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Introduction: 

 

A cyber-physical system consists of a collection of computing devices  communicating with one another and interacting with the physical world via sensors and actuators in a feedback loop. Increasingly, such systems are everywhere, from smart buildings to medical devices to automobiles. 

This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the  power  grids  of  tomorrow.  This  book  will  be  useful  for  all  those  who  are  interested  in design  of  cyber-physical  systems,  be  they  students  or  researchers  in  power  systems,  CPS modeling software developers, technical marketing professionals. 

The  book  explains  how  formal  models  provide  mathematical  abstractions  to  manage  the complexity  of  a  system  design.  It  covers  both  synchronous  and  asynchronous  models  for concurrent computation, continuous-time models for dynamical systems, and hybrid systems for integrating discrete and continuous evolution. The role of correctness requirements in the design  of  reliable  systems  is  illustrated  with  a  range  of  specification  formalisms  and  the associated  techniques  for  formal  verification.  The  topics  include  safety  and  liveness requirements,  temporal  logic,  model  checking,  deductive  verification,  stability  analysis  of linear systems, and real-time scheduling algorithms. Principles of modeling, specification, and analysis  are  illustrated  by  constructing  solutions  to  representative  design  problems  from distributed algorithms, network protocols, control design, and robotics. 

 

This book provides the rapidly expanding field of cyber-physical systems with a long-needed foundational text by an established authority. It is suitable for classroom use or as a reference for professionals. 





Introduction to Cyber-Physical Systems Cyber-Physical Systems 

A  cyber-physical  or  cyber-physical  system  is  a  computer  system  capable  of  continuously interacting with the physical system in which it operates. The system is composed of physical elements  each  equipped  with  computational  capacity  and  closely  combines  the  so-called "three  C's":  computational  capacity,  communication,  and  control  capacity.  The  artificial structures  of  calculation  and  communication,  represented  by  the  prefix  "cyber",  form  a distributed system that interacts directly and dynamically with the real world around them. At the base of the system, the single element is the embedded device. Among the possible applications:  smart  grid,  intelligent  traffic  control,  home  automation,  cooperating  robots, telecommunications, motoring, avionics, intelligent factories. 

Cyber-Physical  Systems  (CPS)  are  integrations  of  computation,  networking,  and  physical processes. Embedded computers and networks monitor and control the physical processes, with  feedback  loops  where  physical  processes  affect  computations  and  vice  versa.  The economic and societal potential of such systems is vastly greater than what has been realized, and major investments are being made worldwide to develop the technology. 

Cyber – computation, communication, and control that are discrete, logical, and switched Physical – natural and human-made systems governed by the laws of physics and operating in continuous time. 

Cyber-Physical Systems – a system consisting of a computer system (the cyber system), a controlled object (a physical system) and possibly of interacting humans. 

“CPS will transform how we interact with the physical world just like the Internet transformed how we interact with one another.” [According to Fei Hu. CyberPhysical Systems. CRC press. 2013] 

CPSs  are  physical  and  engineered  systems  whose  operations  are  monitored,  coordinated, controlled, and integrated by a computing and communication core. 
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Fig:1 Overview of CPS The Cyber Physical system has derived a series of vital benefits. 

- First of all, a good Cyber Physical system manages to enable new business possibilities, with which  the  company  can  get  in  more  direct  contact  with  its  user  base.  The  information  is generated in real time and allows an instant reaction to changes dictated by the market. 

-  The  digitalization  of  the  product  takes  concrete  form  through  its  transformation  into  an object of high intelligence, which knows how to share information, processes, and services at all levels. 

-  Suppliers  and  customers  receive  net  benefits  because  they  can  integrate  their  data  and feedback into their respective production environment. 

- Other advantages concern the level of production, with information managed in the best way and general performances in continuous growth using a digital support. In this way, the product can be traced in every single step and the system properly analysed. 

-  A  level  Cyber  Physical  system  can  allow  easier  management  of  plants,  machinery,  and equipment, with a clear improvement in production efficiency and sustainability. 

- Finally, such a system speeds up the transfer of knowledge and guarantees constant support for work, allowing growth in terms of productivity. 

 

2.1  Emergence: 

 

Emergence: “a phenomenon of a whole at the macro-level is emergent if and only if it is of a new kind with respect to the nonrelational phenomena of any of its proper parts at the micro level”.

