

 Table of Contents

 	

 Introduction

 1.1

 	

 Warm up

 1.2

 	

 API Overview

 1.3

 	

 Programming Model

 1.4

 	

 Sending Messages

 1.5

 	

 Receiving Messages

 1.6

 	

 WebSocket Client API

 1.7

 	

 Configuration

 1.8

 	

 Deployment

 1.9

 	

 Part-1: Tying in with the Java EE Platform

 1.10

 	

 Part-2: Tying in with the Java EE Platform

 1.11

 	

 Lifecycle and Concurrency semantics

 1.12

 Introduction

 About

[image:]

Head over to Leanpub to grab a PDF version of this book

The book is what it says it is - a handbook, a quick reference, a fast track guide. It covers the nitty gritty of the Java API for WebSocket: a Java based standard (specification) for building WebSocket based applications. As with most standard (Java) APIs, the WebSocket API has multiple (competing) implementations which comply with the specification. It is also a part of the Java EE Platform.

What it implies is that you can use this standard API in a standalone format as well as part of a larger platform in concert with other Java EE based APIs such as JAX-RS, CDI, JPA, EJB, JMS etc.

What's in the book ?

Let's look at a quick outline of book contents

The first three lessons are meant to get your feet wet

	Warm up

	API Overview

	Programming Model

Then comes the core part which is important from a API usage perspective

	Sending Messages

	Receiving Messages

	WebSocket Client API

The default conventions offered by the WebSocket API can actually hide the details related to Configuration & Deployment, but you should know them anyway !

	Configuration

	Deployment

The book ends with a exploration of how the API integrates with other Java EE specifications as well as a quick peek into the threading details of some of the API constructs

	Tying in with the Java EE Platform: Part I and Part II

	Lifecycle and Concurrency semantics

Who is it suitable for ?

Although I would love for this book to be used by everyone, but, it is most suitable for Java/Java EE developers and can be used in various capacities

	As a 'getting started' with the Java WebSocket API guide

	You are well versed with the API and its constructs, but need a quick peek/reference to a specific API, it's usage, nuances etc.

	Maybe you're just curious about what Java has to offer in terms of WebSocket support - feel free to check this out

What it is not ?

	a generic discourse on WebSocket: it deals with the Java implementation of the WebSocket specification (JSR-356 to be specific)

	a deep dive into the WebSocket RFC itself

	exploration of other Java based WebSocket APIs/frameworks (e.g. Atmosphere etc.) is not the goal of this book

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 Warm up

 Warm up

This chapter provides a gentle introduction to WebSocket in order to get you warmed up for things to come

WebSocket primer

What

Simply put, WebSocket is an IETF standard recognized by RFC 6455. To be specific, it's a protocol (just like HTTP) which works on top of TCP. You can think of it as a mid-way between long-polling and Server Sent Events (SSE - a W3C standard). A WebSocket connection piggybacks on top of HTTP for the initial handshake (HTTP Upgrade mechanism).

Important: Once established, the underlying TCP connection remains open

Why

It's key characteristics are as follows

	Bi-directional: both server and client can initiate a communication

	Full duplex: once the WebSocket session is established, both server and client can communicate independent of each other

The aforementioned characteristics make WebSocket a great fit for applications which require have low latency and high frequency messaging requirements e.g. chat, monitoring, multiplayer online games, broadcasting real time finance data etc. Some of it's benefits (as compared to other solutions) include

	Less verbosity (as compared to HTTP)

	More efficient (as compared to long-polling)

	Richer semantics (as compared to Server Sent Events)

WebSocket as a Java standard

The API (specification) and its implementations

The Java equivalent for this technology is defined by JSR 356 - a standard API which was first released in May 2013 along with a 1.1 release (minor additions) in August 2014. Just like any other JSR (Java Specification Request) defined API, the Java API for WebSocket is backed by a specification which makes it possible to have multiple implementations of the same. Some of these are

	Tyrus, which is an open source project and also happens to be the Reference Implementation included in Weblogic and GlassFish

	Undertow (included in JBoss EAP and Wildfly)

	Tomcat 7 and above (it provides an internal implementation)

Java EE Platform

JSR 356 is also included as a part of the Java Enterprise Edition 7 (Java EE 7) Platform. Any Java EE 7 compliant application server would include a pre-packaged (default) implementation of this API as well as integration with other Java EE technologies like EJB, CDI, Security etc.

JSR 356 support is also provided by other containers/frameworks such as Spring, Jetty etc.

Time to dive in

That's it for the warm up! Let's forge ahead..

 API Overview

 Exploring the API

This section discusses the basic concepts of the Java WebSocket API and will help you gain a decent understanding of its building blocks. Luckily, the API itself is pretty compact which made it easy to ensure that this chapter touches upon all it's components. (most of) The items presented in this chapter have been covered via dedicated chapters throughout this book.

Server and client mode

To start with, let's understand what does server and client mean in the context of WebSocket in general

WebSocket Server endpoint

A server side component which

	implements some business logic

	publishes itself i.e. makes itself discoverable to potential clients (over a certain host and port combination)

	gets triggered when clients connect to it

WebSocket Client endpoint

	implements some business logic (just like it's server side counterpart)

	it connects to existing WebSocket (server) endpoints

The Java WebSocket API provides both server and client side components

	Component type
	Description

	Server
	everything in the javax.websocket.server package

	Client
	the contents of javax.websocket package consist of client side APIs as well as ones which are common to both server & client

Client API components are as follows - ClientEndpoint, ClientEndpointConfig, ClientEndpointConfig.Builder, ClientEndpointConfig.Configurator, WebSocketContainer (helps connect to existing WebSocket server endpoints)

Client side API has been covered in a separate chapter

Supported message formats

The WebSocket specification supports two on-wire data formats - text and binary. The Java WebSocket API supports these (obviously) and adds capability to work with Java objects as well as health check messages (ping-pong) defined by the specification

	Supported message type
	Description

	Text
	Any textual data (java.lang.String, primitives or their equivalent wrapper classes)

	Binary
	Binary data (e.g. audio, image etc.) represented by a java.nio.ByteBuffer or a byte[] (byte array)

	Java objects
	The API makes it possible to work with native (Java objects) representations in your code and use custom transformers (encoders/decoders) to convert them into compatible on-wire formats (text, binary) allowed by the WebSocket protocol

	Ping, Pong
	A javax.websocket.PongMessage is the acknowledgement sent by a WebSocket peer in response to a health check (ping) request

Deep dive of sending and recieving different types of messages will covered in subsequent chapters

Container Abstraction

The following APIs provide a high level abstraction of the WebSocket container (runtime)

	API
	Description

	javax.websocket.WebSocketContainer
	Provides a high level view of the container, allows client endpoint activation and connection to an existing (WebSocket) server, enforce global/common properties (idle connection timeout, message size, asynchronous send timeout) relevant to all endpoints

	javax.websocket.server.ServerContainer
	Server side derivative of the WebSocketContainer which allows programmatic deployment of WebSocket endpoints

	javax.websocket.ContainerProvider
	Provides access to an instance of the underlying WebSocketContainer

WebSocketContainer container = ContainerProvider.getWebSocketContainer();
container.setDefaultMaxSessionIdleTimeout(60000); //1 min. idle session timeout
container.connectToServer(ChatClient.class, URI.create("ws://letschat:8080")); //connecting to a websocket server

//fetching the ServerContainer instance (from within a Server endpoint)
ServerContainer container = (ServerContainer) session.getContainer();

RemoteEndpoint

WebSocket is a protocol using which two peers (client and server) communicate with each other. The javax.websocket.RemoteEndpoint interface is an abstraction which represents the peer at the other end

It is available is two avatars

	Mode
	Description

	Synchronous
	Blocking API (sending messages). Executed using javax.websocket.RemoteEndpoint.Basic

	Asynchronous
	Controlled using javax.websocket.RemoteEndpoint.Async. The caller is not blocked when using this API. It can get a java.util.concurrent.Future object in return or supply a callback implementation

//Getting a handle to the remote endpoint

RemoteEndpoint.Basic basicPeerConnection = session.getBasicRemote();
RemoteEndpoint.Async asyncPeerConnection = session.getAsyncRemote();

Endpoint

A javax.websocket.Endpoint is a class which represents the WebSocket endpoint itself – either a server or a client. The Java WebSocket API provides both annotation and programmatic APIs (both will been explored in detail later) to develop endpoints. This class is designed for extension (since it is abstract) and is fit for scenarios where a programmatic style is preferred over annotation driven (declarative) implementation

//a bare bone implementation of a programmatic endpoint

public class ProgrammaticEndpointExample extends Endpoint {
 private Session session;
 @Override
 public void onOpen(Session session, EndpointConfig config) {
 this.session = session;
 try {
 //sends back the session ID to the peer
 this.session.getBasicRemote().sendText("Session ID: " + this.session.getId());
 }
 catch (IOException ex) {
 throw new RuntimeException(ex);
 }
}

It is important to understand that Endpoint and RemoteEndpoint represent different concepts altogether

[image:]

In the above diagram

	WSE is both a RemoteEndpoint (from the perspective of it's connected peers) as well as an Endpoint (assuming its implemented by extending the javax.websocket.Endpoint class)

	Each of the peers (Peer 1,2,3,4… n) are RemoteEndpoint(s) from the perspective of the WSE (the websocket server with which they are interacting)

Session

The concept of a WebSocket session (represented by javax.websocket.Session) is not very different than that of a HTTP Session: it encapsulates the interaction between two endpoints (peers). The conversation between two endpoints consists of events like – connection initialization, message exchange, connection termination, error transmission etc.

	Each connection b/w a peer and the WebSocket server endpoint is represented by a unique Session object (refer previous diagram)

	Allows communication b/w a server-client pair by exposing a javax.websocket.RemoteEndpoint object (discussed later)

//some of the common methods in the Session interface

Set<Session> openSessions = session.getOpenSessions();
boolean isOpen = session.isOpen();
Map<String, String> pathParameters = session.getPathParameters();
Map<String, Object> userProperties = session.getUserProperties();
Principal userPrincipal = session.getUserPrincipal();

Declarative & Programmatic models

The annotations in the API offer a declarative model for building WebSocket based applications whereas the programmatic style lean towards a more classical way of development model i.e. using inheritance.

