in a database. This is fundamentally  not  the same thing as this code for the length of a linked list:

const length = (node, delayed = 0) =>

node === EMPTY

? delayed

: length(node.rest, delayed + 1); 

The line node === EMPTY presumes a lot of things. It presumes there is one canonical empty list value. It presumes you can compare these things with the === operator. We can fix this with an

isEmpty function, but now we’re pushing even more knowledge about the structure of lists into the code that uses them. 

Having a list know itself whether it is empty hides implementation information from the code

that uses lists. This is a fundamental principle of good design. It is a tenet of Object-Oriented Programming, but it is not exclusive to OOP: We can and should design data structures to hide implementation information from the code that use them, whether we are working with functions, 

objects, or both. 

There are many tools for hiding implementation information, and we have now seen two particularly powerful patterns:

• Instead of directly manipulating part of an entity, pass it a function and have it call our

function with the part we want. 

• And instead of testing some property of an entity and making a choice of our own with ?:

(or if), pass the entity the work we want done for each case and let it test itself. 
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Disclaimer

The recipes are written for practicality, and their implementation may introduce JavaScript features that haven’t been discussed in the text to this point, such as methods and/or prototypes. The

overall  use  of each recipe will fit within the spirit of the language discussed so far, even if the implementations may not. 
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mapWith

In JavaScript, arrays have a .map method. Map takes a function as an argument, and applies it to each of the elements of the array, then returns the results in another array. For example:

[1, 2, 3, 4, 5].map(x => x * x)

 //=> [1, 4, 9, 16, 25]

We could write a function that behaves like the .map method if we wanted:

const map = (list, fn) =>

list.map(fn); 

This recipe isn’t for map: It’s for mapWith, a function that wraps around map and turns any other function into a mapper. mapWith is very simple:82

const mapWith = (fn) => (list) => list.map(fn); 

mapWith differs from map in two ways. It reverses the arguments, taking the function first and the list second. It also “curries” the function: Instead of taking two arguments, it takes one argument and returns a function that takes another argument. 

That means that you can pass a function to mapWith and get back a function that applies that mapping to any array. For example, we might need a function to return the squares of an array. Instead of writing a a wrapper around .map:

const squaresOf = (list) =>

list.map(x => x * x); 

squaresOf([1, 2, 3, 4, 5])

 //=> [1, 4, 9, 16, 25]

We can call mapWith in one step:

82Yes, we also used the name mapWith for working with ordinary collections elsewhere. If we were writing a library of functions, we would have to disambiguate the two kinds of mapping functions with special names, namespaces, or modules. But for the purposes of discussing ideas, we can use the same name twice in two different contexts. It’s the same idea, after all. 
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const squaresOf = mapWith(n => n * n); 

squaresOf([1, 2, 3, 4, 5])

 //=> [1, 4, 9, 16, 25]

If we didn’t use mapWith, we’d could have also used callRight with map to accomplish the same

result:

const squaresOf = callRight(map, (n => n * n); 

squaresOf([1, 2, 3, 4, 5])

 //=> [1, 4, 9, 16, 25]

Both patterns take us to the same destination: Composing functions out of common pieces, rather than building them entirely from scratch. mapWith is a very convenient abstraction for a very

common pattern. 

 mapWith was suggested by ludicast 83

83http://github.com/ludicast
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Flip

We wrote mapWith like this:

const mapWith = (fn) => (list) => list.map(fn); 

Let’s consider the case whether we have a map function of our own, perhaps from the allong.es84

library, perhaps from Underscore85. We could write our function something like this: const mapWith = (fn) => (list) => map(list, fn); 

Looking at this, we see we’re conflating two separate transformations. First, we’re reversing the order of arguments. You can see that if we simplify it:

const mapWith = (fn, list) => map(list, fn); 

Second, we’re “currying” the function so that instead of defining a function that takes two

arguments, it returns a function that takes the first argument and returns a function that takes the second argument and applies them both, like this:

const mapper = (list) => (fn) => map(list, fn); 

Let’s return to the implementation of mapWith that relies on a map function rather than a method: const mapWith = (fn) => (list) => map(list, fn); 

We’re going to extract these two operations by refactoring our function to paramaterize map. The first step is to give our parameters generic names:

const mapWith = (first) => (second) => map(second, first); 

Then we wrap the entire thing in a function and extract map

const wrapper = (fn) =>

(first) => (second) => fn(second, first); 

What we have now is a function that takes a function and “flips” the order of arguments around, then curries it. So let’s call it flipAndCurry:

84https://github.com/raganwald/allong.es

85http://underscorejs.org
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const flipAndCurry = (fn) =>

(first) => (second) => fn(second, first); 

Sometimes you want to flip, but not curry:

const flip = (fn) =>

(first, second) => fn(second, first); 

This is gold. Consider how we define mapWith now:

var mapWith = flipAndCurry(map); 

Much nicer! 

self-currying flip

Sometimes we’ll want to flip a function, but retain the flexibility to call it in its curried form (pass one parameter) or non-curried form (pass both). We  could  make that into flip:

const flip = (fn) =>

function (first, second) {

if (arguments.length === 2) {

return fn(second, first); 

}

else {

return function (second) {

return fn(second, first); 

}; 

}; 

}; 

Now if we write mapWith = flip(map), we can call mapWith(fn, list) or mapWith(fn)(list), our

choice. 

flipping methods

When we learn about context and methods, we’ll see that flip throws the current context away, so it can’t be used to flip methods. A small alteration gets the job done:
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const flipAndCurry = (fn) =>

(first) =>

function (second) {

return fn.call(this, second, first); 

}

const flip = (fn) =>

function (first, second) {

return fn.call(this, second, first); 

}

const flip = (fn) =>

function (first, second) {

if (arguments.length === 2) {

return fn.call(this, second, first); 

}

else {

return function (second) {

return fn.call(this, second, first); 

}; 

}; 

}; 
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Object.assign

It’s very common to want to “extend” an object by assigning properties to it:

const inventory = {

apples: 12, 

oranges: 12

}; 

inventory.bananas = 54; 

inventory.pears = 24; 

It’s also common to want to assign the properties of one object to another:

for (let fruit in shipment) {

inventory[fruit] = shipment[fruit]

}

Both needs can be met with Object.assign, a standard function. You can copy an object by

extending an empty object:

Object.assign({}, {

apples: 12, 

oranges: 12

})

 //=> { apples: 12, oranges: 12 }

You can extend one object with another:

const inventory = {

apples: 12, 

oranges: 12

}; 

const shipment = {

bananas: 54, 

pears: 24

}

Object.assign(inventory, shipment)
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 //=> { apples: 12, 

 //

 oranges: 12, 

 //

 bananas: 54, 

 //

 pears: 24 }

And when we discuss prototypes, we will use Object.assign to turn this:

const Queue = function () {

this.array = []; 

this.head = 0; 

this.tail = -1

}; 

Queue.prototype.pushTail = function (value) {

 // ... 

}; 

Queue.prototype.pullHead = function () {

 // ... 

}; 

Queue.prototype.isEmpty = function () {

 // ... 

}

Into this:

const Queue = function () {

Object.assign(this, {

array: [], 

head: 0, 

tail: -1

})

}; 

Object.assign(Queue.prototype, {

pushTail (value) {

 // ... 

}, 

pullHead () {

 // ... 

}, 

isEmpty () {

 // ... 
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}

}); 

Assigning properties from one object to another (also called “cloning” or “shallow copying”) is a basic building block that we will later use to implement more advanced paradigms like mixins. 
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Why? 

This is the canonical Y Combinator86: const Y = (f) =>

( x => f(v => x(x)(v)) )(

x => f(v => x(x)(v))

); 

You use it like this:

const factorial = Y(function (fac) {

return function (n) {

return (n == 0 ? 1 : n * fac(n - 1)); 

}

}); 

factorial(5)

 //=> 120

Why? It enables you to make recursive functions without needing to bind a function to a name in an environment. This has little practical utility in JavaScript, but in combinatory logic it’s essential: With fixed-point combinators it’s possible to compute everything computable without binding

names. 

So again, why include the recipe? Well, besides all of the practical applications that combinators provide, there is this little thing called  The joy of working things out. 

There are many explanations of the Y Combinator’s mechanism on the internet, but resist the

temptation to read any of them: Work it out for yourself. Use it as an excuse to get familiar with your environment’s debugging facility. 

One tip is to use JavaScript to name things. For example, you could start by writing:

const Y = (f) => {

const something = x => f(v => x(x)(v)); 

return something(something); 

}; 

What is this something and how does it work? Another friendly tip: Change some of the fat arrow functions inside of it into named function expressions to help you decipher stack traces. 

Work things out for yourself! 

86https://en.wikipedia.org/wiki/Fixed-point_combinator#Example_in_JavaScript
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An expression is any valid unit of code that resolves to a value.—Mozilla Development

Network: Expressions and operators87

Like most programming languages, JavaScript also has string literals, like 'fubar' or 'fizzbuzz'. 

Special characters can be included in a string literal by means of an  escape sequence. For example, the escape sequence \n inserts a newline character in a string literal, like this: 'first line\nsecond line'. 

There are operators that can be used on strings. The most common is +, it  concatenates:

'fu' + 'bar' 

 //=> 'fubar' 

String manipulation is extremely common in programming. Writing is a big part of what makes us

human, and strings are how JavaScript and most other languages represent writing. 

quasi-literals

JavaScript supports  quasi-literal strings, a/k/a “Template Strings” or “String Interpolation Expressions.” A quasi-literal string is something that looks like a string literal, but is actually an expression. 

Quasi-literal strings are denoted with back quotes, and most strings that can be expressed as literals have the exact same meaning as quasi-literals, e.g. 

`foobar`

 //=> 'foobar' 

`fizz` + `buzz`

 //=> 'fizzbuzz' 

Quasi-literals go much further. A quasi-literal can contain an expression to be evaluated. Old-school lispers call this “unquoting,” the more contemporary term is “interpolation.” An unquoted expression is inserted in a quasi-literal with ${expression}. The expression is evaluated, and the result is coerced to a string, then inserted in the quasi-string. 

For example:

À popular number for nerds is ${40 + 2}`

 //=> 'A popular number for nerds is 42' 

A quasi-literal is computationally equivalent to an expression using +. So the above expression could also be written:

87https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators
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'A popular number for nerds is ' + (40 + 2)

 //=> 'A popular number for nerds is 42' 

However, there is a big semantic difference between a quasi-literal and an expression. Quasi-literals are expressions that resemble their result. They’re easier to read and it’s easier to avid errors like the following:

'A popular number for nerds is' + (40 + 2)

 //=> 'A popular number for nerds is42' 

evaluation time

Like any other expression, quasi-literals are evaluated  late, when that line or lines of code is evaluated. 

So for example, 

const name = "Harry"; 

const greeting = (name) => `Hello my name is ${name}`; 

greeting('Arthur Dent')

 //=> 'Hello my name is Arthur Dent' 

JavaScript evaluates the quasi-literal when the function is invoked and the quasi-literal inside the function’s body is evaluated. Thus, name is not bound to "Harry", it is bound to 'Arthur Dent', the value of the parameter when the function is invoked. 