Emergent phenomena can be: 

• either beneficial or detrimental, and

• either expected or unexpected.
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Managing emergence is:

• Essential to avoid undesired, possibly                                         Fig:2 Emergent phenomena   

unexpected situations 

• Usually the higher goal of an SoS. 

2.2  Systems of Systems: 

 

System-of-Systems (SoS): An SoS is an integration of a finite number of constituent systems (CS) which are independent and operable, and which are networked together for a period to achieve a certain higher goal. 

Note: boundaries are defined for a period of time, then they may change. 

•   Directed SoS: An SoS with a central managed purpose and central ownership of all 

CSs. An example would be the set of control systems in an unmanned rocket. 

•   Acknowledged SoS: Independent ownership of the CSs, but cooperative agreements 

among the owners to an aligned purpose. 

•   Collaborative SoS: Voluntary interactions of independent CSs to achieve a goal that 

is beneficial to the individual CS. 

•   Virtual SoS: Lack of central purpose and central alignment. 

 

2.3 Managing Time: 

In the (Cyber-Physical) SoS paradigm we start being concerned with change, that depends on the progression of time. 

Time:  A  continuous  measurable  physical  quantity  in  which  events  occur  in  a  sequence proceeding from the past to the present to the future. 

Timeline: A dense line denoting the independent progression of time from the past to the future. 

• Instant: A cut of the timeline.

• Event: A happening at an instant.

Cycle: A temporal sequence of events that arrives at a final state related to the initial state, from which the temporal sequence of events can be restarted 

• An example for a cycle is the rotation of a crankshaft in an automotive engine.

• Although the duration of the cycle changes, the sequence of the significant events during a cycle is always the same. 

Time Standard: 

The physical second is the same in all UTC, TAI and GPS time standards 

• UTC (Universal Time Coordinated) is an astronomical time standard aligned with the 

rotation of the earth. • Since the rotational speed of the earth is not constant, it was decided to base the SI second on  atomic  processes  establishing  the  International  Atomic  Time  TAI  (Temps  Atomique International). 

– On January 1, 1958 at 00:00:00 TAI and UTC had the same value. 

– TAI is distributed world-wide by the GPS (Global Positioning System) satellites. 

• GPS represents the TAI time in weeks and full seconds within a week.

– The week count is restarted every 1024 weeks, i.e., after 19.6 years. 
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Fig: 3 Time Standard  

2.4 Coordinated Clocks: 

Clock: A (digital) clock is an autonomous system that consists of an oscillator and a register. Whenever the oscillator completes a period, an event (tick) is generated that increments the register.  
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Fig:4 Coordinated Clocks 

 

Reference clock: A hypothetical clock of a granularity smaller than any duration of interest and whose state is in agreement with TAI. 

 the reference clock has small granularity that digitalization errors are neglected, 

• the reference clock can observe every event of interest without any delay and 

• the state of the reference clock is always in perfect agreement with TAI time. Coordinated  Clock:  A  clock  synchronized  within  stated  limits  to  a  reference  clock  that  is spatially separated. 

 

2.5 Data and State: 

Systems-of-Systems  (SoSs)  come  about  by  the  transfer  of  information  of  one  Constituent System (CS) to another CS. 

You may think what is the information? How is information related to data? 

Data: A data item is an artefact, a pattern, created for a specified purpose. 

In cyber space, data is represented by a bit-pattern. To expand the meaning of the bit pattern we need to understand how to interpret the given bit pattern. 

Information: A proposition about the state of or an action in the world. 

Such data can be intended either for a receiver human or a machine. 

Human Receiver:  the explanation must describe the data using concepts that are familiar to 

the intended human receiver. 

Machine:  the  computer  instructions  tell  the  computer  system  how  the  data  bit-string  is partitioned and how they must be stored, retrieved, and processed. 

• the  explanation  of  purpose  is  directed  to  humans  who  are  involved  in  the  design  and operation of the SoS. Therefore, it should be understandable to the user/designer. 
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Fig 5: Data and information  

 

State: 

“The state of a system at a given instant is the totality of the information from the past that can have an influence on the future behaviour of a system.”

It is a data structure that characterizes the condition of a system at a given time. The concept of state is meaningless without a concept of time, since the distinction between past and future is only possible if the system is time- aware. The variables that hold the stored state in a state-full system are state variables. 