	Component
	Description

	Declarative
	Powered by the @ServerEndpoint and @ClientEndpoint annotations

	Programmatic
	Extend (inherit from) the javax.websocket.Endpoint class to adopt this style

Encoders & Decoders

Think of them as hooks provided by the WebSocket API, which allow you to plugin your custom implementation that takes care of converting your Java objects (part of your logic, domain model etc.) to/from the on-wire representations supported by the WebSocket protocol i.e. text and binary

	Component
	Description

	Encoder
	A javax.websocket.Encoder helps convert from Java object to text or binary

	Decoder
	Need a java.websocket.Decoder implementation to convert a text or binary payload into a Java representation

Configuration

In the context of the Java WebSocket API, configuration is nothing but the attributes/properties (deployed path, encoders, decoders, extensions, subprotocols) related to an endpoint (server or client) and is represented by the javax.websocket.EndpointConfig interface. It is further extended by javax.websocket.server.ServerEndpointConfig and javax.websocket.ClientEndpointConfig which are the server and client counterparts respectively

Asynchronous constructs

Sending messages to peers need not always be a blocking call. One can choose to embrace the asynchronous style (as mentioned in the RemoteEndpoint section)

The SendHandler, SendResult interfaces (in the javax.websocket package) enable asynchronous messaging in WebSocket endpoints

	Component
	Description

	SendHandler
	A callback interface to define actions to be taken after message sending process hsa completed or failed

	SendResult
	Provides a way to access the result of the send process

WebSocket Extension

	Component
	Description

	javax.websocket.Extension
	Represents a WebSocket extension. Has a name and associated parameters

	javax.websocket.Extension.Parameter
	Represents the parameter of an extension

Exceptions

All the exceptions defined by this API are

	checked

	part of the javax.websocket package

	Exception
	Description

	DeploymentException
	Represents an issue that might ave occurred during deployment of a server-side endpoint or while establishing a connection using the Client API

	DecodeException
	Can occur during conversion of text/binary to a custom Java object

	EncodeException
	Can occur during transformation of a Java object into text/binary format

	SessionException
	Denotes that a problem has occurred with a specific Session

Miscellaneous

Path parameters

In case of an annotated server endpoint (details in the next chapter), javax.webocket.PathParam helps inject the path parameters (from the URI specified in the @ServerEndpoint annotation) into annotated websocket lifecycle methods

//Using @PathParam

@ServerEndpoint(value = "/letschat/{login-id}")
 public class WebChatEndpoint {
 @OnOpen
 public void connected(Session session, @PathParam("login-id") String loggedInUser){
 //save the logged in user id
 session.getUserProperties().put("USERNAME", loggedInUser);
 }
....
}

WebSocket connection handshake

Instances of HandshakeRequest and HandshakeResponse (from the javax.websocket pacakge), allow access to the state of communication during establishment (handshake) of the WebSocket connection

Communicating connection termination details

javax.websocket.CloseReason captures the details (reason) for the termination of a WebSocket connection. javax.websocket.CloseReason.CloseCode is a marker interface for different reason codes and javax.websocket.CloseReason.CloseCodes (please note the 's' at the end) contains an enumeration of ready-to-use codes (outlined in the following section of the WebSocket RFC specification) - give link

//Why did the connection close?

@OnClose
public void disconnected(Session session, CloseReason reason){
 String peer = (String) session.getUserProperties().get("USERNAME");
 CloseReason.CloseCode closeReasonCode = reason.getCloseCode();
 String closeReasonMsg = reason.getReasonPhrase();
 System.out.println("User "+ peer + " disconnected. Code: "+ closeReasonCode + ", Message: "+ closeReasonMsg);
}

Coming up...

The next chapter will guide you through the Programming Models can be adopted while using the Java WebSocket API

 Programming Model

 Programming Model

This chapter gives you a quick overview of programming models available supported by the Java WebSocket API

You'll see extensive coverage of these programming models through topics explored in other chapters

There are two programming models

	Annotation based (declarative) and

	Programmatic (using inheritance)

Annotation based model

This model makes use of class and method level annotations. These are used to denote classes as server or client end points and designate their methods as target of callbacks (connection opened or closed, message received, error) initiated by the WebSocket container

	Annotation
	Description

	@ServerEndpoint
	If decorated with @ServerEndpoint, the container ensures availability of the class as a WebSocket server listening to a specific URI space

	@ClientEndpoint
	A class decorated with this annotation is treated as a WebSocket client

	@OnOpen
	Annotate a Java method using @OnOpen for it to be invoked by the container when a new websocket connection is initiated

	@OnMessage
	A Java method, when annotated with @OnMessage, receives from the WebSocket container when a message is sent to the endpoint

	@OnError
	Decorate a method with @OnError for it to be invoked when there is a problem with the WebSocket communication

	@OnClose
	Used to decorate a Java method which you want to be called by the container when the WebSocket connection closes

Here is a snippet - for now, just notice the use of annotations

//annotated endpoint

@ServerEndpoint("/test/")
public class AnnotatedEndpoint {
 @OnOpen
 public void onOpenCallback(Session s, EndpointConfig ec){
 ...
 }
 @OnMessage
 public void OnMessageCallback(String messageFromClient){
 ...
 }
 @OnClose
 public void onCloseCallback(Session s, CloseReason cr){
 ...
 }
 @OnError
 public void onErrorCallback(Session s, Throwable t){
 ...
 }
}

Programmatic API based model

The Programmatic API revolves around extending the javax.websocket.Endpoint class. If you decide to adopt this model, you'll need to make use of the following interfaces and classes. Here is a preview

	Programmatic API component
	Description

	Endpoint
	Explained in the API Overview chapter

	MessageHandler
	Parent interface for specific message handler implementations

	MessageHandler.Whole<T>
	Custom implementation for 'whole' messages i.e. ones which are complete

	MessageHandler.Partial<T>
	Custom implementation which processes a part of the message (partial)

T is the generic type parameter representing the actual object type of the message

//programmatic endpoint

public class ProgrammaticEndpoint extends Endpoint {
 @Override
 public onOpen(Session session, EndpointConfig config) {
 session.addMessageHandler((String s) -> System.out.println("got msg "+ s));

 }
}

Differences

Now that you have a basic idea of these models, the differences might be obvious. The table below serves as a quick reference

	Category
	Annotated model
	Programmatic model

	Basic
	Uses annotations
	Uses inheritance (extends)

	Deployment
	Auto-detected by WebSocket container
	Need custom code (using ServerApplicationConfig) for deployment

	Message reception
	Defined using @OnMessage callback
	Needs a MessageHandler implementation

Up next

How can you use the API to Send Messages to connected peers ? This topic will be explored in the next chapter

 Sending Messages

 Sending Messages

This chapter will dive into the details of how to send messages to WebSocket endpoints.

The API for sending messages is the same for annotated as well as programmatic endpoints which in contrast to receiving messages (next chapter) which are handled differently for different endpoints

As already stated, the Java WebSocket API supports binary, text, custom Java objects and ping-pong message payloads. These message types can be sent using various styles/modes

	Asynchronous

	Synchronous

	Partial, and

	Streaming

As you might guess, this leads to a lot of possible permutations and combinations for sending messages (and can be quite confusing at times). Hopefully, things should be clear by the end of this chapter

Send modes: a quick primer

Before we dive into the nitty gritty, it'll be good to have an overview of the different message transmission modes

	Mode
	Description

	Synchronous
	the client sending the message is blocked until the process is completed (or an error occurs)

	Asynchronous
	client thread is released immediately and it can track the process using a Future object or a callback implementation

	Partial
	the message is delivered in parts, the client needs to keep track of them and tell the API when its done sending all the parts

	Streaming
	makes use of Java character/output stream to send messages

Sending text messages

Synchronous

This is the most easy-to-understand method. Just make used of the public void sendText(String msg) in RemoteEndpoint.Basic interface

//synchronous delivery

....
@OnMessage
public void onReceipt(String msg, Session session){
 session.getBasicRemote().sendText("got your message ");
}
....

Asynchronous

This mode is handled by the RemoteEndpoint.Async interface which exposes two methods

	public Future<Void> sendText(String msg): returns a java.util.concurrent.Future object

	public void sendText(String msg, SendHandler handler): allows the user to provide a callback handler implementation

//asynchronous text message delivery

....
@OnMessage
public void onReceipt(String msg, Session session){
 Future<Void> deliveryTracker = session.getAsyncRemote().sendText("got your message ");
 deliveryTracker.isDone(); //blocks
}
....

//asynchronous text message delivery using a callback

....
@OnMessage
public void onMsg(String msg, Session session){
 session.getAsyncRemote().sendText("got your message ", new SendHandler() {
 @Override
 public void onResult(SendResult result) {
 pushToDB(session.getID(), msg, result.isOK());
 }
 });
}
....

//Java 8 lambda style

....
session.getAsyncRemote()
.sendText("got your message ",
(SendResult result) -> {pushToDB(session.getId(),msg, result.isOK());}
);
....

Partial

Sending messages in part can be done by using an overloaded version of the sendText method in the RemoteEndpoint.Basic interface. The process is synchronous in nature

//partial message delivery

....
String partialData = fetch(request);
try {
 session.getBasicRemote().sendText(partialData, false);
} catch (IOException ex) {
 throw new RuntimeException(ex);
}
...

Streaming

One can stream textual (character) data to a java.io.Writer provided by the public void getSendWriter() in RemoteEndpoint.Basic. Any of the overloaded write methods in Writer can be used

//streaming strings

....
private Session session;

public void broadcast(String msg){
 session.getBasicRemote().getSendWriter().write(msg);
}
....

Summary

Here is a table summarizing possible message sending combinations for text data

	Sending style for text messages
	Method signature

	Synchronous
	public void sendText(String msg)

	Asynchronous
	public Future<Void> sendText(String msg), void sendText(String msg, SendHandler callback)

	Partial
	public void sendText(String part, boolean isLast)

	Streaming
	public void getSendWriter().write(String msg)

Sending binary data

Handling (sending) Binary data is similar to String as far as the API is concerned. The only (obvious) difference being the data type - ByteBuffer in case of binary data as opposed to String for textual data. The supported modes are also the same (as for text data)

Synchronous

//synchronous delivery of an image

....
public void syncImage(byte[] image, Session session){
 ByteBuffer img = ByteBuffer.wrap(image);
 session.getBasicRemote().sendBinary(img);
}
....