This is exactly what we’d expect if we’d written it like this:

const greeting = (name) => 'Hello my name is ' + name; 

greeting('Arthur Dent')

 //=> 'Hello my name is Arthur Dent' 
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Iteration and Iterables

Coffee Labels at the Saltspring Coffee Processing Facility

Many objects in JavaScript can model collections of things. A collection is like a box containing stuff. Sometimes you just want to move the box around. But sometimes you want to open it up and do things with its contents. 

Things like “put a label on every bag of coffee in this box,” Or, “Open the box, take out the bags of decaf, and make a new box with just the decaf.” Or, “go through the bags in this box, and take out the first one marked ‘Espresso’ that contains at least 454 grams of beans.” 

All of these actions involve going through the contents one by one. Acting on the elements of a collection one at a time is called  iterating over the contents, and JavaScript has a standard way to iterate over the contents of collections. 

a look back at functional iterators

When discussing functions, we looked at the benefits of writing Functional Iterators. We can do the same thing for objects. Here’s a stack that has its own functional iterator method:
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const Stack1 = () =>

({

array:[], 

index: -1, 

push (value) {

return this.array[this.index += 1] = value; 

}, 

pop () {

const value = this.array[this.index]; 

this.array[this.index] = undefined; 

if (this.index >= 0) {

this.index -= 1

}

return value

}, 

isEmpty () {

return this.index < 0

}, 

iterator () {

let iterationIndex = this.index; 

return () => {

if (iterationIndex > this.index) {

iterationIndex = this.index; 

}

if (iterationIndex < 0) {

return {done: true}; 

}

else {

return {done: false, value: this.array[iterationIndex--]}

}

}

}

}); 

const stack = Stack1(); 

stack.push("Greetings"); 

stack.push("to"); 

stack.push("you!")
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const iter = stack.iterator(); 

iter().value

 //=> "you!" 

iter().value

 //=> "to" 

The way we’ve written .iterator as a method, each object knows how to return an iterator for

itself. 

The .iterator() method is defined with shorthand equivalent to iterator: function iterator()

{ ... }. Note that it uses the function keyword, so when we invoke it with stack.iterator(), 

JavaScript sets this to the value of stack. But what about the function .iterator() returns? It is defined with a fat arrow () => { ... }. What is the value of this within that function? 

Since JavaScript doesn’t bind this within a fat arrow function, we follow the same rules of variable scoping as any other variable name: We check in the environment enclosing the function. Although the .iterator() method has returned, its environment is the one that encloses our () => { ... 

} function, and that’s where this is bound to the value of stack. 

Therefore, the iterator function returned by the .iterator() method has this bound to the stack object, even though we call it with iter(). 

And here’s a sum function implemented as a fold over a functional iterator:

const iteratorSum = (iterator) => {

let eachIteration, 

sum = 0; 

while ((eachIteration = iterator(), !eachIteration.done)) {

sum += eachIteration.value; 

}

return sum

}

We can use it with our stack:

Served by the Pot: Collections

186

const stack = Stack1(); 

stack.push(1); 

stack.push(2); 

stack.push(3); 

iteratorSum(stack.iterator())

 //=> 6

We could save a step and write collectionSum, a function that folds over any object, provided that the object implements an .iterator method:

const collectionSum = (collection) => {

const iterator = collection.iterator(); 

let eachIteration, 

sum = 0; 

while ((eachIteration = iterator(), !eachIteration.done)) {

sum += eachIteration.value; 

}

return sum

}

collectionSum(stack)

 //=> 6

If we write a program with the presumption that “everything is an object,” we can write maps, folds, and filters that work on objects. We just ask the object for an iterator, and work on the iterator. Our functions don’t need to know anything about how an object implements iteration, and we get the

benefit of lazily traversing our objects. 

This is a good thing. 

iterator objects

Iteration for functions and objects has been around for many, many decades. For simple linear

collections like arrays, linked lists, stacks, and queues, functional iterators are the simplest and easiest way to implement iterators. 

In programs involving large collections of objects, it can be handy to implement iterators as objects, rather than functions. The mechanics of iterating can then be factored using the same tools that are used to factor the mechanics of all other objects in the system. 
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Fortunately, an iterator object is almost as simple as an iterator function. Instead of having a function that you call to get the next element, you have an object with a .next() method. 

Like this:

const Stack2 = () =>

({

array: [], 

index: -1, 

push (value) {

return this.array[this.index += 1] = value; 

}, 

pop () {

const value = this.array[this.index]; 

this.array[this.index] = undefined; 

if (this.index >= 0) {

this.index -= 1

}

return value

}, 

isEmpty () {

return this.index < 0

}, 

iterator () {

let iterationIndex = this.index; 

return {

next () {

if (iterationIndex > this.index) {

iterationIndex = this.index; 

}

if (iterationIndex < 0) {

return {done: true}; 

}

else {

return {done: false, value: this.array[iterationIndex--]}

}

}

}

}

}); 
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const stack = Stack2(); 

stack.push(2000); 

stack.push(10); 

stack.push(5)

const collectionSum = (collection) => {

const iterator = collection.iterator(); 

let eachIteration, 

sum = 0; 

while ((eachIteration = iterator.next(), !eachIteration.done)) {

sum += eachIteration.value; 

}

return sum

}

collectionSum(stack)

 //=> 2015

Now our .iterator() method is returning an iterator object. When working with objects, we do

things the object way. But having started by building functional iterators, we understand what is happening underneath the object’s scaffolding. 

iterables

People have been writing iterators since JavaScript was first released in the late 1990s. Since there was no particular standard way to do it, people used all sorts of methods, and their methods returned all sorts of things: Objects with various interfaces, functional iterators, you name it. 

So, when a standard way to write iterators was added to the JavaScript language, it didn’t make sense to use a method like .iterator() for it: That would conflict with existing code. Instead, the language encourages new code to be written with a different name for the method that a collection object uses to return its iterator. 

To ensure that the method would not conflict with any existing code, JavaScript provides a  symbol. 

Symbols are unique constants that are guaranteed not to conflict with existing strings. Symbols are a longstanding technique in programming going back to Lisp, where the GENSYM function generated…

You guessed it… Symbols. 88

The expression Symbol.iterator evaluates to a special symbol representing the name of the method that objects should use if they return an iterator object. 

88You can read more about JavaScript symbols in Axel Rauschmayer’s Symbols in ECMAScript 2015. 
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Our stack does, so instead of binding the existing iterator method to the name iterator, we bind it to the Symbol.iterator. We’ll do that using the [ ] syntax for using an expression as an object literal key:

const Stack3 = () =>

({

array: [], 

index: -1, 

push (value) {

return this.array[this.index += 1] = value; 

}, 

pop () {

const value = this.array[this.index]; 

this.array[this.index] = undefined; 

if (this.index >= 0) {

this.index -= 1

}

return value

}, 

isEmpty () {

return this.index < 0

}, 

[Symbol.iterator] () {

let iterationIndex = this.index; 

return {

next () {

if (iterationIndex > this.index) {

iterationIndex = this.index; 

}

if (iterationIndex < 0) {

return {done: true}; 

}

else {

return {done: false, value: this.array[iterationIndex--]}

}

}

}

}

}); 

const stack = Stack3(); 
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stack.push(2000); 

stack.push(10); 

stack.push(5)

const collectionSum = (collection) => {

const iterator = collection[Symbol.iterator](); 

let eachIteration, 

sum = 0; 

while ((eachIteration = iterator.next(), !eachIteration.done)) {

sum += eachIteration.value; 

}

return sum

}

collectionSum(stack)

 //=> 2015

Using [Symbol.iterator] instead of .iterator seems like adding an extra moving part for nothing. 

Do we get anything in return? 

Indeed we do. Behold the for...of loop:

const iterableSum = (iterable) => {

let sum = 0; 

for (const num of iterable) {

sum += num; 

}

return sum

}

iterableSum(stack)

 //=> 2015

The for...of loop works directly with any object that is  iterable, meaning it works with any object that has a Symbol.iterator method that returns an object iterator. Here’s another linked list, this one is iterable:
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const EMPTY = {

isEmpty: () => true

}; 

const isEmpty = (node) => node === EMPTY; 

const Pair1 = (first, rest = EMPTY) =>

({

first, 

rest, 

isEmpty () { return false }, 

[Symbol.iterator] () {

let currentPair = this; 

return {

next () {

if (currentPair.isEmpty()) {

return {done: true}

}

else {

const value = currentPair.first; 

currentPair = currentPair.rest; 

return {done: false, value}

}

}

}

}

}); 

const list = (...elements) => {

const [first, ...rest] = elements; 

return elements.length === 0

? EMPTY

: Pair1(first, list(...rest))

}

const someSquares = list(1, 4, 9, 16, 25); 

iterableSum(someSquares)

 //=> 55
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As we can see, we can use for...of with linked lists just as easily as with stacks. And there’s one more thing: You recall that the spread operator (...) can spread the elements of an array in an array literal or as parameters in a function invocation. 

Now is the time to note that we can spread any iterable. So we can spread the elements of an iterable into an array literal:

['some squares', ...someSquares]

 //=> ["some squares", 1, 4, 9, 16, 25]

And we can also spread the elements of an array literal into parameters:

const firstAndSecondElement = (first, second) =>

({first, second})

firstAndSecondElement(...stack)

 //=> {"first":5,"second":10}

This can be extremely useful. 

One caveat of spreading iterables: JavaScript creates an array out of the elements of the iterable. That might be very wasteful for extremely large collections. For example, if we spread a large collection just to find an element in the collection, it might have been wiser to iterate over the element using its iterator directly. 

And if we have an infinite collection, spreading is going to fail outright as we’re about to see. 

iterables out to infinity

Iterables needn’t represent finite collections:

const Numbers = {

[Symbol.iterator] () {

let n = 0; 

return {

next: () =>

({done: false, value: n++})

}

}

}

There are useful things we can do with iterables representing an infinitely large collection. But let’s point out what we can’t do with them:
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['all the numbers', ...Numbers]

 //=> infinite loop! 

firstAndSecondElement(...Numbers)

 //=> infinite loop! 

Attempting to spread an infinite iterable into an array is always going to fail. 

ordered collections

The iterables we’re discussing represent  ordered collections. One of the semantic properties of an ordered collection is that every time you iterate over it, you get its elements in order, from the beginning. For example:

const abc = ["a", "b", "c"]; 

for (const i of abc) {

console.log(i)

}

 //=>

a

b

c

for (const i of abc) {

console.log(i)

}

 //=>

a

b

c

This is accomplished with our own collections by returning a brand new iterator every time we call

[Symbol.iterator], and ensuring that our iterators start at the beginning and work forward. 

Iterables needn’t represent ordered collections. We could make an infinite iterable representing random numbers:
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const RandomNumbers = {

[Symbol.iterator]: () =>

({

next () {

return {value: Math.random()}; 

}

})

}

for (const i of RandomNumbers) {

console.log(i)

}

 //=>

0.494052127469331

0.835459444206208

0.1408337657339871

... 

for (const i of RandomNumbers) {

console.log(i)

}

 //=>

0.7845381607767195

0.4956772483419627

0.20259276474826038

... 