State Space: 

The state space of a system is formed by the totality of all possible values of the state variables within the domain. 

 

2.6 Actions and Behaviour: 

We can observe the dynamics of a system that consists of discrete variables by an event-based view or by a state-based view. 

In Event-based view: we observe the value of relevant state variables at the beginning of the observation and record all events (i.e. changes of the state variables). observe the time of occurrence of the events in a trace. The value of all state variables at any past instant is defined by the recorded trace. 

However,  if  the  number  of  events  that  can  happen  is  not  bounded,  the  amount  of  data generated by the event-based view cannot be bounded. 

Periodic  State-based View (Sampling): we observe the values of relevant state variables at selected  observation  instants  (the  sampling  points)  and  record  these  values  of  the  state variables in a trace.  The sampling interval is critical for acquiring a satisfying image of the system.  The duration between two observation instants puts a limit on the amount of data generated by the state-based view. 

Price to pay: events that happen between consequent samples may get lost. 

Sampling: The observation of the value of relevant state variables at selected observation instants. 
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Fig: 6  Sampling 

Behaviour: 

The behaviour of a system is of utmost interest to a user. Additionally, a system may exhibit an intended or an erroneous behaviour. The  timed  sequence  of  the  effects  of  input  and  output actions. A writing action and a producing output action have an observable effect 

Deterministic  Behaviour:  A  system  behaves  deterministically  if,  given  an  initial  state  at  a defined instant and a set of future timed inputs, the future states, the values, and instants of all future outputs are entailed. 

 

2.7 Communication: 

A communication system transports a message from a sender to one or more receivers within a given duration and with a high dependability. By high dependability we mean that by the end of a specified time window.  

•   The message should have arrived at the receivers with a high probability, 

•    the message is not corrupted, either by unintentional or intentional means, 

•   the security of the message has not been compromised, and that 

•    there might be other constraints (e.g., minimal energy consumption). 

Communication Protocol: The set of rules that govern a communication action. 
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 Fig: 7 Communication 

Message:  A  data  structure  that  is  formed  for  the  purpose  of  the  timely  exchange  of information  among  computer  systems.  a  message  combines  the  value  domain  and  of  the temporal domain. 

Datagram : A best effort message for the transmission of sporadic messages. 

PAR-Message  :  A  PAR-Message  (Positive  Acknowledgment  or  Retransmission)  is  an  error controlled transport service for the transmission of sporadic messages from a sender to a single receiver. 

TT-Message: A TT-Message (Time-Triggered) is an error controlled transport service for the transmission of periodic messages from a sender to many receivers where the send instant is derived from the progression of the global time. (TDMA). 

[image: ]

Fig: 8 Comparison of Messages 

 

2.8 Stigmergy: 

Constituent systems (CSs) that form the autonomous subsystems of SoSs can exchange information items via two different types of channels, the conventional communication channels for the transport of messages and the stigmergic channels that transport information via the change and observation of states in the environment. 
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Fig:9   Stigmergy        

 

Stigmergy: it is a mechanism of indirect coordination between agents or actions. The principle is that the trace left in the environment by an action stimulates the performance of a next action, by the same or a different agent. The  concept  of  stigmergy  has  been  first  introduced  in  the  field  of  biology  to  capture  the  indirect information flow among ants working together. Whenever an ant builds or follows a trail, it deposits a greater or lesser amount of pheromone on the trail, depending on whether it has found a prey or not. If a prey is found, successful trails end up with a high concentration of pheromone. The speed of the ants on a trail is a function of the pheromone concentration. Since the trail-pheromone evaporates (we  call  this  process  environmental  dynamics)  unused  trails  disappear  autonomously  as  time progresses.  
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Fig: 10 Trail-pheromone of stigmergy

Environmental Dynamics: Autonomous environmental processes that cause a change of state variables in the physical environment. 

 

2.9 Interfaces: 

Interactions over Channels: Central to the integration of systems are their interfaces points of interaction with each other and the environment over time. a channel represents this exchange of information at connected interfaces. 

Definition:  

Interaction: An interaction is an exchange of information at connected interfaces. 
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 Fig 11:  Channel of communication  

 

Channel: A  logical  or  physical  link  that  transport  s  information  among  systems  at  their connected interfaces. 