Asynchronous

//asynchronous delivery of an image

....
public void syncLargeImage(byte[] image, Session session){
 ByteBuffer img = ByteBuffer.wrap(image);
 Future<Void> deliveryProgress = session.getAsyncRemote().sendBinary(img);
 boolean delivered = deliveryProgress.isDone(); //blocks until completion or failure
}
....

Partial

//partial delivery of binary data

....
ByteBuffer partialData = fetch(request);
try {
 session.getBasicRemote().sendBinary(partialData, false);
} catch (IOException ex) {
 throw new RuntimeException(ex);
}
...

Streaming

Use the getSendStream() method on RemoteEndpoint.Basic to get an OutputStream and use any of the overloaded write methods to transmit binary data

//binary data - streaming style

....
ByteBuffer data = fetch(request);
try {
session.getBasicRemote().getSendStream().write(data.array());
} catch (IOException ex) {
throw new RuntimeException(ex);
}
...

Summary

Here is the gist

	Sending style for binary messages
	Method signature

	Synchronous
	public void sendBinary(ByteBuffer data)

	Asynchronous
	public Future<Void> sendBinary(ByteBuffer data) ,public void sendBinary(ByteBuffer data, SendHandler callback)

	Partial
	public void sendBinary(ByteBuffer part, boolean isLast)

	Streaming
	public void getSendStream().write(byte[] data)

Sending Java objects

More often than not, your business logic will internally deal with objects rather than their raw binary or textual representations. As mentioned earlier, WebSocket supports text and binary data as it on-wire format. Thus, Java objects within your code would need to be transformed into their text or binary forms for them to be sent over a WebSocket connection.

Similar to what we saw in case of native (binary and text) messages, the RemoteEndpoint.Basic and RemoteEndpoint.Async interfaces contain appropriate methods which support Java object transmission - both synchronously and asynchronously.

Here is a quick peek

	Sending style for (Java) objects
	Method signature

	Synchronous
	public void sendObject(Object obj)

	Asynchronous
	public Future<Void> sendObject(Object obj), public void sendObject(Object obj, SendHandler callback)

The question is -

how does a java.lang.Object representation get converted into text or binary format ?

This is done with the help of an Encoder. A javax.websocket.Encoder encapsulates the logic to convert a message from a Java object into an on-wire format supported by the WebSocket protocol (i.e. text or binary). Before diving into Encoders, let's look at a code sample for sending stock prices (represents as a StockQuote java object) asynchronously

The synchronous counterpart is very simple - you just need to use the sendObject method on RemoteEndpoint.Basic

....
private Session client;

public void broadcast(String msg) {
 Set<String> subscriptions = (Set<String>) client.getUserProperties().get("TICKER_SUBSCRIPTIONS");
 StockQuote quote = null; //the Java object
 for (String subscription : subscriptions) {
 try {
 quote = fetchQuote(subscription);
 //sending stock quotes with a Java 8 lambda style callback
 peer.getAsyncRemote().sendObject(quote,
 (SendResult result) -> {audit(session.getId(),quote, result.isOK());}
);
 }
 catch (Exception e) {
 //log and continue...
 }
 }
}
....

WebSocket Encoders: the details

Take a look at the diagram below to visualize how Encoders work at runtime. It should be relatively easy to grasp what's going on

[image: Encoders in action]

A summary of Encoders and their types

	Encoder Type
	Description

	Encoder
	The top level interface for different types of Encoders

	Encoder.Text<T>
	Transforms a custom Java object (of type T) to a textual (java.lang.String) format

	Encoder.Binary<T>
	Transforms to transform a custom Java object (of type T) to a binary (java.nio.ByteBuffer) format

A sample to demonstrate how an Encoder implementation would look like for a Java object which represents stock prices

//encoding a 'StockQuote' Java object to a JSON string

public class StockQuoteJSONEncoder implements Encoder.Text<StockQuote> {
 @Override
 public void init(EndpointConfig config) {
 //for custom initialization logic (details omitted)
 }
 @Override
 public String encode(StockQuote stockQuoteObject) throws EncodeException {
 //using the JSON processing API (JSR 353)
 return Json.createObjectBuilder()
 .add("quote", stockQuoteObject.getQuote())
 .add("ticker", stockQuoteObject.getTicker())
 .toString();
 }
 @Override
 public void destroy() {
 //close resources (details omitted)
 }
}

Streaming your Java objects

Native text and binary messages can be sent as streams - as explained in the previous sections. Java objects can also be transmitted in a streaming style. The respective methods are not directly exposed via RemoteEndpoint.Basic or RemoteEndpoint.Async. It's actually handled via the Encoder implementation

	Encoder Type
	Description

	Encoder.TextStream<T>
	Converts a custom Java object (of type T) and transmit it as a character stream (using java.io.Writer)

	Encoder.BinaryStream<T>
	Converts to transform a custom Java object (of type T) and transmit it as a binary stream (using java.io.OutputStream)

This example should help

//sending Java objects as character stream

public class StockQuoteJSONEncoder implements Encoder.TextStream<StockQuote> {
 @Override
 public void init(EndpointConfig config) {
 //for custom initialization logic (details omitted)
 }
 @Override
 public void encode(StockQuote stockQuoteObject, Writer writer) throws EncodeException {
 //using the JSON processing API (JSR 353)
 String jsonStockQuote = Json.createObjectBuilder()
 .add("quote", stockQuoteObject.getQuote())
 .add("ticker", stockQuoteObject.getTicker())
 .toString();
 writer.write(jsonStockQuote);
 }
 @Override
 public void destroy() {
 //close resources (details omitted)
 }
}

Thus, if you need to send your Java objects as a binary or character stream, you would need implement and register an appropriate Encoder corresponding to your Java type and the rest will be handled by the WebSocket runtime (your Encoder will be automatically invoked)

What about Java primitives ?

A WebSocket implementation provides default encoders for Java primitive (int-Integer, long-Long, double-Double etc.) data types. It is possible to write a custom encoder for any of these in order to override the default ones

Exchanging health status (ping-pong) messages

Exchaning ping-pong messages is a way to check up on the health status of the connection b/w a pair of WebSocket peers

	Ping/Pong
	Description

	Ping
	A health check request message. The API does not provide an object corresponding to this message (its a byte buffer)

	Pong
	Response to a health check status, represented by javax.websocket.PongMessage. It can also be used as a one-way heartbeat message (without the ping message being involved)

Common semantics for Ping-Pong messages

	They are nothing but binary data and take the form of a ByteBuffer (as explained earlier) as far the API is concerned

	They cannot be larger than 125 bytes (as is the case with WebSocket Control Frames in general) - these are just health-check messages and not meant for core/application level data exchange b/w WebSocket endpoints

Capability to send ping and pong messages are defined by the top level javax.websocket.RemoteEndpoint interface which means that they are inherited by its RemoteEndpoint.Basic and RemoteEndpoint.Async

This means that both these messages can be sent in a sync and async manner

	Sending style for Ping and Pong messages
	Method signature (ping)
	Method signature (pong)

	Synchronous & Asynchronous
	void sendPing(ByteBuffer ping)
	void sendPong(ByteBuffer pong)

//sending a ping (health check request)
.....
private Session s;

public void healthCheck(){
 s.getBasicRemote().sendPing(ByteBuffer.wrap("health-check".getBytes()));
}
.....

Additional notes

	A Ping message is only meant to be sent (not recieved) as opposed to Pong, which can be sent and recieved

	One does not need to write logic to explicitly return a pong message in response to a ping - the Java WebSocket API implementation will do that for you automatically

	A Pong message can also be used as a self inititated heart beat message (not just in response to ping)

//sending a pong (as a one-way heart beat)

s.getBasicRemote().sendPong(ByteBuffer.wrap("health-check".getBytes()));

Asynchronous timeouts

Throughout this lesson, we have seen strategies of being able to send messages in an asynchronous manner which avoid blocking the sending thread. This is a great where your solution needs to scale in order to support a large number of clients.

But, is there limit on how long can we wait for the asynchronous process to complete ?

The answer is yes

Timeout support in the API

	first and foremost, there is a notion of a timeout and this can be configured using the setSendTimeout method in the RemoteEndpoint.Async interface

	secondly, the failure result manifests itself using the Future object or SendResult

How do timeouts manifest ?

In case you are using the SendHandler i.e. the callback handler route, the timeout exception details will be available via SendResult.getException()

//bail out if the message is not sent in 1 second

....
public void broadcast(Session s, String msg){
 RemoteEndpoint asyncHandle = s.getRemoteAsync();
 asyncHandle.setSendTimeout(1000); //1 second
 asyncHandle.sendText(msg,
 new SendHandler(){
 @Override
 public void onResult(SendResult result) {
 if(!result.isOK()){
 System.out.println("Async send failure: "+ result.getException());
 }
 }
 }); //will timeout after 2 seconds
}
....

If you chose to use Future to track the completion, calling it's get method will result in a java.util.concurrent.ExecutionException

//bail out if the message is not sent in 2 seconds

....
public void broadcast(Session s, String msg){
 RemoteEndpoint asyncHandle = s.getRemoteAsync();
 asyncHandle.setSendTimeout(2000); //2000 ms
 Future<Void> tracker = asyncHandle.sendText(msg); //will timeout after 2 seconds
 tracker.get(); //will throw java.util.ExecutionException if the process had timed out
}
....

Before we proceed

.. a quick refresher. The below table provides a quick preview of which mode is supported for which message type

	Sending style
	Text
	Binary
	Java object
	Pong
	Ping

	Synchronous
	y
	y
	y
	y
	y

	Asynchronous
	y
	y
	y
	y
	y

	Partial
	y
	y
	n
	n
	n

	Streaming
	y
	y
	y
	n
	n

The next lesson ...