Whether you work with the same iterator over and over, or get a fresh iterable every time, you are always going to get fresh random numbers. Therefore, RandomNumbers is not an ordered collection. 

Right now, we’re just looking at ordered collections. To reiterate (hah), an ordered collection represents a (possibly infinite) collection of elements that are in some order. Every time we get an iterator from an ordered collection, we start iterating from the beginning. 

operations on ordered collections

Let’s define some operations on ordered collections. Here’s mapWith, it takes an ordered collection, and returns another ordered collection representing a mapping over the original:89

89Yes, we also used the name mapWith for working with ordinary collections elsewhere. If we were writing a library of functions, we would have to disambiguate the two kinds of mapping functions with special names, namespaces, or modules. But for the purposes of discussing ideas, we can use the same name twice in two different contexts. It’s the same idea, after all. 
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const mapWith = (fn, collection) =>

({

[Symbol.iterator] () {

const iterator = collection[Symbol.iterator](); 

return {

next () {

const {done, value} = iterator.next(); 

return ({done, value: done ? undefined : fn(value)}); 

}

}

}

}); 

This illustrates the general pattern of working with ordered collections: We make them  iterables, meaning that they have a [Symbol.iterator] method, that returns an  iterator. An iterator is also an object, but with a .next() method that is invoked repeatedly to obtain the elements in order. 

Many operations on ordered collections return another ordered collection. They do so by taking

care to iterate over a result freshly every time we get an iterator for them. Consider this example for mapWith:

const Evens = mapWith((x) => 2 * x, Numbers); 

for (const i of Evens) {

console.log(i)

}

 //=>

0

2

4

... 

for (const i of Evens) {

console.log(i)

}

 //=>

0

2

4

... 
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Numbers is an ordered collection. We invoke mapWith((x) => 2 * x, Numbers) and get Evens. 

Evens works just as if we’d written this:

const Evens =

{

[Symbol.iterator] () {

const iterator = Numbers[Symbol.iterator](); 

return {

next () {

const {done, value} = iterator.next(); 

return ({done, value: done ? undefined : 2 *value}); 

}

}

}

}; 

Every time we write for (const i of Evens), JavaScript calls Evens[Symbol.iterator](). That

in turns means it executes const iterator = Numbers[Symbol.iterator](); every time we write

for (const i of Evens), and that means that iterator starts at the beginning of Numbers. 

So, Evens is also an ordered collection, because it starts at the beginning each time we get a fresh iterator over it. Thus, mapWith has the property of preserving the collection semantics of the iterable we give it. So we call it a  collection operation. 

Mind you, we can also map non-collection iterables, like RandomNumbers:

const ZeroesToNines = mapWith((n) => Math.floor(10 * limit), RandomNumbers); 

for (const i of ZeroesToNines) {

console.log(i)

}

 //=>

5

1

9

... 

for (const i of ZeroesToNines) {

console.log(i)

}

 //=>

3
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6

1

... 

mapWith can get a new iterator from RandomNumbers each time we iterate over ZeroesToNines, but if RandomNumbers doesn’t behave like an ordered collection, that’s not mapWith’s fault. RandomNumbers is a  stream, not an ordered collection, and thus mapWith returns another iterable behaving like a stream. 

Here are two more operations on ordered collections, filterWith and untilWith:

const filterWith = (fn, iterable) =>

({

[Symbol.iterator] () {

const iterator = iterable[Symbol.iterator](); 

return {

next () {

do {

const {done, value} = iterator.next(); 

} while (!done && !fn(value)); 

return {done, value}; 

}

}

}

}); 

const untilWith = (fn, iterable) =>

({

[Symbol.iterator] () {

const iterator = iterable[Symbol.iterator](); 

return {

next () {

let {done, value} = iterator.next(); 

done = done || fn(value); 

return ({done, value: done ? undefined : value}); 

}

}

}

}); 
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Like mapWith, they preserve the ordered collection semantics of whatever you give them. 

And here’s a computation performed using operations on ordered collections: We’ll create an ordered collection of square numbers that end in one and are less than 1,000:

const Squares = mapWith((x) => x * x, Numbers); 

const EndWithOne = filterWith((x) => x % 10 === 1, Squares); 

const UpTo1000 = untilWith((x) => (x > 1000), EndWithOne); 

[...UpTo1000]

 //=>

[1,81,121,361,441,841,961]

[...UpTo1000]

 //=>

[1,81,121,361,441,841,961]

As we expect from an ordered collection, each time we iterate over UpTo1000, we begin at the

beginning. 

For completeness, here are two more handy iterable functions. first returns the first element of an iterable (if it has one), and rest returns an iterable that iterates over all but the first element of an iterable. They are equivalent to destructuring arrays with [first, ...rest]:

const first = (iterable) =>

iterable[Symbol.iterator]().next().value; 

const rest = (iterable) =>

({

[Symbol.iterator] () {

const iterator = iterable[Symbol.iterator](); 

iterator.next(); 

return iterator; 

}

}); 

like our other operations, rest preserves the ordered collection semantics of its argument. 

from

Having iterated over a collection, are we limited to for..do and/or gathering the elements in an array literal and/or gathering the elements into the parameters of a function? No, of course not, we can do anything we like with them. 
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One useful thing is to write a .from function that gathers an iterable into a particular collection type. JavaScript’s built-in Array class already has one:

Array.from(UpTo1000)

 //=> [1,81,121,361,441,841,961]

We can do the same with our own collections. As you recall, functions are mutable objects. And we can assign properties to functions with a . or even [ and ]. And if we assign a function to a property, we’ve created a method. 

So let’s do that:

Stack3.from = function (iterable) {

const stack = this(); 

for (let element of iterable) {

stack.push(element); 

}

return stack; 

}

Pair1.from = (iterable) =>

(function iterationToList (iteration) {

const {done, value} = iteration.next(); 

return done ? EMPTY : Pair1(value, iterationToList(iteration)); 

})(iterable[Symbol.iterator]())

Now we can go “end to end,” If we want to map a linked list of numbers to a linked list of the squares of some numbers, we can do that:

const numberList = Pair1.from(untilWith((x) => x > 10, Numbers)); 

Pair1.from(Squares)

 //=> {"first":0, 

"rest":{"first":1, 

"rest":{"first":4, 

"rest":{ ... 
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summary

Iterators are a JavaScript feature that allow us to separate the concerns of how to iterate over a collection from what we want to do with the elements of a collection.  Iterable  ordered collections can be iterated over or gathered into another collection. 

Separating concerns with iterators speaks to JavaScript’s fundamental nature: It’s a language that wants  to compose functionality out of small, singe-responsibility pieces, whether those pieces are functions or objects built out of functions. 
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Generating Iterables

Banco do Café

Iterables look cool, but then again, everything looks amazing when you’re given cherry-picked

examples. What is there they don’t do well? 

Let’s consider how they work. Whether it’s a simple functional iterator, or an iterable object with a

.next() method, an iterator is something we call repeatedly until it tells us that it’s done. 

Iterators have to arrange its own state such that when you call them, they compute and return the next item. This seems blindingly obvious and simple. If, for example, you want numbers, you write:
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const Numbers = {

[Symbol.iterator]: () => {

let n = 0; 

return {

next: () =>

({done: false, value: n++})

}

}

}; 

The Numbers iterable returns an object that updates a mutable variable, n, to deliver number after number. How hard can this be? 

Well, we’ve written our iterator as a  server. It waits until given a request, and then it returns exactly one item. Then it waits for the next request. There is no concept of pushing numbers out from

the iterator, just waiting until a number is pulled out of the iterator by whatever code consumes numbers. 

Of course, when we have some code that makes a bunch of something, we don’t usually write it like that. We usually just write something like:

let n = 0; 

while (true) {

console.log(n++)

}

And magically, the numbers would pour forth. We would  generate  numbers. Let’s put that beside the code for the iterator, minus the iterable scaffolding:

 // Iteration

let n = 0; 

() =>

({done: false, value: n++})

 // Generation

let n = 0; 

while (true) {

console.log(n++)

}
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They’re of approximately equal complexity. So why bring up generation? Well, there are some

collections that are much easier to generate than to iterate over. Let’s look at one:

recursive iterators

Iterators maintain state, that’s what they do. Generators have to manage the exact same amount of state, but sometimes, it’s much easier to manage that state in a generator. One of those cases is when we have to recursively enumerate something. 

For example, iterating over a tree. Given an array that might contain arrays, let’s say we want to generate all the “leaf” elements, i.e. elements that are not, themselves, iterable. 

 // Generation

const isIterable = (something) =>

!!something[Symbol.iterator]; 

const generate = (iterable) => {

for (let element of iterable) {

if (isIterable(element)) {

generate(element)

}

else {

console.log(element)

}

}

}

generate([1, [2, [3, 4], 5]])

 //=>

1

2

3

4

5

Very simple. Now for the iteration version. We’ll write a functional iterator to keep things simple, but it’s easy to see the shape of the basic problem:
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 // Iteration

const isIterable = (something) =>

!!something[Symbol.iterator]; 

const treeIterator = (iterable) => {

const iterators = [ iterable[Symbol.iterator]() ]; 

return () => {

while (!!iterators[0]) {

const iterationResult = iterators[0].next(); 

if (iterationResult.done) {

iterators.shift(); 

}

else if (isIterable(iterationResult.value)) {

iterators.unshift(iterationResult.value[Symbol.iterator]()); 

}

else {

return iterationResult.value; 

}

}

return; 

}

}

const i = treeIterator([1, [2, [3, 4], 5]]); 

let n; 

while (n = i()) {

console.log(n)

}

 //=>

1

2

3

4

5

If you peel off isIterable and ignore the way that the iteration version uses [Symbol.iterator]

and .next, we’re left with the fact that the generating version calls itself recursively, and the iteration version maintains an explicit stack. In essence, both the generation and iteration implementations have stacks, but the generation version’s stack is  implicit, while the iteration version’s stack is explicit. 
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A less kind way to put it is that the iteration version is greenspunning something built into our programming language: We’re reinventing the use of a stack to manage recursion, because writing our code to respond to a function call makes us turn a simple recursive algorithm inside-out. 

state machines

Some iterables can be modelled as state machines. Let’s revisit the Fibonacci sequence. Again. One way to define it is:

• The first element of the fibonacci sequence is zero. 

• The second element of the fibonacci sequence is one. 

• Every subsequent element of the fibonacci sequence is the sum of the previous two elements. 

Let’s write a generator:

 // Generation

const fibonacci = () => {

let a, b; 

console.log(a = 0); 

console.log(b = 1); 

while (true) {

[a, b] = [b, a + b]; 

console.log(b); 

}

}

fibonacci()

 //=>

0

1

1

2

3

5

8

13

21

34
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55

89

144

... 

The thing to note here is that our fibonacci generator has three states: generating 0, generating 1, and generating everything after that. This isn’t a good fit for an iterator, because iterators have one functional entry point and therefore, we’d have to represent our three states explicitly, perhaps using a state pattern90: We’ll keep it simple:

 // Iteration

let a, b, state = 0; 

const fibonacci = () => {

switch (state) {

case 0:

state = 1; 

return a = 0; 

case 1:

state = 2; 

return b = 1; 

case 2:

[a, b] = [b, a + b]; 

return b

}

}; 

while (true) {

console.log(fibonacci()); 

}

 //=>

0

1

1

2

3

5

8

13

90https://en.wikipedia.org/wiki/State_pattern
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21

34

55

89

144

... 