A channel is implemented by a communication system e.g., a computer network, or a physical transmission  medium.  It  is  affecting  the  transported  information,  e.g.,  by  introducing uncertainties.  The  channel  model  describes  all  channel  effects  relevant  to  the  transfer  of information. 

2.10   Evolution and Dynamicity: 

Large  scale  Systems-of-Systems  are  designed  for  a  long  period  of  usage.  Over  time,  the demands and the constraints put on the system will usually change, as will the environment in which the system is to operate. 

• Short-Term changes are referred as Dynamicity 

• Long-Term (planned) changes are referred as Evolution 

 

Dynamicity: The capability of a system to react promptly to changes in the environment. 

Evolution: Process of gradual and progressive change or development, resulting from changes in its environment (primary) or in itself (secondary). 

Although the term evolution in other contexts does not have a positive or negative direction, in SoSs evolution refers to maintaining and optimizing the system.  

More in detail, evolution is needed to cope with changes. Managed evolution refers to the evolution guidance.  The goal can be anything like performance , efficiency , etc. 

Manage d SoS evolution: Process of modifying the SoS to keep it relevant in face of an ever-changing environment. 

Reconfigurability: The capability of a system to adapt its internal structure in order to mitigate internal failures or to improve the service quality. Unmanaged SoS evolution: Ongoing modification of the SoS that occurs because of ongoing changes in (some of) its CSs. 

Authority:  The  relationship  in  which  one  party  has  the  right  to  demand  changes  in  the behaviour or configuration of another party, which must conform to them. 

(Collaborative)  SoS  Authority:  An  organizational  entity  that  has  societal,  legal,  and/or business responsibilities to keep a collaborative SoS relevant to its stakeholders. To this end it has authority over RUI specifications and how changes to them are rolled out. 

 

2.11   System Design and Tools: 

First of all, will discuss about SoS Architecture; the problem is that some SoS requirements may not be fulfilled. For that Solution is the architecture of a system can have some variants or even can vary during its operation. 

•   Evolvable  architecture:  it  is  adaptable  and  then  is  able  to  incorporate  known  and 

unknown changes in the environment or in itself. 

•   Flexible architecture: it can be adapted to a variety of future possible developments. 

•    Robust architecture: it performs well under a variety of possible future developments. 

The architecture then involves several components which interact with each other through interfaces. 

Design Process: During the development lifecycle of a system, we start from conceptual thoughts which are then translated into requirements, which are then mapped into an  architecture. 

Design: The process of defining an architecture, components, modules, and interfaces of a system to satisfy specified requirement. 

Modularity: Engineering technique that builds larger systems by integrating modules. 

Design for evolution: Exploration of forward compatible system architectures, i.e. designing applications that can evolve with an ever-changing environment. 

Design  for  evolution  aims  to  achieve  robust  and/or  flexible  architectures.  Principles  of evolvability include modularity, updateability, and extensibility. In the context of SoS, design for  evolution  means  that  expected  changes  should  be  accommodated  without  any  global impact on the architecture. ‘Expected’ refers to the fact that changes will happen, it does not mean that these changes themselves are foreseeable. 

Design for testability: The architectural and design decisions to enable easy and effective testing of the system. 

 

2.12     Dependability and Security: 

System dependability: 

For many computers for many computer-based systems, the most important based systems, the most important system property is the dependability of the system. The Dependability of the system. The dependability of a sys the dependability of a system reflects the user term reflects the user’s degree s degree of trust in that system. It reflects the extent of the user reflects the extent of the user’s confidence that it confidence that it will operate as users will operate as users expect and that it expect and that it will not will not ‘fail’ in normal use. in normal use. Dependability covers the related systems attributes of related systems attributes of  reliability,  availability,  and  security.  These  are  all  inter  security.  These  are  all interdependent. 

Importance of dependability: 

System failures may have widespread effects with large effects with large numbers of people affected  by  the  failure.  numbers  of  people  affected  by  the  failure.  Systems  that  are  not dependable and are unreliable, and are unreliable, unsafe, or insecure may be rejected by their users. unsafe or insecure may be rejected by their users. The costs of system failure may the costs of system failure may be very high if the failure be very high if the failure leads to economic  losses  or  physical  damage.  leads  to  economic  losses  or  physical  damage. Undependable systems may cause information loss with s may cause information loss with a high consequent recovery cost. a high consequent recovery cost. 