... will dive into the other half of the message exchange process i.e. Receiving Messages

 Receiving Messages

 Receiving Messages

From an API perspective, sending WebSocket messages is much simpler because of it's dependency on a simple construct i.e. javax.websocket.RemoteEndpoint interface. For an understanding of how to receive messages, we need to take into account both annotated as well as programmatic styles

	Annotated endpoints: it's all about passing the right type of parameters in the method annotated with @OnMessage

	Programmatic endpoints: implementation of the appropriate javax.websocket.MessageHandler (child) interface encapsulates the logic for receiving messages

Receive modes: a quick primer

Here is an overview of the options available when receiving messages

	Mode
	Description

	Complete
	The message is received in its entirety

	Partial
	This works in conjunction with the partial send capability. If the sender sends messages in chunks, the message is received in chunks. The receiver will get a true boolean flag to notify it of the last message part

	Streaming
	Receive messages in form of Java Readers and InputStreams

Receving messages can also end up with a lot of permutations and combinations (just like the send APIs). So here is what we'll do in order to help tackle that

	Pick up a message type (thankfully there are just two of them - String and Binary!)

	For each of the endpoint styles (Annotated and Programmatic), we will look at the possible receiving modes (as mentioned above)

	Take a look at how Java objects and Pong messages are handled (separate sections)

Receiving text messages

Annotated endpoints

Receving text messages in annotated endpoints is all about having the appropriate method parameter type and the WebSocket runtime will automatically figure out the rest

Complete

...
@OnMessage
public void handleChatMsg(String chat) {
 System.out.println("Got message - " + chat);
}
...

Partial

...
@OnMessage
public void pushChunk(String partMsg, boolean last) {
 String chunkSeq = last ? "intermediate" : "last" ;
 System.out.println("Got " + chunkSeq + " chunk - "+ partMsg);
}
...

Streaming

...
@OnMessage
public void handleChatMsg(Reader charStream) {
 System.out.println("reading char stream");
}
...

Programmatic endpoints

As mentioned earlier, Programmatic endpoints are inheritance based and thus need some more custom code to set them up as message receviers.

Complete

public class WholeTextMsgHandler extends MessageHandler.Whole<String> {
 @Override
 public void onMessage(String chat) {
 System.out.println("Got message - " + chat);
 }
}

Partial

public class PartialTextMsgHandler extends MessageHandler.Partial<String> {
 @Override
 public void onMessage(String partMsg, boolean last) {
 String chunkSeq = last ? "intermediate" : "last" ;
 System.out.println("Got " + chunkSeq + " chunk - "+ partMsg);
 }
}

Streaming

public class WholeStreamingTextMsgHandler extends MessageHandler.Whole<Reader> {
 @Override
 public void onMessage(Reader charStream) {
 System.out.println("Got stream message - " + charStream);
 }
}

Receiving binary messages

When it comes to binary messages, the pattern (for both annotated and programmatic endpoints) is the same (except for the data type of course!). Binary messages support is available in the form of byte[] (array), java.nio.ByteBuffer and java.io.InputStream

Annotated endpoints

Complete

...
@OnMessage
public void handleImage(ByteBuffer img) {
 System.out.println("Got message - " + chat);
}
...

Partial

...
@OnMessage
public void pushChunk(byte[] audioPart, boolean last) {
 String chunkSeq = last ? "intermediate" : "last" ;
 System.out.println("Got " + chunkSeq + " clip");
}
...

Streaming

...
@OnMessage
public void handleChatMsg(InputStream binaryStream) {
 System.out.println("reading binary stream");
}
...

Programmatic endpoints

The concept remains the same apart from a change in the data types..

Complete

public class WholeBinaryMsgHandler extends MessageHandler.Whole<byte[]> {
 @Override
 public void onMessage(byte[] image) {
 System.out.println("Got image - " + image.length);
 }
}

Partial

public class PartialBinaryMsgHandler extends MessageHandler.Partial<ByteBuffer> {
 @Override
 public void onMessage(ByteBuffer clip, boolean last) {
 String chunkSeq = last ? "intermediate" : "last" ;
 System.out.println("Got " + chunkSeq + " chunk");
 }
}

Streaming

public class WholeStreamingBinaryMsgHandler extends MessageHandler.Whole<InputStream> {
 @Override
 public void onMessage(InputStream binaryStream) {
 System.out.println("Got stream binary message");
 }
}

Receiving text, binary messages as Java objects

Text and binary messages sent by a WebSocket peer can be received as Java objects within your message handling logic (annotated or programmatic).

But how would the on-wire format (text/binary) to Java object transformation take place ?

This is where Decoders come into the picture. An implementation of a javax.websocket.Decoder provides the necessary logic to convert a message from it's on-wire format into it's Java representation.

WebSocket Decoders: the details

Decoders are complementary to Encoders (which were discussed in the Sending Messages lesson). Take a look at the diagram below to visualize how they work at runtime

[image: Decoders in action]

Transforming native data types (Text, Binary) into Java objects

A summary of Decoders and their types

	Basic Decoder Type
	Description

	Decoder
	The top level interface for different types of Decoders

	Decoder.Text<T>
	Defines how a custom Java object (of type T) is produced from a text payload (java.lang.String)

	Decoder.Binary<T>
	Defines how a custom Java object (of type T) is produced from a binary payload (java.nio.ByteBuffer)

A sample to demonstrate how a Decoder which creates a Subscription object from a String

public class StockSubscriptionDecoder implements Decoder.Text<Subscription> {

 @Override
 public Subscription decode(String subscription){
 //client sends comma seperated list of subscription e.g. appl,goog,orcl
 return new Subscription(Arrarys.asList(subscription.split(",")));
 }
 @Override
 public void willDecode(String subscription){
 return subscription!=null && subscription.split(",").length > 0;
 }

}

Transforming Streaming inputs into Java objects

Native text and binary messages can be received as streams - as explained in the previous sections. Java objects can also be received in a streaming style

	Streaming Decoder Type
	Description

	Decoder.TextStream<T>
	Defines how a custom Java object (of type T) is produced from a character stream (java.io.Reader)

	Decoder.BinaryStream<T>
	Defines how a custom Java object (of type T) is produced from a binary stream (java.io.InputStream)

This example shows how you can handle data in a streaming form using a Reader which creates a Conversation object

public class ConversationDecoder implements Decoder.TextStream<Conversation> {

 @Override
 //handles new-line delimited content
 public Conversation decode(Reader content) {
 Conversation conversation = new Conversation();
 try(LineNumberReader lineByLineReader = new LineNumberReader(content)){
 String line = lineByLineReader.readLine();
 while(line != null) {
 conversation.add(line);
 line = lineByLineReader.readLine();
 }
 }
 return conversation;
 }
}

Handling Pong objects

Pong messages were introduced in the API Overview chapter and were then discussed in the Sending Messages chapter as well. Receiving a health-check response message (a.k.a javax.websocket.Pong) is possible in both annotated and programmatic endpoints. Here are the examples

//annotated Pong handler
...
@OnMessage
public void healthCheckCallback(PongMessage pong) {
 System.out.println("Pong for Ping! "+ new String(pong.getApplicationData().array());
}
...

//programmatic Pong handler
public class PongMsgHandler extends MessageHandler.Whole<PongMessage> {
 @Override
 public void onMessage(PongMessage pong) {
 System.out.println("Pong for Ping! "+ new String(pong.getApplicationData().array());
 }
}

Common notes

Using a MessageHandler

There are two basic steps involved (common to Programmatic endpoints)

	implement appropriate MessageHandler implementation based on data type and whole/partial message

	attach that implementation using Session#addMessageHandler methods (multiple combinations available)

addMessageHandler permutations

Couple of additional (overloaded) addMessageHandler methods were added to the Session interface as a part of WebSocket 1.1 release. In fact this was the only (minor) change in the 1.1 MR (maintenance release). For details, please check the change log

//attaching message handlers

public class ProgrammaticEndpoint extends Endpoint {

 @Override
 public void onOpen(Session session, EndpointConfig config) {
 session.addMessageHandler(new WholeBinaryMsgHandler()); //basic
 session.addMessageHandler(String.class, new WholeTextMsgHandler()); //specify class type for Whole message handler
 session.addMessageHandler(ByteBuffer.class, new PartialBinaryMsgHandler()); //specify class type for Partial message handler
 }
}

Other possible parameters for @OnMessage

In addition to the message itself, a method annotated with OnMessage can also receive the following information (which will be injected by the implementation at runtime)

	zero or more String parameters annotated with @javax.websocket.PathParam (it is similar in spirit to the JAX-RS @javax.ws.rs.PathParam annotation)

	an instance of Session

	an instance of EndpointConfig (server or client side)

public void onMsgCallback(String theMsg, @PathParam("user") String username, Session peer, EndpointConfig condfig){
 System.out.println("I have everything I could possibly receive from the WebSocket implementation !");
}

Handling Java primitives

A WebSocket implementation provides default decoders for Java primitive (int-Integer, long-Long, double-Double etc.) data types. It is possible to write a custom decoder for any of these in order to override the default ones

Up next

We'll explore the WebSocket Client API in detail

 WebSocket Client API

 WebSocket Client API

As discussed in the API Overview chapter, WebSocket has the notion of server and client components. Everything we have seen so far in the previous chapters is applicable to both these aspects. A WebSocket client endpoint

	implements some business logic (just like it's server side counterpart)

	connects to existing WebSocket (server) endpoints

In this lesson, we will look at some of the specifics of the Client API and explore topics like

	Developing annotated and programmatic endpoints

	Different ways of using them to connect to existing WebSocket server endpoints (they are different for annotated and programmatic client endpoints)

Annotated clients

The code for annotated client endpoints is not very different from their server side counterparts.