Again, this is not particularly horrendous, but like the recursive example, we’re explicitly greenspunning the natural linear state. In a generator, we write “do this, then this, then this.” In an iterator, we have to wrap that up and explicitly keep track of what step we’re on. 

So we see the same thing: The generation version has state, but it’s implicit in JavaScript’s linear control flow. Whereas the iteration version must make that state explicit. 

javascript’s generators

It would be very nice if we could sometimes write iterators as a .next() method that gets called, and sometimes write out a generator. Given the title of this chapter, it is not a surprise that JavaScript makes this possible. 

We can write an iterator, but use a generation style of programming. An iterator written in a

generation style is called a  generator. To write a generator, we write a function, but we make two changes:

1. We declare the function using the function * syntax. Not a fat arrow. Not a plain function. 

2. We don’t return values or output them to console.log. We “yield” values using the yield

keyword. 

When we invoke the function, we get an iterator object back. Let’s start with the degenerate example, the empty iterator:91

function * empty () {}; 

empty().next()

 //=>

{"done":true}

When we invoke empty, we get an iterator with no elements. This makes sense, because empty never yields anything. We call its .next() method, but it’s done immediately. 

Generator functions can take an argument. Let’s use that to illustrate yield:

91We wrote a  generator declaration. We can also write const empty = function * () {} to bind an anonymous generator to the empty keyword, but we don’t need to do that here. 
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function * only (something) {

yield something; 

}; 

only("you").next()

 //=>

{"done":false, value: "you"}

Invoking only("you") returns an iterator that we can call with .next(), and it yields "you". Invoking only more than once gives us fresh iterators each time:

only("you").next()

 //=>

{"done":false, value: "you"}

only("the lonely").next()

 //=>

{"done":false, value: "the lonely"}

We can invoke the same iterator twice:

const sixteen = only("sixteen"); 

sixteen.next()

 //=>

{"done":false, value: "sixteen"}

sixteen.next()

 //=>

{"done":true}

It yields the value of something, and then it’s done. 

generators are coroutines

Here’s a generator that yields three numbers:
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const oneTwoThree = function * () {

yield 1; 

yield 2; 

yield 3; 

}; 

oneTwoThree().next()

 //=>

{"done":false, value: 1}

oneTwoThree().next()

 //=>

{"done":false, value: 1}

oneTwoThree().next()

 //=>

{"done":false, value: 1}

const iterator = oneTwoThree(); 

iterator.next()

 //=>

{"done":false, value: 1}

iterator.next()

 //=>

{"done":false, value: 2}

iterator.next()

 //=>

{"done":false, value: 3}

iterator.next()

 //=>

{"done":true}

This is where generators behave very, very differently from ordinary functions. What happens

 semantically? 

1. We call oneTwoThree() and get an iterator. 

2. The iterator is in a nascent or “newborn” state. 

3. When we call interator.next(), the body of our generator begins to be evaluated. 
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4. The body of our generator runs until it returns, ends, or encounters a yield statement, which is yield 1;. 

• The iterator  suspends its execution. 

• The iterator wraps 1 in {done: false, value: 1} and returns that from the call to

.next(). 

• The rest of the program continues along its way until it makes another call to itera-

tor.next(). 

• The iterator  resumes execution  from the point where it yielded the last value. 

5. The body of our generator runs until it returns, ends, or encounters the next yield statement, which is yield 2;. 

• The iterator  suspends its execution. 

• The iterator wraps 2 in {done: false, value: 2} and returns that from the call to

.next(). 

• The rest of the program continues along its way until it makes another call to itera-

tor.next(). 

• The iterator  resumes execution  from the point where it yielded the last value. 

6. The body of our generator runs until it returns, ends, or encounters the next yield statement, which is yield 3;. 

• The iterator  suspends its execution. 

• The iterator wraps 3 in {done: false, value: 3} and returns that from the call to

.next(). 

• The rest of the program continues along its way until it makes another call to itera-

tor.next(). 

• The iterator  resumes execution  from the point where it yielded the last value. 

7. The body of our generator runs until it returns, ends, or encounters the next yield statement. 

There are no more lines of code, so it ends. 

• The iterator returns {done: true} from the call to .next(), and every call to this

iterator’s .next() method will return {done: true} from now on. 

This behaviour is not unique to JavaScript, generators are called coroutines92 in other languages: Coroutines are computer program components that generalize subroutines for nonpre-emptive multitasking, by allowing multiple entry points for suspending and resuming

execution at certain locations. Coroutines are well-suited for implementing more fa-

miliar program components such as cooperative tasks, exceptions, event loop, iterators, 

infinite lists and pipes. 

Instead of thinking of there being on execution context, we can imagine that there are two execution contexts. With an iterator, we can call them the  producer  and the  consumer. The iterator is the producer, and the code that iterates over it is the consumer. When the consumer calls .next(), 

92https://en.wikipedia.org/wiki/Coroutine
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it “suspends” and the producer starts running. When the producer yields a value, the producer

suspends and the consumer starts running, taking the value from the result of calling .next(). 

Of course, generators need not be implemented exactly as coroutines. For example, a “transpiler” 

might implement oneTwoThree as a state machine, a little like this (there is more to generators, but we’ll see that later):

const oneTwoThree = function () {

let state = 'newborn'; 

return {

next () {

switch (state) {

case 'newborn':

state = 1; 

return {value: 1}; 

case 1:

state = 2; 

return {value: 2}

case 2:

state = 3; 

return {value: 3}

case 3:

return {done: true}; 

}

}

}

}; 

But no matter how JavaScript implements it, our mental model is that a generator function returns an iterator, and that when we call .next(), it runs until it returns, ends, or yields. If it yields, it suspends its own execution and the consuming code resumes execution, until .next() is called

again, at which point the iterator resumes its own execution from the point where it yielded. 

generators and iterables

Our generator function oneTwoThree is not an iterator. It’s a function that returns an iterator when we invoke it. We write the function to yield values instead of return a single value, and JavaScript takes care of turning this into an object with a .next() function we can call. 

If we call our generator function more than once, we get new iterators. As we saw above, we called oneTwoThree three times, and each time we got an iterator that begins at 1 and counts to 3. Recalling the way we wrote ordered collections, we could make a collection that uses a generator function:
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const ThreeNumbers = {

[Symbol.iterator]: function * () {

yield 1; 

yield 2; 

yield 3

}

}

for (const i of ThreeNumbers) {



console.log(i); 

}

 //=>

1

2

3

[...ThreeNumbers]

 //=>

[1,2,3]

const iterator = ThreeNumbers[Symbol.iterator](); 

iterator.next()

 //=>

{"done":false, value: 1}

iterator.next()

 //=>

{"done":false, value: 2}

iterator.next()

 //=>

{"done":false, value: 3}

iterator.next()

 //=>

{"done":true}

Now we can use it in a for...of loop, spread it into an array literal, or spread it into a function invocation, because we have written an iterable that uses a generator to return an iterator from its

[Symbol.iterator] method. 

This pattern is encouraged, so much so that JavaScript provides a concise syntax for writing
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generator methods for objects:

const ThreeNumbers = {

*[Symbol.iterator] () {

yield 1; 

yield 2; 

yield 3

}

}

This object declares a [Symbol.iterator] function that makes it iterable. Because it’s declared

*[Symbol.iterator], it’s a generator instead of an iterator. 

So to summarize, ThreeNumbers is an object that we’ve made iterable, by way of writing a  generator method for [Symbol.iterator]. 

more generators

Generators can produce infinite streams of values:

const Numbers = {

*[Symbol.iterator] () {

let i = 0; 

while (true) {

yield i++; 

}

}

}; 

for (const i of Numbers) {

console.log(i); 

}

 //=>

0

1

2

3

4

5

6

7
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8

9

10

... 

Our OneTwoThree example used implicit state to output the numbers in sequence. Recall that we

wrote Fibonacci using explicit state:

const Fibonacci = {

[Symbol.iterator]: () => {

let a = 0, b = 1, state = 0; 

return {

next: () => {

switch (state) {

case 0:

state = 1; 

return {value: a}; 

case 1:

state = 2; 

return {value: b}; 

case 2:

[a, b] = [b, a + b]; 

return {value: b}; 

}

}

}

}

}; 

for (let n of Fibonacci) {

console.log(n)

}

 //=>

0

1

1

2

3

5

8

13
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21

34

55

89

144

... 

And here is the Fibonacci ordered collection, implemented with a generator method:

const Fibonacci = {

*[Symbol.iterator] () {

let a, b; 

yield a = 0; 

yield b = 1; 

while (true) {

[a, b] = [b, a + b]

yield b; 

}

}

}

for (const i of Fibonacci) {

console.log(i); 

}

 //=>

0

1

1

2

3

5

8

13

21

34

55

89

144

... 
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We’ve writing a function that returns an iterator, but we used a generator to do it. And the generator’s syntax allows us to use JavaScript’s natural management of state instead of constantly rolling our own. 

Of course, we could just as easily write a generator function for Fibonacci numbers:

function * fibonacci () {

let a, b; 

yield a = 0; 

yield b = 1; 

while (true) {

[a, b] = [b, a + b]

yield b; 

}

}

for (const i of fibonacci()) {

console.log(i); 

}

 //=>

0

1

1

2

3

5

8

13

21

34

55

89

144

... 

yielding iterables

Here’s a first crack at a function that returns an iterable object for iterating over trees:
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const isIterable = (something) =>

!!something[Symbol.iterator]; 

const TreeIterable = (iterable) =>

({

[Symbol.iterator]: function * () {

for (const e of iterable) {

if (isIterable(e)) {

for (const ee of TreeIterable(e)) {

yield ee; 

}

}

else {

yield e; 

}

}

}

})

for (const i of TreeIterable([1, [2, [3, 4], 5]])) {

console.log(i); 

}

 //=>

1

2

3

4

5

We’ve gone with the full iterable here, a TreeIterable(iterable) returns an iterable that treats iterable as a tree. It works, but as we’ve just seen, a function that returns an iterable can often be written much more simply as a generator, rather than a function that returns an iterable object:93

93There are more complex cases where you want an iterable object, because you want to maintain state in properties or declare helper methods for the generator function, and so forth. But if you can write it as a simple generator, write it as a simple generator. 
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function * tree (iterable) {

for (const e of iterable) {

if (isIterable(e)) {

for (const ee of tree(e)) {

yield ee; 

}

}

else {

yield e; 

}

}

}; 

for (const i of tree([1, [2, [3, 4], 5]])) {

console.log(i); 

}

 //=>

1

2

3

4

5

We take advantage of the for...of loop in a plain and direct way: For each element e, if it is iterable, treat it as a tree and iterate over it, yielding each of its elements. If e is not an iterable, yield e. 

JavaScript handles the recursion for us using its own execution stack. This is clearly simpler than trying to maintain our own stack and remembering whether we are shifting and unshifting, or

pushing and popping. 