Causes of failure:  

Hardware failure 

• Hardware fails because of design and manufacturing errors or Hardware fails because 

of design and manufacturing errors or because components have reached the end of their natural life. because components have reached the end of their natural life. 

Software failure 

• Software fails due to errors in its specification, design or Software fails due to errors 

in its specification, design, or implementation. implementation. 

Operational failure 

• Human operators make mistakes. Now perhaps the largest Human operators make 

mistakes. Now perhaps the largest single cause of system failures in socio-technical systems. technical systems. 

Dependability Overview:  

Dependability of a system is the ability to deliver service that can justifiably be trusted”
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Fig: 12 Dependability Overview 

Dependability: Threats 
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Fig: 13  Error  

 

Dependability: Attributes: 

•   Availability: Readiness for service. 

•   Reliability: Continuity of service. 

•   Safety:  The  absence  of  catastrophic  consequences  on  the  user(s)  and  on  the 

environment. 

•   Confidentiality: The absence of unauthorized disclosure of information. 

•   Integrity: The absence of improper system state alterations. 

•   Maintainability: The ability to undergo modifications and repairs. 

•    Robustness:  Dependability  with  respect  to  external  faults  (including  malicious 

external actions). 

[image: ]

 

Fig:14   Dependability: Attributes: 

The means to attain dependability (and security) are grouped into four major dependability categories: 

 

•    Fault prevention: The means to prevent the occurrence or introduction of faults.

•    Fault tolerance: The means to avoid service failures in the presence of faults.

•    Fault removal: The means to reduce the number and severity of faults. 

•  Fault forecasting: The means to estimate the present number, the future incidence, and the 

likely consequences of faults.
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Fig 15:  Dependability: Means 





 Interfaces in Evolving Cyber-Physical Systems of Systems (CPSoSs) 





In the past twenty years the view on how we engineer, operate and evolve independently owned and managed Cyber-Physical Systems (CPSs) in order to realize and optimize complex economical  processes  has  started  to  change.  Advances  in  telecommunications  and automation accompanied by standardization efforts resulted in  sophisticated cross-domain information  and  communication  technologies  (e.g.,  the  Internet  of  Things  (IoT),  elastic processing and storage clouds, Web Services) that allow for the integration of more and more existing  and  previously  technologically  isolated  CPSs.  These  legacy  systems  became cooperating  Constituent  Systems  (CSs)  of  evolving  Cyber-Physical  Systems-of-Systems (CPSoSs) and – by their physical and cyber interaction – give rise to new emergent services that cannot be realized by any single or small number of CSs alone. 

One prototypical example of a CPSoS is a smart grid  where the interacting CPSs (producers, consumers,  and  prosumers  where,  for  example,  electricity  consuming  households  are equipped with electricity producing photovoltaic power plants) cooperate to optimize energy distribution  with  respect  to  stability,  dependability,  and  costs.  A  smart  grid  handles  high dynamicity as it constantly reconfigures to react to changed energy production and demand conditions. Further they need to support evolution during runtime as the service of the smart grid is adapted or extended towards new  requirements or technological advances. Finally, smart grids represent critical infrastructure that may in the event of failure cost human lives or  cause  high  economical  costs.  Hence  a  smart  grid  needs  to  fulfil  high  expectations concerning its dependability, including security and safety. 

Central to the integration of CPSs as CSs of evolving CPSoSs are their interfaces, i.e., their points of interaction with each other (direct interaction) and with their common environment (indirect interaction) over time. The identification, proper specification, standardization, and managed modification of these interfaces are of  paramount importance in  order to tackle CPSoS  key  challenges  related  to  emergence,  dynamicity,  evolution  and  dependability. Specifically, time-sensitive physical interactions and the role of delays in emergence impose the requirement of properly taking time for all kinds of interactions in CPSoSs into account. To this end this work assumes the availability of a sparse global time base that can be used by all involved CSs to temporally coordinate interactions at their interfaces. We call an SoS where its CSs have access to such a global time base a time aware SoS. 