Notice the usage of the @ClientEndpoint annotation

//annotated client endpoint in action

@ClientEndpoint
public class AnnotatedChatClient {

 private ClientEndpointConfig clientConfig;
 private String user;
 @OnOpen
 public void connected(Session session, EndpointConfig clientConfig){
 this.clientConfig = (ClientEndpointConfig) clientConfig;
 this.user = session.getUserPrincipal().getName();
 System.out.println("User " + user + " connected to Chat room");
 }
 @OnMessage
 public void connected(String msg){
 System.out.println("Message from chat server: " + msg);
 }
 @OnClose
 public void disconnected(Session session, CloseReason reason){
 System.out.println("User "+ user + " disconnected as a result of "+ reason.getReasonPhrase());
 }
 @OnError
 public void disconnected(Session session, Throwable error){
 System.out.println("Error communicating with server: " + error.getMessage());
 }
}

Programmatic clients

Again, not much of a difference here - extending the java.websocket.Endpoint class is required to implement a programmatic client

//a bare bone implementation of a programmatic endpoint

public class WeatherClient extends Endpoint {
 private Session session;
 @Override
 public void onOpen(Session session, EndpointConfig config) {
 this.session = session;
 try {
 //sends back the session ID to the peer
 this.session.getBasicRemote().sendText("Session ID: " + this.session.getId());
 } catch (IOException ex) {
 throw new RuntimeException(ex);
 }
 }
}

Understanding the nuances

At first glance, the WebSocket Client API might seem a little odd. Think about other client libraries e.g. a HTTP client, REST client, a custom client for some server side component - their underlying concept is to invoke operations on the component they are connecting to (mostly a server side component). In the case of the Java WebSocket Client API, its slighlty different

	Business logic is implemented in the form of callback method implementation (annotated client) or overriding methods of a superclass (programmatic client)

	The connectivity logic is invoked separately (more on this in the next section)

It's important to bear this in mind and align the mental model while working with the client API

Using the Client API to connect to a server endpoint

Looking at the above code samples, its not too hard to figure out that the client API implementation is almost exactly the same as server side endpoints. We write the business logic which gets invoked once the client interacts with the server - before that, it needs to connect with one

In order to initiate a connection to a server endpoint using the WebSocket client API, use the methods available in the javax.websocket.WebSocketContainer. They take the form of overloaded methods - table below provides a summary

	Endpoint type
	Method
	Notes

	Annotated
	connectToServer(Class<?> annotatedEndpointClass, URI path)
	--

	Annotated
	connectToServer(Object annotatedEndpointInstance, URI path)
	no injection support

	Programmatic
	connectToServer(Class<? extends Endpoint> endpointClass, ClientEndpointConfig cec, URI path)
	--

	Programmatic
	connectToServer(Endpoint endpointInstance, ClientEndpointConfig cec, URI path)
	no injection support

Connecting annotated client endpoints

Option 1: Using the class type

WebSockerContainer.connectToServer(AnnotatedChatClient.class,
URI.create("ws://javaee-chat.com"));

Option 2: Using a concrete instance of the client endpoint implementation

WebSockerContainer.connectToServer(new AnnotatedChatClient(),
URI.create("ws://javaee-chat.com"));

The caveat - if the above client code is executed within a JavaEE container, it will not be able to enjoy dependency injection support. More details on this in the Tying in with Java EE Platform chapter

Connecting programmatic client endpoints

Programmatic client endpoints follow the same strategy as their annotated counterparts except for the fact the method requires a ClientEndpointConfig

Client side Configuration has been discussed in depth in the Configuration lesson. For now its just enough to know this fact and understand the samples below

Option 1: Using the class type

WebSockerContainer.connectToServer(WeatherClient.class,
ClientEndpointConfig.Builder.create().build(), //fluent API
URI.create("ws://weather-tracker.com"));

Option 2: Using a concrete instance of the client endpoint implementation

WebSockerContainer.connectToServer(new WeatherClient(),
ClientEndpointConfig.Builder.create().build(), //fluent API
URI.create("ws://weather-tracker.com"));

The caveat - if this client is executed within a JavaEE container, it will not be able to enjoy dependency injection support. More in the Tying in with the Java EE Platform chapter

Client side Configurator

Client side configurators help enapsulate some come common logic across all instances of a client - specifically around intercepting the opening handshake with a server side enpoint. This section just serves as a pointer to the detailed discussion of this topics which is more relevant to the Configurattion chapter

Up next

We will explore how to configure Server and Client side WebSocket endpoints

 Configuration

 Configuration

In this lesson, we will dive into configuration parameters associated with WebSocket endpoints. Simply put, Configuration is nothing but a bunch of (meta) data associated with an endpoint (server or client). You will learn about

	Server endpoint configuration (for both annotated and programmatic endpoints)

	Client endpoint configuration (for both annotated and programmatic endpoints)

	(Server & client) Endpoint Configurators

From an API perspective, a WebSocket endpoint Configuration is represented by the EndpointConfig interface which is extended by ServerEndpointConfig and ClientEndpointConfig for server and client respectively

Server configuration

Before we dive into the details, here is a quick snapshot of the related interfaces

	Class/Interface
	Description

	ServerEndpointConfig
	A derivative of EndpointConfig interface which is specific for configuration related to server side WebSocket endpoints

	ServerEndpointConfig.Builder
	Used only for programmatic server endpoints to build a ServerEndpointConfig instance

	ServerEndpointConfig.Configurator
	An interface whose custom implementation allows sharing of global (for all endpoints) available logic/state as well opportunity to intercept the WebSocket handshake process (via method override)

Configuring annotated server endpoints

Annotated server endpoints are configured implicitly via the elements of the @ServerEndpoint annotation. The WebSocket container picks up the value from the annotation elements and creates an instance of EndpointConfig behind the scenes

//annotated server endpoint with all its configuration elements

@ServerEnpdoint(
 value = "/chat/",
 configurator = ChatEndpointConfigurator.class, //discussed later
 decoders = JSONToChatObjectDecoder.class,
 encoders = ChatObjectToJSONEncoder.class,
 subprotocols = {"chat"}
)
public class ChatServer {
 //business logic...
}

The EndpointConfig instance is automatically injected (at run time by the WebSocket container) as a parameter of the @OnOpen method

//server endpoint configuration in action

@OnOpen
public void onOpenCallback(Session session, EndpointConfig epConfig){
 ServerEndpointConfig serverConfig = (ServerEndpointConfig) epConfig;
 Map<String, Object> globalPropertiesMap = serverConfig.getUserProperties();

}

Configuring programmatic server endpoints

Programmatic endpoints need (explicit) coding as far as configuration is concerned. This is because of the fact that programmatic endpoints are deployed differently and need an instance of ServerEndpointConfig

Don't worry about the deployment aspect since it's covered in detail in the next lesson

Here is where the fluent builder ServerEndpointConfig.Builder comes into picture. Let's look at an example which demonstrates it's usage

ServerEndpointConfig serverConfig = ServerEndpointConfig.Builder
 .create(StockTrackerEndpoint.class , "/pop-stocks/").
 .configurator(StockTrackerConfigurator.getInstance()) //discussed later
 .decoders(JSONToStockTickerObject.class)
 .encoders(StockTickerObjectToJSON.class)
 .build();

An instance of ServerEndpointConfig is made available in the onOpen method of the javax.websocket.Endpoint (as a parameter)

public class ProgrammaticChatClient extends Endpoint {
 @Override
 public void onOpen(Session session, EndpointConfig config){
 ServerEndpointConfig serverConfig = (ServerEndpointConfig) epConfig;

 }
}

Client configuration

You must have built a fair understanding about WebSocket clients from the WebSocket Client API lesson. They too have configuration parameters associated with them which are used while connecting to WebSocket server endpoints. Before we dive into the details, here is a quick snapshot of the related interfaces

	Class/Interface
	Description

	ClientEndPointConfig
	A derivative of EndpointConfig interface which is specific for configuration related to client side WebSocket endpoints

	ClientEndpointConfig.Builder
	Used only for programmatic client endpoints to build a ClientEndpointConfig instance

	ClientEndpointConfig.Configurator
	The client side equivalent of ServerEndpointConfig.Configurator

Configuring annotated client endpoints

Annotated client endpoints are configured implicitly via the elements of the @ClientEndpoint annotation

@ClientEndpoint(
 configurator = ChatClientEndpointConfigurator.class, //discussed later
 decoders = JSONToChatObjectDecoder.class,
 encoders = ChatObjectToJSONEncoder.class,
 subprotocols = {"chat"}
)
public class ChatClient {
 //business logic...
}

This instance is automatically injected (at runtime) as a parameter of the @OnOpen method

//server endpoint configuration in action

@OnOpen
public void onOpenCallback(Session session, EndpointConfig epConfig){
 ClientEndpointConfig clientConfig = (ClientEndpointConfig) epConfig;

}

Configuring programmatic client endpoints

Just like their server side counterparts, configuration for programmatic clients can be coded using a fluent builder API - ClientEndpointConfig

ClientEndpointConfig cec = ClientEndpointConfig.Builder
 .configurator(ChatClientConfigurator.getInstance()) //discussed later
 .decoders(JSONToStockTickerObject.class)
 .encoders(StockTickerObjectToJSON.class)
 .build();

This configuration object is used while initiating connection to a WebSocket endpoint. Please refer to the WebSocket Client API chapter for code samples

Additional notes

	As you might have already noticed, there is not much of a difference b/w annotated client and server side configurations, except for the fact that a client endpoint does not have the concept of a path or a URL where its listening for connections - that's something that a server endpoint does

	An EndpointConfig instance provides the capability to store (global) properties which are common to all instances of an endpoint. It does so by providing a getUserProperties() method which exposes a mutable Map

The big picture

Annotated and programmatic endpoint configuration are handled differently, but the end result is the same. Below is a table which illustrates this point for both server and client endpoints

	For server endpoints, the table shows the mapping b/w corresponding element of the @ServerEndpoint annotation, the corresponding method in ServerEndpointConfig as well as appropriate the method in the ServerEndpointConfig.Builder, and

	@ServerEndpoint annotation element
	ServerEndpointConfig method
	ServerEndpointConfig.Builder method

	value
	getPath()
	create(Class<?> endpointClass, String path)

	configurator
	getConfigurator()
	configurator(ServerEndpointConfig.Configurator sec)

	decoders
	getDecoders()
	decoders(List<Class<? extends Decoder>> decoders)

	encoders
	getEncoders()
	encoders(List<Class<? extends Encoder>> encoders)

	subprotocols
	getSubprotocols()
	subprotocols(List<String> subprotocols)

	In case of client endpoints, the table shows the mapping b/w corresponding element of the @ClientEndpoint annotation, the corresponding method in ClientEndpointConfig as well as appropriate the method in the ClientEndpointConfig.Builder

	@ClientEndpoint annotation element
	ClientEndpointConfig method
	ClientEndpointConfig.Builder method

	configurator
	getConfigurator()
	configurator(ClientEndpointConfig.Configurator clientEndpointConfigurator)

	decoders
	getDecoders()
	decoders(List<Class<? extends Decoder>> decoders)

	encoders
	getEncoders()
	encoders(List<Class<? extends Encoder>> encoders)

	subprotocols
	getPreferredSubprotocols()
	preferredSubprotocols(List<String> preferredSubprotocols)