But while we’re here, let’s look at one bit of this code:

for (const ee of tree(e)) {

yield ee; 

}

These three lines say, in essence, “yield all the elements of TreeIterable(e), in order.” This comes up quite often when we have collections that are compounds, collections made from other collections. 

Consider this operation on iterables:
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function * append (...iterables) {

for (const iterable of iterables) {

for (const element of iterable) {

yield element; 

}

}

}

const lyrics = append(["a", "b", "c"], ["one", "two", "three"], ["do", "re", "me\

"]); 

for (const word of lyrics) {

console.log(word); 

}

 //=>

a

b

c

one

two

three

do

re

me

append iterates over a collection of iterables, one element at a time. Things like arrays can be easily catenated, but append iterates lazily, so there’s no need to construct intermediary results. 

Tucked inside of it is the same three-line idiom for yielding each element of an iterable. There is an abbreviation for this, we can use yield * to yield all the elements of an iterable:

function * append (...iterables) {

for (const iterable of iterables) {

yield * iterable; 

}

}

const lyrics = append(["a", "b", "c"], ["one", "two", "three"], ["do", "re", "me\

"]); 

for (const word of lyrics) {

console.log(word); 

}
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 //=>

a

b

c

one

two

three

do

re

me

yield * yields all of the elements of an iterable, in order. We can use it in tree, too:

const isIterable = (something) =>

!!something[Symbol.iterator]; 

function * tree (iterable) {

for (const e of iterable) {

if (isIterable(e)) {

yield * tree(e); 

}

else {

yield e; 

}

}

}; 

for (const i of tree([1, [2, [3, 4], 5]])) {

console.log(i); 

}

 //=>

1

2

3

4

5

yield* is handy when writing generator functions that operate on or create iterables. 

rewriting iterable operations

Now that we know about iterables, we can rewrite our iterable operations as generators. Instead of:
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const mapWith = (fn, iterable) =>

({

[Symbol.iterator]: () => {

const iterator = iterable[Symbol.iterator](); 

return {

next: () => {

const {done, value} = iterator.next(); 

return ({done, value: done ? undefined : fn(value)}); 

}

}

}

}); 

We can write:

function * mapWith (fn, iterable) {

for (const element of iterable) {

yield fn(element); 

}

}

No need to explicitly construct an object that has a [Symbol.iterator] method. No need to return an object with a .next() method. No need to fool around with {done} or {value}, just yield values until we’re done. 

We can do the same thing with our other operations like filterWith and untilWith. Here’re our

iterable methods rewritten as generators:

function * mapWith(fn, iterable) {

for (const element of iterable) {

yield fn(element); 

}

}

function * filterWith (fn, iterable) {

for (const element of iterable) {

if (!!fn(element)) yield element; 

}

}
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function * untilWith (fn, iterable) {

for (const element of iterable) {

if (fn(element)) break; 

yield fn(element); 

}

}

first works directly with iterators and remains unchanged, but rest can be rewritten as a generator: const first = (iterable) =>

iterable[Symbol.iterator]().next().value; 

function * rest (iterable) {

const iterator = iterable[Symbol.iterator](); 

iterator.next(); 

yield * iterator; 

}

Summary

A generator is a function that is defined with function * and uses yield (or yield *) to generate values. Using a generator instead of writing an iterator object that has a .next() method allows us to write code that can be much simpler for cases like recursive iterations or state patterns. And we don’t need to worry about wrapping our values in an object with .done and .value properties. 

This is especially useful for making iterables. 
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Lazy and Eager Collections

The operations on iterables are tremendously valuable, but let’s reiterate why we care: In JavaScript, we build single-responsibility objects, and single-responsibility functions, and we compose these together to build more full-featured objects and algorithms. 

Composing an iterable with a mapIterable method cleaves the responsibility for

knowing how to map from the fiddly bits of how a linked list differs from a stack

in the older style of object-oriented programming, we built “fat” objects. Each collection knew how to map itself (.map), how to fold itself (.reduce), how to filter itself (.filter) and how to find one element within itself (.find). If we wanted to flatten collections to arrays, we wrote a .toArray method for each type of collection. 

Over time, this informal “interface” for collections grows by accretion. Some methods are only added to a few collections, some are added to all. But our objects grow fatter and fatter. We tell ourselves that, well, a collection ought to know how to map itself. 

But we end up recreating the same bits of code in each .map method we create, in each .reduce

method we create, in each .filter method we create, and in each .find method. Each one has its

own variation, but the overall form is identical. That’s a sign that we should work at a higher level of abstraction, and working with iterables is that higher level of abstraction. 

This “fat object” style springs from a misunderstanding: When we say a collection should know

how to perform a map over itself, we don’t need for the collection to handle every single detail. 

That would be like saying that when we ask a bank teller for some cash, they personally print every bank note. 

implementing methods with iteration

Object-oriented collections should definitely have methods for mapping, reducing, filtering, and finding. And they should know how to accomplish the desired result, but they should do so by

delegating as much of the work as possible to operations like mapWith. 

Composing an iterable with a mapIterable method cleaves the responsibility for knowing how

to map from the fiddly bits of how a linked list differs from a stack. And if we want to create convenience methods, we can reuse common pieces. 

Here is LazyCollection, a mixin we can use with any ordered collection that is also an iterable:
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const extend = function (consumer, ...providers) {

for (let i = 0; i < providers.length; ++i) {

const provider = providers[i]; 

for (let key in provider) {

if (provider.hasOwnProperty(key)) {

consumer[key] = provider[key]

}

}

}

return consumer

}; 

const LazyCollection = {

map(fn) {

return Object.assign({

[Symbol.iterator]: () => {

const iterator = this[Symbol.iterator](); 

return {

next: () => {

const {

done, value

} = iterator.next(); 

return ({

done, value: done ? undefined : fn(value)

}); 

}

}

}

}, LazyCollection); 

}, 

reduce(fn, seed) {

const iterator = this[Symbol.iterator](); 

let iterationResult, 

accumulator = seed; 

while ((iterationResult = iterator.next(), !iterationResult.done)) {

accumulator = fn(accumulator, iterationResult.value); 

}

return accumulator; 
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}, 

filter(fn) {

return Object.assign({

[Symbol.iterator]: () => {

const iterator = this[Symbol.iterator](); 

return {

next: () => {

do {

const {

done, value

} = iterator.next(); 

} while (!done && !fn(value)); 

return {

done, value

}; 

}

}

}

}, LazyCollection)

}, 

find(fn) {

return Object.assign({

[Symbol.iterator]: () => {

const iterator = this[Symbol.iterator](); 

return {

next: () => {

let {

done, value

} = iterator.next(); 

done = done || fn(value); 

return ({

done, value: done ? undefined : value

}); 

}

}

}
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}, LazyCollection)

}, 

until(fn) {

return Object.assign({

[Symbol.iterator]: () => {

const iterator = this[Symbol.iterator](); 

return {

next: () => {

let {

done, value

} = iterator.next(); 

done = done || fn(value); 

return ({

done, value: done ? undefined : value

}); 

}

}

}

}, LazyCollection)

}, 

first() {

return this[Symbol.iterator]().next().value; 

}, 

rest() {

return Object.assign({

[Symbol.iterator]: () => {

const iterator = this[Symbol.iterator](); 

iterator.next(); 

return iterator; 

}

}, LazyCollection); 

}, 

take(numberToTake) {

return Object.assign({
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[Symbol.iterator]: () => {

const iterator = this[Symbol.iterator](); 

let remainingElements = numberToTake; 

return {

next: () => {

let {

done, value

} = iterator.next(); 

done = done || remainingElements-- <= 0; 

return ({

done, value: done ? undefined : value

}); 

}

}

}

}, LazyCollection); 

}

}

To use LazyCollection, we mix it into an any iterable object. For simplicity, we’ll show how to mix it into Numbers and Pair. But it can also be mixed into prototypes (a/k/a “classes”), traits, or other OO constructs:

const Numbers = Object.assign({

[Symbol.iterator]: () => {

let n = 0; 

return {

next: () =>

({done: false, value: n++})

}

}

}, LazyCollection); 

 // Pair, a/k/a linked lists

const EMPTY = {

isEmpty: () => true
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}; 

const isEmpty = (node) => node === EMPTY; 

const Pair = (car, cdr = EMPTY) =>

Object.assign({

car, 

cdr, 

isEmpty: () => false, 

[Symbol.iterator]: function () {

let currentPair = this; 

return {

next: () => {

if (currentPair.isEmpty()) {

return {done: true}

}

else {

const value = currentPair.car; 

currentPair = currentPair.cdr; 

return {done: false, value}

}

}

}

}

}, LazyCollection); 

Pair.from = (iterable) =>

(function iterationToList (iteration) {

const {done, value} = iteration.next(); 

return done ? EMPTY : Pair(value, iterationToList(iteration)); 

})(iterable[Symbol.iterator]()); 

 // Stack

const Stack = () =>

Object.assign({

array: [], 

index: -1, 

push: function (value) {
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return this.array[this.index += 1] = value; 

}, 

pop: function () {

const value = this.array[this.index]; 

this.array[this.index] = undefined; 

if (this.index >= 0) {

this.index -= 1

}

return value

}, 

isEmpty: function () {

return this.index < 0

}, 

[Symbol.iterator]: function () {

let iterationIndex = this.index; 

return {

next: () => {

if (iterationIndex > this.index) {

iterationIndex = this.index; 

}

if (iterationIndex < 0) {

return {done: true}; 

}

else {

return {done: false, value: this.array[iterationIndex--]}

}

}

}

}

}, LazyCollection); 

Stack.from = function (iterable) {

const stack = this(); 

for (let element of iterable) {

stack.push(element); 

}

return stack; 

}
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 // Pair and Stack in action

Stack.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

.map((x) => x * x)

.filter((x) => x % 2 == 0)

.first()

 //=> 100

Pair.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

.map((x) => x * x)

.filter((x) => x % 2 == 0)

.reduce((seed, element) => seed + element, 0)

 //=> 220

lazy collection operations

“Laziness” is a very pejorative word when applied to people. But it can be an excellent strategy for efficiency in algorithms. Let’s be precise:  Laziness  is the characteristic of not doing any work until you know you need the result of the work. 

Here’s an example. Compare these two:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

.map((x) => x * x)

.filter((x) => x % 2 == 0)

.reduce((seed, element) => seed + element, 0)

Pair.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

.map((x) => x * x)

.filter((x) => x % 2 == 0)

.reduce((seed, element) => seed + element, 0)

Both expressions evaluate to 220. And the array is faster in practice, because it is a built-in data type that performs its work in the engine, while the linked list does its work in JavaScript. 

But it’s still illustrative to dissect something important: Array’s .map and .filter methods gather their results into new arrays. Thus, calling .map.filter.reduce produces two temporary arrays that are discarded when .reduce performs its final computation. 

Whereas the .map and .filter methods on Pair work with iterators. They produce small iterable

objects that refer back to the original iteration. This reduces the memory footprint. When working with very large collections and many operations, this can be important. 

The effect is even more pronounced when we use methods like first, until, or take:
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Stack.from([ 0, 

1, 

2, 

3, 

4, 

5, 

6, 

7, 

8, 

9, 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29])

.map((x) => x * x)

.filter((x) => x % 2 == 0)

.first()

This expression begins with a stack containing 30 elements. The top two are 29 and 28. It maps to the squares of all 30 numbers, but our code for mapping an iteration returns an iterable that can iterate over the squares of our numbers, not an array or stack of the squares. Same with .filter, we get an iterable that can iterate over the even squares, but not an actual stack or array. 

Finally, we take the first element of that filtered, squared iterable and now JavaScript actually iterates over the stack’s elements, and it only needs to square two of those elements, 29 and 28, to return the answer. 

We can confirm this:

Stack.from([ 0, 

1, 

2, 

3, 

4, 

5, 

6, 

7, 

8, 

9, 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29])

.map((x) => {

console.log(`squaring ${x}`); 

return x * x

})

.filter((x) => {

console.log(`filtering ${x}`); 

return x % 2 == 0

})

.first()

 //=>

squaring 29

filtering 841

squaring 28

filtering 784

784

If we write the almost identical thing with an array, we get a different behaviour:
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[ 0, 

1, 

2, 

3, 

4, 

5, 

6, 

7, 

8, 

9, 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

.reverse()

.map((x) => {

console.log(`squaring ${x}`); 

return x * x

})

.filter((x) => {

console.log(`filtering ${x}`); 

return x % 2 == 0

})[0]

 //=>

squaring 0

squaring 1

squaring 2

squaring 3

... 

squaring 28

squaring 29

filtering 0

filtering 1

filtering 4

... 

filtering 784

filtering 841

784

Arrays copy-on-read, so every time we perform a map or filter, we get a new array and perform all the computations. This might be expensive. 

You recall we briefly touched on the idea of infinite collections? Let’s make iterable numbers. They have  to be lazy, otherwise we couldn’t write things like:
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const Numbers = Object.assign({

[Symbol.iterator]: () => {

let n = 0; 

return {

next: () =>

({done: false, value: n++})

}

}

}, LazyCollection); 

const firstCubeOver1234 =

Numbers

.map((x) => x * x * x)

.filter((x) => x > 1234)

.first()

 //=> 1331

Balanced against their flexibility, our “lazy collections” use structure sharing. If we mutate a collection after taking an iterable, we might get an unexpected result. This is why “pure” functional languages like Haskell combine lazy semantics with immutable collections, and why even “impure” 

languages like Clojure emphasize the use of immutable collections. 

eager collections

An  eager  collection, like an array, returns a collection of its own type from each of the methods. 

We can make an eager collection out of any collection that is  gatherable, meaning it has a .from method:

const extend = function (consumer, ...providers) {

for (let i = 0; i < providers.length; ++i) {

const provider = providers[i]; 

for (let key in provider) {

if (provider.hasOwnProperty(key)) {

consumer[key] = provider[key]

}

}

}

return consumer

}; 
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const EagerCollection = (gatherable) =>

({

map(fn) {

const

original = this; 

return gatherable.from(

(function* () {

for (let element of original) {

yield fn(element); 

}

})()

); 

}, 

reduce(fn, seed) {

let accumulator = seed; 

for(let element of this) {

accumulator = fn(accumulator, element); 

}

return accumulator; 

}, 

filter(fn) {

const original = this; 

return gatherable.from(

(function* () {

for (let element of original) {

if (fn(element)) yield element; 

}

})()

); 

}, 

find(fn) {

for (let element of this) {

if (fn(element)) return element; 

}

}, 

until(fn) {
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const original = this; 

return gatherable.from(

(function* () {

for (let element of original) {

if (fn(element)) break; 

yield element; 

}

})()

); 

}, 

first() {

return this[Symbol.iterator]().next().value; 

}, 

rest() {

const iteration = this[Symbol.iterator](); 

iteration.next(); 

return gatherable.from(

(function* () {

yield * iteration; 

})()

); 

return gatherable.from(iterable); 

}, 

take(numberToTake) {

const original = this; 

let numberRemaining = numberToTake; 

return gatherable.from(

(function* () {

for (let element of original) {

if (numberRemaining-- <= 0) break; 

yield element; 

}

})()

); 

}

}); 
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Here is our Pair implementation. Pair is gatherable, because it implements .from(). We mix

EagerCollection(Pair) into it, and this gives it all of our collection methods, which each method returning a new list of pairs:

const EMPTY = {

isEmpty: () => true

}; 

const isEmpty = (node) => node === EMPTY; 

const Pair = (car, cdr = EMPTY) =>

Object.assign({

car, 

cdr, 

isEmpty: () => false, 

[Symbol.iterator]: function () {

let currentPair = this; 

return {

next: () => {

if (currentPair.isEmpty()) {

return {done: true}

}

else {

const value = currentPair.car; 

currentPair = currentPair.cdr; 

return {done: false, value}

}

}

}

}

}, EagerCollection(Pair)); 

Pair.from = (iterable) =>

(function iterationToList (iteration) {

const {done, value} = iteration.next(); 

return done ? EMPTY : Pair(value, iterationToList(iteration)); 

})(iterable[Symbol.iterator]()); 

Pair.from([1, 2, 3, 4, 5]).map(x => x * 2)

 //=>
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{"car": 2, 

"cdr": {"car": 4, 

"cdr": {"car": 6, 

"cdr": {"car": 8, 

"cdr": {"car": 10, 

"cdr": {}

}

}

}

}

}
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Interlude: The Carpenter Interviews for a Job

“The Carpenter” was a JavaScript programmer, well-known for a meticulous attention to detail and love for hand-crafted, exquisitely joined code. The Carpenter normally worked through personal

referrals, but from time to time a recruiter would slip through his screen. One such recruiter was Bob Plissken. Bob was well-known in the Python community, but his clients often needed experience with other languages. 

Plissken lined up a technical interview with a well-funded startup in San Francisco. The Carpenter arrived early for his meeting with “Thing Software,” and was shown to conference room 13. A few minutes later, he was joined by one of the company’s developers, Christine. 

the problem

After some small talk, Christine explained that they liked to ask candidates to whiteboard some code. Despite his experience and industry longevity, the Carpenter did not mind being asked to

demonstrate that he was, in fact, the person described on the resumé. 

Many companies use white-boarding code as an excuse to have a technical conversation with a

candidate, and The Carpenter felt that being asked to whiteboard code was an excuse to have a

technical conversation with a future colleague. “Win, win” he thought to himself. 
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94

Christine intoned the question, as if by rote:

Consider a finite checkerboard of unknown size. On each square, we randomly place

an arrow pointing to one of its four sides. A chequer is placed randomly on the

checkerboard. Each move consists of moving the chequer one square in the direction of

the arrow in the square it occupies. If the arrow should cause the chequer to move off

the edge of the board, the game halts. 

The problem is this: The game board is hidden from us. A player moves the chequer, 

following the rules. As the player moves the chequer, they calls out the direction of

movement, e.g. “↑, →, ↑, ↓, ↑, →…” Write an algorithm that will determine whether the

game halts, strictly from the called out directions, in finite time and space. 

“So,” The Carpenter asked, “I am to write an algorithm that takes a possibly infinite stream of…” 

Christine interrupted. “To save time, we have written a template of the solution for you in

ECMASCript 2015 notation. Fill in the blanks. Your code should not presume anything about the

94https://www.flickr.com/photos/stigrudeholm/6710684795
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game-board’s size or contents, only that it is given an arrow every time though the while loop. You may use babeljs.io95, or ES6Fiddle96 to check your work. “

Christine quickly scribbled on the whiteboard:

const Game = (size = 8) => {

 // initialize the board

const board = []; 

for (let i = 0; i < size; ++i) {

board[i] = []; 

for (let j = 0; j < size; ++j) {

board[i][j] = '����'[Math.floor(Math.random() * 4)]; 

}

}

 // initialize the position

let initialPosition = [

2 + Math.floor(Math.random() * (size - 4)), 

2 + Math.floor(Math.random() * (size - 4))

]; 

 // ??? 

let [x, y] = initialPosition; 

const MOVE = {

"�": ([x, y]) => [x - 1, y], 

"�": ([x, y]) => [x + 1, y], 

"�": ([x, y]) => [x, y - 1], 

"�": ([x, y]) => [x, y + 1]

}; 

while (x >= 0 && y >=0 && x < size && y < size) {

const arrow = board[x][y]; 

 // ??? 

[x, y] = MOVE[arrow]([x, y]); 

}

 // ??? 

}; 

95http://babeljs.io

96http://www.es6fiddle.net
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“What,” Christine asked, “Do you write in place of the three // ??? placeholders to determine

whether the game halts?” 

the carpenter’s solution

The Carpenter was not surprised at the problem. Bob Plissken was a crafty, almost reptilian recruiter that traded in information and secrets. Whenever Bob sent a candidate to a job interview, he

debriefed them afterwards and got them to disclose what questions were asked in the interview. 

He then coached subsequent candidates to give polished answers to the company’s pet technical

questions. 

And just as companies often pick a problem that gives them broad latitude for discussing alternate approaches and determining that depth of a candidate’s experience, The Carpenter liked to sketch out solutions that provided an opportunity to judge the interviewer’s experience and provide an easy excuse to discuss the company’s approach to software design. 

Bob had, in fact, warned The Carpenter that “Thing” liked to ask either or both of two questions: Determine how to detect a loop in a linked list, and determine whether the chequerboard game

would halt. To save time, The Carpenter had prepared the same answer for both questions. 

The Carpenter coughed softly, then began. “To begin with, I’ll transform a game into an iterable that generates arrows, using the ‘Starman’ notation for generators. I’ll refactor a touch to make things clearer, for example I’ll extract the board to make it easier to test:” 

const MOVE = {

"�": ([x, y]) => [x - 1, y], 

"�": ([x, y]) => [x + 1, y], 

"�": ([x, y]) => [x, y + 1], 

"�": ([x, y]) => [x, y - 1]

}; 

const Board = (size = 8) => {

 // initialize the board

const board = []; 

for (let i = 0; i < size; ++i) {

board[i] = []; 

for (let j = 0; j < size; ++j) {

board[i][j] = '����'[Math.floor(Math.random() * 4)]; 

}

}

 // initialize the position

const position = [
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Math.floor(Math.random() * size), 

Math.floor(Math.random() * size)

]; 

return {board, position}; 

}; 

const Game = ({board, position}) => {

const size = board[0].length; 

return ({

*[Symbol.iterator] () {

let [x, y] = position; 

while (x >= 0 && y >=0 && x < size && y < size) {

const direction = board[y][x]; 

yield direction; 

[x, y] = MOVE[direction]([x, y]); 

}

}

}); 

}; 

“Now that we have an iterable, we can transform the iterable of arrows into an iterable of positions.” 

The Carpenter sketched quickly. “We want to take the arrows and convert them to positions. For

that, we’ll map the Game iterable to positions. A statefulMap is a lazy map that preserves state from iteration to iteration. That’s what we need, because we need to know the current position to map each move to the next position.” 