Configurators

Basics

Configurators (which in my opinion could have been named differently) are applicable to both server and client side WebSocket endpoints. These are components which can intercept handshake phase of the WebSocket connection lifecycle. They can be used to implement a bunch of things such as

	customizing the WebSocket handshake process

	plugging in a custom implementation for producing endpoint instances

	implementing common logic which can be used by all endpoint instances which are configured using the Configuration with which the Configurator is associated

If the developer does not override (provide a custom implementation) of a Configurator a default one is internally used by the container

Server side

The table below provides an overview. It lists out the methods of a ServerEndpointConfig.Configurator which needs to be overridden to provide custom behavior

	Capbility
	Method in ServerEndpointConfig.Configurator
	Details

	Handshake modification
	void modifyHandshake(ServerEndpointConfig sec, HandshakeRequest request, HandshakeResponse response)
	a custom implementation can override this method in order to modify the HandshakeResponse created by the runtime (in response to the handshake request)

	Customizing endpoint creation
	<T> T getEndpointInstance(Class<T> endpointClass)
	overriding this method allows you to hook into the WebSocket endpoint substantiation process

	Origin check
	boolean checkOrigin(String originHeaderValue)
	it provides the value of the HTTP Origin header sent by the client during the handshake process in order to enforce security checks if required

	Subprotocol negotiation
	List<Extension> getNegotiatedExtensions(List<Extension> installed, List<Extension> requested)
	selects the appropriate subprotocol depending upon the best match b/w what the server supports and what is being requested by the client (empty if there is no match)

	Extension negotiation
	String getNegotiatedSubprotocol(List<String> supported, List<String> requested)
	similar to the subprotocol, the extension support can be negotiated as well

The catch
If you choose to customize the endpoint creation process, (Java EE) container services like dependency injection might not available since the container default convention is being overridden

Let's look at en example

//custom configurator

public class CustomServerEndpointConfigurator extends ServerEndpointConfig.Configurator {

 @Override
 public <T> T getEndpointInstance(Class<T> endpointClass){
 //override the default behavior by providing a 'Singleton'
 return (T) StockTickerEndpoint.getInstance();
 }

 @Override
 public boolean checkOrigin(String originHeaderValue){
 //just audit this
 audit(originHeaderValue);
 return true;
 }

 private String user;

 @Override
 public void modifyHandshake(ServerEndpointConfig sec, HandshakeRequest request, HandshakeResponse response){
 //introspect the request headers
 System.out.println(request);

 //the authenticated user
 this.user = request.getUserPrincipal().getName();

 }

 @Override
 public List<Extension> getNegotiatedExtensions(List<Extension> installed, List<Extension> requested){
 //invoke default implementation
 return super.getNegotiatedExtensions(installed, requested);
 }

 @Override
 public String getNegotiatedSubprotocol(List<String> supported, List<String> requested){
 //invoke default implementation
 return super.getNegotiatedSubprotocol(supported, requested);
 }
}

//declaring the custom configuration

@ServerEndpoint(value = "/letschat" , configurator = CustomServerEndpointConfigurator.class)
public class AnnotatedServerEndpointExample {
 //call back life cycle method(s) implementation...
}

Client side

Client configurators are similar in sprirt to their server counterparts. They slightly less complicated and just define hooks for inercepting the phases before and after the handshake

	Capbility
	Method in ClientEndpointConfig.Configurator

	Intercept Handshake
	void afterResponse(HandshakeResponse hr), beforeRequest(Map<String,List<String>> headers)

//custom configurator

public class CustomClientEndpointConfigurator extends ClientEndpointConfig.Configurator {

 @Override
 public void beforeRequest(Map<String,List<String>> headers){
 //mutate the header
 String token = ...;
 headers.put("X-token" , Arrays.asList(token));
 }

 @Override
 public void afterResponse(HandshakeResponse hr){
 //introspect the handshake response
 System.out.println(hr.getHeaders());
 }
}

//declaring the client configuration

@ClientEndpoint(configurator = CustomClientEndpointConfigurator.class)
public class AnnotatedClientEndpointExample {
 //call back life cycle method(s) implementation...
}

Let's move on...

.. and take a closer look at the Deployment related aspects

 Deployment

 Deployment

A WebSocket container implementation has to detect and deploy both annotated and programmatic server endpoints. This chapter gives an overview of how WebSocket endpoints are deployed in Java EE (which includes a Servlet container)

Deploying annotated server endpoints

This is the easy part. Once you implement your annotated (decorated with @ServerEndpoint) WebSocket server endpoint, the Servlet runtime weaves it scanning magic and extracts all such annotated classes from the WAR (and JARs within), deploys them and ensures they are ready for action

Deploying programmatic server endpoints

Things are different in case of programmatic server endpoints (which extend javax.websocket.Endpoint) - they are not deployed automatically by the container unless we utilize the javax.websocket.server.ServerApplicationConfig class

Let's look at an example

//A 'chat' club using programmatic web socket endpoint style

public class ChatClub extends Endpoint {
....
@Override
public void onOpen(Session joinee, EndpointConfig config) {
 System.out.println("Peer " + joinee.getId() + " connected");
 joinee.getRemoteBasic().sendText("Welcome to the Chat Club. The first rule of Chat Club is don't talk, just type");
 joinee.addMessageHandler(new MessageHandler.Whole<String>() {
 @Override
 public void onMessage(String message) {
 try {
 joinee.getBasicRemote().sendText("You sent \n"+message+"\nRead the rulez.. again!");
 } catch (IOException ex) {
 throw new RuntimeException(ex);
 }
 }
 });
 }

}

Assuming this is the only (programmatic) endpoint we want to deploy, this is how you would do it

//custom implementation to guide the deployment of our programmatic endpoint

public class CustomServerAppConfigProvider implements ServerApplicationConfig {

 @Override
 public Set<ServerEndpointConfig> getEndpointConfigs(Set<Class<? extends Endpoint>> endpointClasses) {
 Set<ServerEndpointConfig> result = new HashSet<>();
 for (Class epClass : endpointClasses) {
 if (epClass.equals(ChatClub.class)) {
 ServerEndpointConfig sec = ServerEndpointConfig.Builder.create(epClass, "/chatclub").build();
 result.add(sec);
 }
 }
 return result;
 }

 @Override
 public Set<Class<?>> getAnnotatedEndpointClasses(Set<Class<?>> scanned) {
 // we do not have annotated endpoints. if we did, they will not be deployed !
 return Collections.emptySet();
 }
}

Once the WebSocket container detects an implementation of ServerApplicationConfig, it invokes it.

Things to note

	Using ServerApplicationConfig is compulsory in order to deploy programmatic endpoints

	getEndpointConfigs method is for deploying programmatic endpoints

	getAnnotatedEndpointClasses method is for annotated endpoints

	Collections.emptySet() is returned from getAnnotatedEndpointClasses since it is assumed that there are no annotated endpoints

But why do we even need this for annotated endpoints ? Our annotated endpoints get deployed automagically... correct ? Well its partially correct since it's applicable to a scenario where we deploy annotated endpoints only
The next section provides more details...

Deploying annotated & programmatic server endpoints together

When you have a combination of programmatic and annotated endpoints in your application, then you have to make use of a custom subclass of ServerApplicationConfig and explicitly return set of all annotated endpoints from the getAnnotatedEndpointClasses method

//return ALL the auto-detected (scanned) annotated endpoints which the container will deploy

....
@Override
public Set<Class<?>> getAnnotatedEndpointClasses(Set<Class<?>> scanned) {
 return scanned;
}
....

Please note that, using this method, you can choose to restrict the endpoints (annotated and programmatic) being deployed i.e. not all the detected endpoints need to be (will be) deployed

Going back to the question which was posed above.. here is the answer

This is how it works..

If the WebSocket container finds implementation of the ServerApplicationConfig class, it uses the same to deploy both programmatic and annotated endpoints. The result of the WAR scanning process (by the Servlet container) is passed on the methods of this class

	For getEndpointConfigs, the set (java.util.Set) of detected programmatic endpoints are passed as the method parameter

	For getAnnotatedEndpointClasses method, the set (java.util.Set) of detected annotated endpoints are passed as the method parameter

Summary of deployment scenarios

	Annotated Endpoint
	Programmatic Endpoint
	Behavior

	Yes
	No
	Automatic detection of annotated endpoint. No custom code needed

	No
	Yes
	Custom implementation of ServerApplicationConfig is compulsory. Progr endpoints are not auto-detected and deployed

	Yes
	Yes
	Custom implementation of ServerApplicationConfig is compulsory. Need to explicitly return set of all annotated endpoints from the getAnnotatedEndpointClasses method

Programmatic API for deploying endpoints

In addition to the above, WebSocket specification also provides a Programmatic API (not to be confused with programmatic endpoints) to deploy endpoints.

Why is it needed ?

The above mentioned deployment strategies rely on the Servlet scanning mechanism for endpoint discovery. The programmatic APIs provides an alternative route and can be used in web (Servlet) container without the automatic scanning as well as in case WebSocket endpoints are deployed in standalone mode

The API to be used in this case is javax.websocket.server.ServerContainer - it has separate methods for annotated (void addEndpoint(Class<?> endpointClass)) and programmatic endpoints (void addEndpoint(ServerEndpointConfig serverConfig))

The instance of ServerContainer is obtained in different ways depending on whether the application is executing in a Servlet (web container) or standalone mode

Usage in a Servlet container

Reference to an instance of the ServerContainer interface is made available by using the javax.websocket.server.ServerContainer attribute in javax.servlet.ServletContext

@WebListener
public class ServletCtxBasedDeploymentStrategy implements ServletContextListener {

 @Override
 public void contextInitialized(ServletContextEvent sce){
 //obtain the instance
 ServerContainer sc = (ServerContainer) sce.getServletContext().getAttribute("javax.websocket.server.ServerContainer");

 //trigger endpoint deployment
 deployAnnotatedEndpoint(sc);
 deployProgEndpoint(sc);
 }

 private void deployAnnotatedEndpoint(ServerContainer container) {
 container.addEndpoint(StockTicker.class);
 container.addEndpoint(WeatherTracker.class);
 }

 private void deployProgEndpoint(ServerContainer container) {
 container.addEndpoint(ServerEndpointConfig.Builder.create(ChatClub.class, "/chatclub").build());
 container.addEndpoint(ServerEndpointConfig.Builder.create(RealTimeLocationTracker.class, "/location").build());
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce){}
}

Additional notes

	Standalone usage of ServerContainer is depended upon how a specific runtime allows the developer to obtain its instance

	This is not be mixed with the above mentioned deployment strategy which uses ServerApplicationConfig. The implementation will ignore duplicate endpoints (submitted by the separate deployment techniques) since this is mandated by the specification

In the next chapter ...