“This is a standard idiom we can obtain from libraries, we don’t reinvent the wheel. I’ll show it here for clarity:” 

const statefulMapWith = (fn, seed, iterable) =>

({

*[Symbol.iterator] () {

let value, 

state = seed; 

for (let element of iterable) {

[state, value] = fn(state, element); 

yield value; 
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}

}

}); 

“Armed with this, it’s straightforward to map an iterable of directions to an iterable of strings representing positions:” 

const positionsOf = (game) =>

statefulMapWith(

(position, direction) => {

const [x, y] =

MOVE[direction](position); 

position = [x, y]; 

return [position, `x: ${x}, y: ${y}`]; 

}, 

[0, 0], 

game); 

The Carpenter reflected. “Having turned our game loop into an iterable, we can now see that our problem of whether the game terminates is isomorphic to the problem of detecting whether the

positions given ever repeat themselves: If the chequer ever returns to a position it has previously visited, it will cycle endlessly.” 

“We could draw positions as nodes in a graph, connected by arcs representing the arrows. Detecting whether the game terminates is equivalent to detecting whether the graph contains a cycle.” 
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The Tortoise and the Hare

“There’s an old joke that a mathematician is someone who will take a five-minute problem, then

spend an hour proving it is equivalent to another problem they have already solved. I approached this question in that spirit. Now that we have created an iterable of values that can be compared with ===, I can show you this function:” 
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const tortoiseAndHare = (iterable) => {

const hare = iterable[Symbol.iterator](); 

let hareResult = (hare.next(), hare.next()); 

for (let tortoiseValue of iterable) {

hareResult = hare.next(); 

if (hareResult.done) {

return false; 

}

if (tortoiseValue === hareResult.value) {

return true; 

}

hareResult = hare.next(); 

if (hareResult.done) {

return false; 

}

if (tortoiseValue === hareResult.value) {

return true; 

}

}

return false; 

}; 

“A long time ago,” The Carpenter explained, “Someone asked me a question in an interview. I have never forgotten the question, or the general form of the solution. The question was,  Given a linked list, detect whether it contains a cycle. Use constant space. ” 

“This is, of course, the most common solution, it is Floyd’s cycle-finding algorithm97, although there is some academic dispute as to whether Robert Floyd actually discovered it or was misattributed by Knuth.” 

“Thus, the solution to the game problem is:” 

97https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
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const terminates = (game) =>

tortoiseAndHare(positionsOf(game))

const test = [

["�","�","�","�"], 

["�","�","�","�"], 

["�","�","�","�"], 

["�","�","�","�"]

]; 

terminates(Game({board: test, position: [0, 0]}))

 //=> false

terminates(Game({board: test, position: [3, 0]}))

 //=> true

terminates(Game({board: test, position: [0, 3]}))

 //=> false

terminates(Game({board: test, position: [3, 3]}))

 //=> false

“This solution makes use of iterables and a single utility function, statefulMapWith. It also cleanly separates the mechanics of the game from the algorithm for detecting cycles in a graph.” 

the aftermath

The Carpenter sat down and waited. This type of solution provided an excellent opportunity to

explore lazy versus eager evaluation, the performance of iterators versus native iteration, single responsibility design, and many other rich topics. 

The Carpenter was confident that although nobody would write this exact code in production, 

prospective employers would also recognize that nobody would try to detect whether a chequer

game terminates in production, either. It’s all just a pretext for kicking off an interesting conversation, right? 

Christine looked at the solution on the board, frowned, and glanced at the clock on the wall. “Well, where has the time gone? ” 

“We at the Thing Software company are very grateful you made some time to visit with us, but alas, that is all the time we have today. If we wish to talk to you further, we’ll be in touch.” 

The Carpenter never did hear back from them, but the next day there was an email containing a

generous contract from Friends of Ghosts (“FOG”), a codename for a stealth startup doing interesting work, and the Thing interview was forgotten. 

Some time later, The Carpenter ran into Bob Plissken at a local technology meet-up. “John! What happened at Thing?” Bob wanted to know, “I asked them what they thought of you, and all they
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would say was,  Writes unreadable code. I thought it was a lock! I thought you’d finally make your escape from New York.” 

The Carpenter smiled. “I forgot about them, it’s been a while. So, do They Live?” 

98

after another drink

A few drinks later, The Carpenter was telling his Thing story and an engineer named Kidu

introduced themself. 

98https://www.flickr.com/photos/jlhopgood/6795353385
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“I worked at Thing, and Christine told us about your solution. I had a look at the code you left on the whiteboard. Of course, white-boarding in an interview situation is notoriously unreliable, so small defects are not important. But I couldn’t help but notice that your solution doesn’t actually meet the stated requirements for a different reason:” 

“The hasCycle function, a/k/a Tortoise and Hare, requires two separate iterators to do its job. 

Whereas the problem as stated involves a single stream of directions. You’re essentially calling for the player to clone themselves and call out the directions in parallel.” 

The Carpenter thought about this for a moment. “Kidu, you’re right, that’s a fantastic observation. 

I should have used a Teleporting Tortoise!” 

 // implements Teleporting Tortoise

 // cycle detection algorithm. 

const hasCycle = (iterable) => {

let iterator = iterable[Symbol.iterator](), 

teleportDistance = 1; 

while (true) {

let {value, done} = iterator.next(), 

tortoise = value; 

if (done) return false; 

for (let i = 0; i < teleportDistance; ++i) {

let {value, done} = iterator.next(), 

hare = value; 

if (done) return false; 

if (tortoise === hare) return true; 

}

teleportDistance *= 2; 

}

return false; 

}; 

Kidu shrugged. “You know, the requirement asked for a finite space algorithm, not a constant state algorithm. Doesn’t it make sense to go with a faster finite space algorithm? There’s no benefit to constant space if finite space is sufficient.” 
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const hasCycle = (orderedCollection) => {

const visited = new Set(); 

for (let element of orderedCollection) {

if (visited.has(element)) {

return true; 

}

visited.add(element); 

}

return false; 

}; 

The Carpenter stared at Kidu’s solution. “I guess,” he allowed, “It isn’t always necessary to make a solution so awesome it would please the Ghosts of Mars.” 
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Interactive Generators

We used generators to build iterators that maintain implicit state. We saw how to use them for

recursive unfolds and state machines. But there are other times we want to build functions that maintain implicit state. Let’s start by looking at a very simple example of a function that can be written statefully. 

Coffee and Chess

Consider, for example, the moves in a game. The moves a player makes are a stream of values, just like the contents of an array can be consider a stream of values. But of course, iterating over a stream of moves requires us to wait for the game to be over so we know what moves were made. 

Let’s take a look at a very simple example, naughts and crosses99 (We really ought to do something like Chess, but that might be a little out of scope for this chapter). To save space, we’ll ignore rotations and reflections, and we’ll model the first player’s moves as a stream. 

The first player will always be o, and they will always place their chequer in the top-left corner, coincidentally numbered o:

99https://en.wikipedia.org/wiki/naughts-and-crosses
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o |

|

---+---+---

|

|

---+---+---

|

|

The second player has five possible moves if we ignore reflections:

o | 1 | 2

---+---+---

| 4 | 5

---+---+---

|

| 8

Let’s consider move 1. That produces this board:

o | x |

---+---+---

|

|

---+---+---

|

|

We will always play into position 6:

o | x |

---+---+---

|

|

---+---+---

o |

|

x has six possible moves, but they are really just two choices: 3 and anything else:

o | x | 2

---+---+---

3 | 4 | 5

---+---+---

o | 7 | 8

For 2, 4, 5, 7, or 8, we play 3 and win. But if x moves 3, we play 8:
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o | x |

---+---+---

x |

|

---+---+---

o |

| o

x now has three significant moves: 4, 7, and anything else:

o | x | 2

---+---+---

x | 4 | 5

---+---+---

x | 7 | 8

If x plays 4, we play 7 and win. If x plays anything else, including 7, we play 4 and win. 

representing naughts and crosses as a stateless function

We could plays naughts and crosses as a stateless function. We encode each position of the board in some fashion, and then we build a dictionary from positions to moves. For example, the entry for: o | x |

---+---+---

x |

|

---+---+---

o |

|

Would be 8, producing:

o | x |

---+---+---

x |

|

---+---+---

o |

| o

And the entry for:
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o | x |

---+---+---

| x |

---+---+---

o |

|

Would be 3, producing:

o | x |

---+---+---

o | x |

---+---+---

o |

|

We can encode the board in several different ways. We could use multiline strings with formatting just as we’ve written it here, but it is a design smell to couple presentation with modelling. Our function should be just as useful on a teletype as it would be backing a DOM game that uses a table, or a browser game that draws on Canvas. 

Let’s use an array. So this:

o | x |

---+---+---

|

|

---+---+---

|

|

Will be represented as:

[

'o', 'x', ' ', 

' ', ' ', ' ', 

' ', ' ', ' ' 

]

And this:
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o | x |

---+---+---

x |

|

---+---+---

o |

|

Will be represented as:

[

'o', 'x', ' ', 

'x', ' ', ' ', 

'o', ' ', ' ' 

]

We can use a POJO to make a map from positions to moves. We’ll use the [] notation for keys, it allows us to use any expression as a key, and JavaScript will convert it to a string. So if we write: const moveLookupTable = {

[[

' ', ' ', ' ', 

' ', ' ', ' ', 

' ', ' ', ' ' 

]]: 0, 

[[

'o', 'x', ' ', 

' ', ' ', ' ', 

' ', ' ', ' ' 

]]: 6, 

[[

'o', 'x', 'x', 

' ', ' ', ' ', 

'o', ' ', ' ' 

]]: 3, 

[[

'o', 'x', ' ', 

'x', ' ', ' ', 

'o', ' ', ' ' 

]]: 8, 

[[

'o', 'x', ' ', 

' ', 'x', ' ', 

'o', ' ', ' ' 

Served by the Pot: Collections

255

]]: 3, 

[[

'o', 'x', ' ', 

' ', ' ', 'x', 

'o', ' ', ' ' 

]]: 3, 

[[

'o', 'x', ' ', 

' ', ' ', ' ', 

'o', 'x', ' ' 

]]: 3, 

[[

'o', 'x', ' ', 

' ', ' ', ' ', 

'o', ' ', 'x' 

]]: 3

 // ... 

}; 

We get:

{

"o,x, , , , , , , ":6, 

"o,x,x, , , ,o, , ":3, 

"o,x, ,x, , ,o, , ":8, 

"o,x, , ,x, ,o, , ":3, 

"o,x, , , ,x,o, , ":3, 

"o,x, , , , ,o,x, ":3, 

"o,x, , , , ,o, ,x":3

}

And if we want to look up what move to make, we can write:

moveLookupTable[[

'o', 'x', ' ', 

' ', ' ', ' ', 

'o', 'x', ' ' 

]]

 //=> 3

And from there, a stateless function to play naughts-and-crosses is trivial:
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statelessNaughtsAndCrosses([

'o', 'x', ' ', 

' ', ' ', ' ', 

'o', 'x', ' ' 

])

 //=> 3

representing naughts and crosses as a stateful function

Our statelessNaughtsAndCrosses function pushes the work of tracking the game’s state onto us, 

the player. What if we want to exchange moves with the function? In that case, we need a stateful function. Our “API” will work like this: When we want a new game, we’ll call a function that will return a game function, We’ll call the game function repeatedly, passing our moves, and get the opponent’s moves from it. 