... we will look at how the WebSocket components work in concert with the other Java EE APIs from a platform context

 Part-1: Tying in with the Java EE Platform

Part I: Tying in with the Java EE Platform

The Java WebSocket API baked into the Java EE Platform (Java EE 7 and above). This chapter talks about other Java EE technologies which the WebSocket API integrates with. We will explore interoperability with the following Java EE specifications.

	Enterprise Java Beans (EJB)

	Context and Dependency Injection (CDI)

Before we dive in, please note that

container managed injection features are not available to WebSocket endpoints which override the container implemented initialization (using the ServerEndpointConfig.Configurator)

EJB integration

In this section, we'll look at how WebSocket endpoints can integrate with EJBs. The following aspects will be explored

	Decorating WebSocket endpoints with Core EJB component model annotations

	EJB based Dependency Injection in WebSocket endpoints

	Using EJB Interceptors in WebSocket endpoints

Decorating WebSocket endpoints with EJB

Important: Please note that support for EJB annotations on WebSocket endpoints is not a standard (specification mandated) feature

@Singleton

By default, the container creates a new WebSocket (server) endpoint instance per client. In case you need a single instance, you can implement this using a custom ServerEndpointConfig.Configurator (override the getEndpointInstance to be specific and return the same instance). As mentioned in the Configuration chapter, this means that you might have to sacrifice some of the (Java EE) platform related services like dependency injection

Alternate solution - A similar behavior can be achieved by decorating the WebSocket endpoint with @Singleton

@Singleton
@ServerEndpoint("/singleton/")
public class SingletonlEndpoint {

 @OnOpen
 public void onOpen(Session s) throws IOException {
 s.getBasicRemote().sendText(String.valueOf(hashCode()));
 }

 @PreDestroy
 public void onDestroy() {
 System.out.println("Singleton bean " + hashCode() + " will be destroyed");
 }

 @OnClose
 public void onClose(Session session, CloseReason closeReason) {
 System.out.println("Closed " + session.getId() + " due to " + closeReason.getCloseCode());
 }
}

Concurrency semantics

In case of a @Singleton, all the clients will interact with one server endpoint instance. Here is a quick summary of how the EJB as well as WebSocket threading semantics are applied

	The Singleton bean default approach (WRITE lock) ensures single threaded access across all connected clients

	If thread-safety is not a concern (e.g. in case where you do not deal with client specific data/state in your logic) and you do not want the single-threaded access model to be a bottleneck, override the default behavior by switching to a READ lock which allows concurrent threads to access the methods (unless of course a WRITE lock is not already in effect)

The above mentioned semantics are with respect to ALL the WebSocket clients. From the point of view of a single client, the default strategy of one thread at a time, per endpoint instance per client continues to apply (more in the Concurrency chapter)

@Stateful

It's only possible to have one @Stateful EJB instance per WebSocket client - this is in tune with the default behavior outlined by the WebSocket specification. Things would get interesting from a state management perspective

	passivation capabilities of Stateful beans can be leveraged if needed (be careful about not storing references to non java.io.Serializable objects)

	EJB containers also support replication of Stateful beans across clusters which means that client state can be saved across multiple JVMs. With some custom logic (since javax.websocket.Session is not Serializable), it might be possible to implement a highly availabile (HA) setup for WebSocket applications

@Stateful
@ServerEndpoint("/chat/{user}")
public class StatefulChat {
 private transient Session s;
 private String userID;
 private List<History> history;

 @OnOpen
 public void onOpen(@PathParam("user") String user, Session s) throws IOException {
 this.userID= user;
 this.s = s;

 }

 @OnMessage
 public void chat(String msg) {
 history.add(msg);
 //route message to intended recipient(s)
 }
 ...
}

In the above example

	userId and (chat) history are user specific state which can be passivated, restored and replicated (across JVMs)

	Session is marked transient since we do not intend to serialize it to disk not over network (other JVMs in cluster)

@Stateless

Using @Stateless style endpoints can prove to be useful as well. Here are some of the noteworthy points

	Instance creation: A random instance is picked up from the EJB pool (as per availability). It's possible to fine tune the pool in order to extract maximum performance (e.g. deploy time initilization if EJBs etc.)

	Once allocated, the same bean instance is used throughtout the lifecycle of the Session

@Stateless
@ServerEndpoint("/stateless/")
public class StatelessEndpoint {

 @OnOpen
 public void onopen(Session s) throws IOException {
 s.getBasicRemote().sendText(String.valueOf(hashCode()));
 }

 //same logic as in @Singleton endpoint

}

Dependency Injection

All EJB flavors (except MessageDriven) Stateless, Stateful and Singleton can be injected into WebSocket endpoints. A good strategy would be to implement core business logic using EJBs which can be then invoked from within WebSocket endpoint lifecycle (callback) methods

Injecting a @Stateful EJB

There is a one-to-one association between the WebSocket client & endpoint (which is by default) as well as the injected Stateful EJB instance, which makes it an ideal candidate for storing client specific state. It offers advanced semantics as compared to simple java.util.Map interface exposed by getUserProperties method in javax.websocket.Session)

@ServerEndpoint("/letschat/{login-id}")
public class ChatEndpoint {

 @EJB
 private ClientChatState ccs; //stateful EJB

 private String userID;

 @OnOpen
 public void connOpened(@PathParam("login-id") String loginID, Session session) {
 ccs.setUser(loginID)
 .currentState(State.JOINED); //everyone likes a fluent API!
 }

 @OnMessage
 public void onMessage(String msg, Session session) {
 ccs.lastReceivedMsg(msg);
 }

 @OnClose
 public void onClose(Session session) {
 ccs.dispose(); //method annotated with @Remove
 }
 ...
}

Tip: Implement a @Remove annotated method in the Stateful EJB and call it from the @OnClose callback method. This will ensure that the EJB is removed from the memory immediately rather than depending upon @StatefulTimeout configuration

Injecting @Stateless and @Singleton EJBs

@Stateless and @Singleton EJBs can also be injected seamlessly. All the EJB features like transactions, simpler concurrency model, lifecycle management etc. can be leveraged

@ServerEndpoint("/chat/")
public class ChatEndpoint {

 @EJB
 private ChatHistory ch; //stateless EJB

 @EJB
 private ConnectedUsers users; //singleton EJB

 @OnMessage
 public void onMessage(Session session){
 //business logic which makes use of the injected instances
 }
 ...
}

The table below summarizes the behavior when EJBs are injected into WebSocket endpoints

	Injected EJB type
	Behavior

	@Stateless
	a random instance is picked up from the pool

	@Singleton
	the same instance is injected

	@Stateful
	the bean is tied to the endpoint instance

beans.xml (in WEB-INF) is required in order to leverage Dependency Injection support

Interceptors

Just like EJB based injection support, Interceptor support in not officially supported by the WebSocket specification. You can implement cross-cutting business logic and then tie them to specific classes/methods using the @Interceptors annotation. You should employ the annotation for the type of interceptor i.e. @AroundInvoke, @AroundConstruct etc.

public class LoggingInerceptor {

 @AroundInvoke
 public Object log(InvocationContext ic) throws Exception {
 Object retVal = null;

 try {
 Logger.getAnonymousLogger().entering(ic.getTarget().getClass().getSimpleName(),
 ic.getMethod().getName());

 retVal = ic.proceed(); //allow intercepted method to be invoked

 } catch (Exception e) {
 Logger.getAnonymousLogger().severe(e.getMessage());
 } finally {
 Logger.getAnonymousLogger().exiting(ic.getTarget().getClass().getSimpleName(),
 ic.getMethod().getName());
 }

 return retVal;
 }
}

Apply the interceptor

@ServerEndpoint("/chat/")
public class ChatEndpoint {

 @Interceptors(LoggingInteceptor.class)
 @OnMessage
 public void onMessage(Session session){
 //business logic
 }
 ...
}

CDI integration

Although CDI integration offers features similar to that of the EJB ones i.e. Dependency Injection and Interceptors, it's worth noting that these are officialy supported by the specification (Section 7.1.1)

Dependency Injection

As part of the the DI support, @javax.inject.Inject can be used (on constructor, method, field) to inject CDI managed beans

@RequestScoped //CDI annotation
public class CDIManagedBean {

}

@ServerEndpoint("/stocks/")
public class StockTracker {

 @Inject
 private CDIManagedBean cdiBean;

 @OnOpen
 public void onOpenCallback(Session s){
 cdiBean.doSomething(); //use injected instance
 }
}

@ServerEndpoint("/weather/")
@Stateless // works with an EJB as well
public class WeatherTracker {

 @Inject
 private CDIManagedBean cdiBean;

 @OnOpen
 public void onOpenCallback(Session s){
 cdiBean.doSomething(); //use injected instance
 }
}

Interceptors

CDI Interceptors introduce an additional layer of abstraction. Let's look at a simple example

First up, we need to define an Interceptor binding

//the interceptor binding

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
public @interface LoggingInterceptorBinding {}

Implement our interceptor and bind it

//The interceptor implementation - notice the usage of additional annotations as compared to the EJB interceptors

@Interceptor
@LoggingInterceptorBinding
public class CDIBasedLoggingInterceptor {

 //implementation is the same (as in the case of EJB based interceptor)
 @AroundInvoke
 public Object log(InvocationContext ic) throws Exception {
 Object retVal = null;

 try {
 Logger.getAnonymousLogger().entering(ic.getTarget().getClass().getSimpleName(),
 ic.getMethod().getName());

 retVal = ic.proceed(); //allow intercepted method to be invoked

 } catch (Exception e) {
 Logger.getAnonymousLogger().severe(e.getMessage());
 } finally {
 Logger.getAnonymousLogger().exiting(ic.getTarget().getClass().getSimpleName(),
 ic.getMethod().getName());
 }

 return retVal;
 }
}

Apply the interceptor where needed (via the binding)

@ServerEndpoint("/chat/")
public class ChatEndpoint {

 @LoggingInterceptorBinding //binding the CDIBasedLoggingInterceptor
 @OnMessage
 public void onChatMsgRecieved(String chatMsg) {
 //....
 }
}

Oh, and don't forget to specify the interceptor in beans.xml (compulsory)

//Interceptors need to be defind in beans.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="all">
 <interceptors>
 <class>com.wordpress.abhirockzz.jaws.handbook.CDIBasedLoggingInterceptor</class>
 </interceptors>
</beans>

The CDI based interceptor works for EJB based WebSocket endpoints as well

Summary

Here is a quick review of what's supported for WebSocket in terms of CDI and EJB integration. Everything works.. Awesome!