Something like this:

const aNaughtsAndCrossesGame = statefulNaughtsAndCrosses(); 

 // our opponent makes the first move

aNaughtsAndCrossesGame()

 //=> 0

 // then we move, and get its next move back

aNaughtsAndCrossesGame(1)

 //=> 6

 // then we move, and get its next move back

aNaughtsAndCrossesGame(4)

 //=> 3

We can build this out of our statelessNaughtsAndCrosses function:

const statefulNaughtsAndCrosses = () => {

const state = [

' ', ' ', ' ', 

' ', ' ', ' ', 

' ', ' ', ' ' 

]; 

return (x = false) => {

if (x) {
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if (state[x] === ' ') {

state[x] = 'x'; 

}

else throw "occupied!" 

}

let o = moveLookupTable[state]; 

state[o] = 'o'; 

return o; 

}

}; 

const aNaughtsAndCrossesGame = statefulNaughtsAndCrosses(); 

 // our opponent makes the first move

aNaughtsAndCrossesGame()

 //=> 0

 // then we move, and get its next move back

aNaughtsAndCrossesGame(1)

 //=> 6

 // then we move, and get its next move back

aNaughtsAndCrossesGame(4)

 //=> 3

Let’s recap what we have: We have a stateful function, but we built it by wrapping a stateless function in a function that updates state based on the moves we provide. The state is encoded entirely in data. 

this seems familiar

When we looked at generators, we saw that some iterators are inherently stateful, but sometimes it is awkward to represent them in a fully stateless fashion. Sometimes there is a state machine that is naturally represented implicitly in JavaScript’s control flow rather than explicitly in data. 

We’ve done almost the exact same thing here with our naughts and crosses game. A game like this is absolutely a state machine, and we’ve explicitly coded those states into the lookup table. Which leads us to wonder: Is there a way to encode those states  implicitly, in JavaScript control flow? 

If we were in full control of the interaction, it would be easy to encode the game play as a decision tree instead of as a lookup table. For example, we could do this in a browser:
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function browserNaughtsAndCrosses () {

const x1 = parseInt(prompt('o plays 0, where does x play?')); 

switch (x1) {

case 1:

const x2 = parseInt(prompt('o plays 6, where does x play?')); 

switch (x2) {

case 2:

case 4:

case 5:

case 7:

case 8:

alert('o plays 3'); 

break; 

case 3:

const x3 = parseInt(prompt('o plays 8, where does x play?')); 

switch (x3) {

case 2:

case 5:

case 7:

alert('o plays 4'); 

break; 

case 4:

alert('o plays 7'); 

break; 

}

}

break; 

 // ... 

}

}

Naughts and crosses is simple enough that the lookup function seems substantially simpler, in part because linear code doesn’t represent trees particularly well. But we can clearly see that if we wanted to, we could represent the state of the program implicitly in a decision tree. 

However, our solution inverts the control. We aren’t calling our function with moves, it’s calling us. With iterators, we wrote a generator function using function *, and then used yield to yield
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values while maintaining the implicit state of the generator’s control flow. 

Can we do the same thing here? At first glance, no. How do we get the player’s moves to the generator function? But the first glance is deceptive, because we only see what we’ve seen so far. Let’s see how it would actually work. 

interactive generators

So far, we have called iterators (and generators) with .next(). But what if we pass a value to

.next()? If we could do that, a generator function that played naughts and crosses would look

like this:

If it  was  possible, how would it work? 

function* generatorNaughtsAndCrosses () {

const x1 = yield 0; 

switch (x1) {

case 1:

const x2 = yield 6; 

switch (x2) {

case 2:

case 4:

case 5:

case 7:

case 8:

yield 3; 

break; 

case 3:

const x3 = yield 8; 

switch (x3) {

case 2:

case 5:

case 7:

yield 4; 

break; 

case 4:

yield 7; 

break; 
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}

}

break; 

 // ... 

}

}

const aNaughtsAndCrossesGame = generatorNaughtsAndCrosses(); 

We can then get the first move by calling .next(). Thereafter, we call .next(...) and pass in our moves (The very first call has to be .next() without any arguments, because the generator hasn’t started yet. If we wanted to pass some state to the generator before it begins, we’d do that with parameters.):

aNaughtsAndCrossesGame.next().value

 //=> 0

aNaughtsAndCrossesGame.next(1).value

 //=> 6

aNaughtsAndCrossesGame.next(3).value

 //=> 8

aNaughtsAndCrossesGame.next(7).value

 //=> 4

Our generator function maintains state implicitly in its control flow, but returns an iterator that we call, it doesn’t call us. It isn’t a collection, it has no meaning if we try to spread it into parameters or as the subject of a for...of block. 

But the generator function allows us to maintain state implicitly. And sometimes, we want to use implicit state instead of explicitly storing state in our data. 

summary

We have looked at generators as ways of making iterators over static collections, where state

is modelled implicitly in control flow. But as we see here, it’s also possible to use a generator interactively, passing values in and receiving a value in return, just like an ordinary function. 

Again, the salient difference is that an “interactive” generator is stateful, and it embodies its state in its control flow. 
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Basic Operations on Iterables

Here are the operations we’ve defined on Iterables. As discussed, they preserve the collection

semantics of the iterable they are given:

operations that transform one iterable into another

function * mapWith(fn, iterable) {

for (const element of iterable) {

yield fn(element); 

}

}

function * mapAllWith (fn, iterable) {

for (const element of iterable) {

yield * fn(element); 

}

}

function * filterWith (fn, iterable) {

for (const element of iterable) {

if (!!fn(element)) yield element; 

}

}

function * compact (iterable) {

for (const element of iterable) {

if (element != null) yield element; 

}

}

function * untilWith (fn, iterable) {

for (const element of iterable) {

if (fn(element)) break; 

yield fn(element); 

}

}

function * rest (iterable) {

const iterator = iterable[Symbol.iterator](); 

iterator.next(); 
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yield * iterator; 

}

function * take (numberToTake, iterable) {

const iterator = iterable[Symbol.iterator](); 

for (let i = 0; i < numberToTake; ++i) {

const { done, value } = iterator.next(); 

if (!done) yield value; 

}

}

operations that compose two or more iterables into an iterable

function * zip (...iterables) {

const iterators = iterables.map(i => i[Symbol.iterator]()); 

while (true) {

const pairs = iterators.map(j => j.next()), 

dones = pairs.map(p => p.done), 

values = pairs.map(p => p.value); 

if (dones.indexOf(true) >= 0) break; 

yield values; 

}

}; 

function * zipWith (zipper, ...iterables) {

const iterators = iterables.map(i => i[Symbol.iterator]()); 

while (true) {

const pairs = iterators.map(j => j.next()), 

dones = pairs.map(p => p.done), 

values = pairs.map(p => p.value); 

if (dones.indexOf(true) >= 0) break; 

yield zipper(...values); 

}

}; 

Note: zip is also the following special case of zipWith:
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const zip = callFirst(zipWith, (...values) => values); 

operations that transform an iterable into a value

const reduceWith = (fn, seed, iterable) => {

let accumulator = seed; 

for (const element of iterable) {

accumulator = fn(accumulator, element); 

}

return accumulator; 

}; 

const first = (iterable) =>

iterable[Symbol.iterator]().next().value; 

memoizing an iterable

function memoize (generator) {

const memos = {}, 

iterators = {}; 

return function * (...args) {

const key = JSON.stringify(args); 

let i = 0; 

if (memos[key] == null) {

memos[key] = []; 

iterators[key] = generator(...args); 

}

while (true) {

if (i < memos[key].length) {

yield memos[key][i++]; 

}

else {

const { done, value } = iterators[key].next(); 

if (done) {

return; 

} else {

yield memos[key][i++] = value; 
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}

}

}

}

}
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How to run the examples

At the time this book was written, ECMAScript 2015 was not yet widely available. All of the

examples in this book were tested using either Google Traceur Compiler100, Babel101, or both. Traceur and Babel are both  transpilers, they work by parsing ECMAScript 2015 code, then emitting valid ECMAScript-5 code that produces the same semantics. 

For example, this ECMAScript 2015 code:

const before = (decoration) =>

(method) =>

function () {

decoration.apply(this, arguments); 

return method.apply(this, arguments)

}; 

Is translated into this ECMAScript-5 code:

"use strict" 

var before = function (decoration) {

return function (method) {

return function () {

decoration.apply(this, arguments); 

return method.apply(this, arguments); 

}; 

}; 

}; 

The Babel “try it out” page

If we make it even more idiomatic, we could write:

100https://github.com/google/traceur-compiler

101http://babeljs.io/
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const before = (decoration) =>

(method) =>

function (...args) {

decoration.apply(this, args); 

return method.apply(this, args)

}; 

And it would be “transpiled” into:

var before = function (decoration) {

return function (method) {

return function () {

for (let _len = arguments.length, args = Array(_len), _key = 0; _key < _le\

n; _key++) {

args[_key] = arguments[_key]; 

}

decoration.apply(this, args); 

return method.apply(this, args); 

}; 

}; 

}; 

Both tools offer an online area where you can type ECMAScript code into a web browser and see the ECMAScript-5 equivalent, and you can run the code as well. To see the result of your expressions, you may have to use the console in your web browser. 

So instead of just writing:

(() => 2 + 2)()

And having 4 displayed, you’d need to write:

console.log(

(() => 2 + 2)()

)

And 4 would appear in your browser’s development console. 

You can also install the transpilers on your development system and use them with Node102 on the

command line103. The care and feeding of node and npm are beyond the scope of this book, but both tools offer clear instructions for those who have already installed node. 

102http://nodejs.org/

103https://en.wikipedia.org/wiki/REPL
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Thanks! 

Daniel Friedman and Matthias Felleisen

The Little Schemer

 JavaScript Allongé  was inspired by The Little Schemer104 by Daniel Friedman and Matthias Felleisen. 

But where  The Little Schemer’s  primary focus is recursion,  JavaScript Allongé’s  primary focus is functions as first-class values. 

104http://www.amzn.com/0262560992?tag=raganwald001-20
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Richard Feynman

QED: The Strange Theory of Light and Matter

Richard Feynman’s QED105 was another inspiration: A book that explains Quantum Electrodynamics and the “Sum of the Histories” methodology using the simple expedient of explaining how light

reflects off a mirror, and showing how most of the things we think are happening–such as light

travelling on a straight line, the angle of reflection equalling the angle of refraction, or that a beam of light only interacts with a small portion of the mirror, or that it reflects off a plane–are all wrong. 

And everything is explained in simple, concise terms that build upon each other logically. 

105http://www.amzn.com/0691125759?tag=raganwald001-20
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kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

    var bc = document.getElementById('book-columns').style;
    bc.width = (window.innerWidth * 2) + 'px !important';
    bc.height = window.innerHeight  + 'px !important';
    bc.marginTop = '0px !important';
    bc.webkitColumnWidth = window.innerWidth + 'px !important';
    bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+  window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */


function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}
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