	Feature
	Supported in EJB Annotated WebSocket Endpoint ?
	Supported in Plain WebSocket endpoint ?

	Inject CDI managed beans
	yes
	yes

	Inject EJBs with @Inject
	yes
	yes

	Inject EJBs with @EJB
	yes
	yes

	Use CDI interceptors
	yes
	yes

	Use EJB interceptors
	yes
	yes

Coming up

This concludes part I of this chapter. The second (and final) part will cover Servlet and Security related integration points

 Part-2: Tying in with the Java EE Platform

Part II: Tying in with the Java EE Platform

This part, covers integration with

	Servlet, and

	Java EE Security

Servlets and WebSockets

A WebSocket connection begins with a HTTP handshake. There is an association between javax.servlet.http.HTTPSession and javax.websocket.Session. The HTTPSession object can be obtained by overriding the modifyHandshake method in ServerEndpointConfig.Configurator. Once we have the it, the ServletContext can be easily retrieved

public class CustomServerEndpointConfigurator extends ServerEndpointConfig.Configurator{
 ...
 @Override
 public void modifyHandshake(ServerEndpointConfig sec, HandshakeRequest request, HandshakeResponse response) {

 HttpSession httpSession = (HttpSession) request.getHttpSession();
 ServletContext servletContext = httpSession.getServletContext();
 ...
 }
}

Lifetime of Session-HTTPSession association

The WebSocket Session is closed if the HTTPSession dies (due to invalidation, timeout, user logging out etc.) - but this happens only in case the WebSocket endpoint happens to be a protected resource (more on this in the next section). The container is not obliged to kill the underlying WebSocket connection in response of closing an HTTPSession if it was not protected to begin with

Integrating with Java EE Security

The WebSocket specification does not define it's own security primitives. It relies heavily on the web container (Servlet) security model can be broadly divided into declarative and programmatic styles (in terms of their usage patterns). We will explore these strategies in this sub-section

Recommended: for a deep dive into Servlet security, please refer chapters 13, 14 of the latest (3.1) Servlet specification

Declarative security

The declarative Java EE security model is driven by the web.xml descriptor. WebSocket endpoints can benefit from the following security features - Authentication, Authorization and Secure transport. Let's look at each one of these

Authentication

It is driven by the login-config element in web.xml descriptor and the possible values are - BASIC, FORM, DIGEST and CLIENT-CERT

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
</login-config>

To protect a WebSocket endpoint, the encapsulating resource (which acts as the WebSocket client) must be protected. A good example is a HTML page which uses the WebSocket Javascript client API to initiate a connection to the server endpoint. Once the authentication challenge is satisfied (depending upon the chosen method), the authenticated context is associated with the subsequent calls from the client to the WebSocket endpoint. Failure to authenticate results in a HTTP 401 error

Authorization

For declarative authorization to work, the <auth-constraint> settings (in tandem with other container configuration) is important. Post authentication, the authorization will kick in and only if the authenticated principal is found to be a member of the configured roles (this calculation will happen as per the application server specific setting), will the protected resource (and the WebSocket endpoint) be accessible. If not, the process will result in a HTTP 403 error

<auth-constraint>
 <description></description>
 <role-name>premium_users</role-name>
</auth-constraint>

Secure transport

This setting determines whether or not the communication channel is secure. From a WebSocket perspective, this is achieved by multiple configuration

	the original (protected) resource should be accessed over https

	the WebSocket URL must begin with wss (not ws) e.g. wss://we-all-chat/

	<user-data-constraint> configuration in web.xml should be configured

<user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
</user-data-constraint>

Programmatic

The programmatic aspects of security handling are taken care of by Session and HandshakeRequest objects. These are passive in nature i.e. these come into picture after the primary level of authentication (HTTP based) is over which provide methods to access the Principal object, determine whether the user is part of a specific role and whether the communication is taking place over an encrypted connection

HandshakeRequest

You can check the Principal as well as check for role membership of a user using the getUserPrincipal and the isUserInRole methods respectively

public class SecurityConfigurator extends ServerEndpointConfig.Configurator {

 @Override
 public void modifyHandshake(ServerEndpointConfig sec, HandshakeRequest request, HandshakeResponse response) {
 System.out.println("Endpoint accessed by user - "+ req.getUserPrincipal().getName());
 String roleName = "premium-users";
 System.out.println("Is user in role "+ roleName + " ? " + req.isUserInRole(roleName));
 }
}

Session

As with HandshakeRequest, the Session object also provides access to the authenticated Principal via the getUserPrincipal method along with the isSecure API to check whether the communication is taking place over secure (encrypted channel) i.e. wss

Next chapter ..

.. looks at some of the Concurrency semantics of common WebSocket APIs

 Lifecycle and Concurrency semantics

 Concurrency semantics

We have explored a lot of APIs components. For any serious application development, it's very important to understand the threading and concurrency aspects of both the application and the frameworks being used. This lesson covers these aspects and helps answer some common questions such as

	how many instances exist ?

	is an instance inherently thread safe?

	is concurrent access permitted (by the WebSocket implementation) ?

Session

Instances: there is a unique Session instance per client-server pair i.e. one instance of Session is created for a each client which connects to the WebSocket server endpoint. In short, the number of unique Session instances is equal to number of connected clients

Thread Safety: A Session is thread safe in spite of the fact that multiple threads are allowed to invoke a single instance of Session. This is because the the specification mandates implementations to ensure the integrity of the mutable properties of the session under such circumstances.

Endpoint

Instances: By default, there is one instance of an Endpoint per client unless this behavior is overridden by a custom Configurator implementation (see Configuration chapter for more details)

Example

If your application

	has two endpoints: E1, E2

	two clients connected to E1 and three clients connected to E2

then total number of Endpoint instances

	would be five, and

	will decrease to three in case all the clients connected to E1 disconnect

Thread Safety: The container will allow only one thread (per client) to enter the (lifecycle callback) methods of the server endpoint. In case there is a custom Configurator implementation which changes this semantic e.g. provide a singleton endpoint, then multiple threads will be able to invoke this instance concurrently and thread safety has to be built in explicitly

MessageHandler

Instances: In contrast to some of the other components, creation of a MessageHandler instance is controlled by the developer (not the container). Typically, each Session instance registers (via the addMessageHandler method) a separate instance of a MessageHandler i.e. there is a one-to-one relation b/w the peer who is sending a message (client), the Session (let's assume it's on the server end) and the MessageHandler instance (in this case it's responsible for receiving messages on the server side)

Thread Safety: The container will do as much as it can do ensure thread safety i.e. in case of MessageHandlers, it makes sure that only one thread enters a specific MessageHandler instance. In case the developer implementation is such that a single MessageHandler instance is registered to multiple Sessions, then concurrent access is inevitable and this needs to be accounted for

Encoder & Decoder

Instances: There is one instance of an Encoder/Decoder per connection (peer/client) for a specific server Endpoint

Thread Safety: A specific Endpoint instance itself is single-threaded (as mentioned above). In effect, what this means is that only thread can invoke an Encoder/Decoder instance specific to that endpoint

ServerEndpointConfig.Configurator & ClientEndpointConfig.Configurator

Instances: There is a single instance of a configurator (server/client) which exists per endpoint

Thread Safety: Both ServerEndpointConfig.Configurator & ClientEndpointConfig.Configurator are not thread safe since the container does not serialize concurrent access to a single instance. One needs to bear this in mind when writing a custom implementation of the same

WebsocketContainer & ServerContainer

Instances: A single instance exists per application

Thread Safety: It is thread safe in spite of the fact that multiple threads are allowed to invoke a single instance of the WebSocketContainer. This is because the the specification mandates implementations to ensure the integrity of the mutable properties of the session under such circumstances

Recap

Here is a table for quick reference

	Component
	Thread safe ?

	Session
	yes

	Endpoint
	yes (default only)

	Encoder & Decoder
	yes

	ServerEndpointConfig.Configurator &ClientEndpointConfig.Configurator
	No

	MessageHandler
	yes (default only)

	WebsocketContainer & ServerContainer
	yes

encoders.jpg
3. Returns the encoded form
back to the client

WebSocket runtime
2. Checks and
dispatches to an 1. Application sends a
Encoder (if configured) Java object back to the
remote peer (client)

decoders.jpg
\ 1. Sends a (text) message

WebSocket runtime

3. Returns control back
2. Checks and to the endpoint along
dispatchestoa_ with the decoded object
Decoder (if configured)

dc869284.png

websocket_endpoint_remoteEP.jpg
A Remote Endpoint Both Remote Endpoint
a5 well as an Endpoint

Session1

Session2

- -—

Session4.

Session3

cover-with-border.JPG
Java WebSocket API
handbook

A

Abhishek Gupta

cover.jpeg
@
J ava WebSocket

7 API Handbook 9

nav.xhtml

 		Introduction

 		Warm up

 		API Overview

 		Programming Model

 		Sending Messages

 		Receiving Messages

 		WebSocket Client API

 		Configuration

 		Deployment

 		Part-1: Tying in with the Java EE Platform

 		Part-2: Tying in with the Java EE Platform

 		Lifecycle and Concurrency semantics

kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

 var bc = document.getElementById('book-columns').style;
 bc.width = (window.innerWidth * 2) + 'px !important';
 bc.height = window.innerHeight + 'px !important';
 bc.marginTop = '0px !important';
 bc.webkitColumnWidth = window.innerWidth + 'px !important';
 bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+ window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */

function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}