Concept of Overlapping Entourages of CSs: 

In  physical  environment  the  concept  of  location/proximity  essential,  physical  interactions often depend on distance -> force fields 

•    CS entourage helps to limit size of involved environmental models 

• Overlapping  entourages  of  CSs  allow  for  considering  stigmergic  information  flows 

among CSs 
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Fig :16 Overlapping entourage of CPSs enabling physical interaction 

 

3.1 Interface Layers: 

Interface  layers  allow  the  discussion  of  system  interface  properties  and  their  definition  in interface  specifications  at  different  abstraction  levels  and  modeling  viewpoints.  In  the following, three interface layers are introduced:  the cyber-physical, the informational, and the service layer. The informational layer is an abstraction over the cyber-physical one, while the service layer structures the behavior of a system in a set of capabilities. 

Interface  layers  enable  discussion  of  interface  properties  and  their  definition  in  interface specifications:  

•   At different abstraction levels/modeling viewpoints 

•   Example: Future Combat System Network, see figure on the right, 

•   https://en.wikipedia.org/wiki/FCS_Network 

Cyber-physical Interface Layer 

At the cyber-physical layer information is represented by data items (e.g., a bit-pattern in cyber space, or properties of things/energy in the physical world) that are transferred among interacting systems during the Interval of Discourse (IoD). While in this layer there is a distinction between cyber- and physical channels, both share many properties, because cyber channels are implemented by physical channels. Consequently, any interaction over cyber-physical channels is ruled by the progression of time  and  fundamentally  constrained  by  the  speed  of  light  and  distance  among  communicating systems. Time is an elemental property of cyber- and physical interfaces and must be considered at all  interaction  abstractions.  Important  properties  of  the  cyber-physical  layer  are:  signals  (i.e., prearranged  representation  of  information),  transmission  medium,  characteristics  of  connectors, frequencies, bit rates, energy levels. 

•   Level of messages and things/energy 

•    Interactions realized by concrete technology, and sensors/actuators 

Interface properties at the cyber-physical layer are defined in the Cyber-Physical Interface Specification  (CP-Spec)  which  consists  of  the  two  disjoint  specifications:  Interface  Physical Specification (P-Spec) and the Interface Message Specification (M-Spec). 

Informational Interface Layer 

This  interface  layer  concerns  the  timely  exchange  of  Itoms  by  unidirectional  channels  across interfaces. It provides an abstraction over cyber-physical channels to context-independent [27], direct and indirect information flows among systems and  their environment. The abstraction over  cyber-physical channels removes any lower-level details of the interactions that is not relevant for describing the information processing behavior of CSs. Itoms at this layer are maximally refined and explicitly specified, i.e., their meta data is available to the extent necessary for all CSs that are possibly involved with  these  Itoms.  Their  realization  at  the  lower-level  cyber-physical  layer  must  adhere  to  the semantics specified at the informational layer, otherwise the abstraction is invalid and there is risk of property  mismatch  among  interacting  CSs.  All  for  the  CPSoS  service  relevant  cyber-physical interactions must be considered at the informational layer. Otherwise there are hidden channels at the  informational  layer  which  might  compromise  security,  safety,  or  may  lead  to  unexpected behavioural detrimental emergence. 

 

•   Level of Itoms 

• Abstraction over cyber-physical interactions and associated context dependencies 

•   Focus on direct and indirect information flows 

c: 

At  informational  layer:  CS  car  notifies  other  cars  about  its  sudden  change  of  velocity  to immediate stop by Itoms related to ‘emergency brake’

Possible implementations at cyber-physical layer 

•   Stigmergic channel among braking car and cars behind 

• Stigmergic  channel  realized  by  brake  light  at  sender  and  human  operators  of  cars 

behind 

•   Wireless car2car cyber channel 
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Fig :17 Example: Emergency Braking

 

 

Direct vs. Indirect Communication: 

Direct communication 

•   Itoms transferred unidirectionally from one sender to one or more receiver CSs 

•   Simple channel model (input, delay/jitter, output) 

•   Behavior of interaction within interacting CSs

Indirect communication 

•    Itoms of sending CS affect state of common environment of interacting CSs 

•    Environmental dynamics influence state as well 

•    Receiving CSs can (partially) read state of common environment 

• Received Itoms reflect totality of all influences carried out on state in common environment 

• Senders and receivers need to share conceptual context such that receivers can form higher-

level Itoms, i.e., access purpose/intention of senders 

•  Indirect channel can be modeled by an Environmental Constituent System (ECS) that realizes 

common environment of interacting CSs. 

Not all systems involved in an interaction need to be modeled explicitly as long as their effects are considered as environmental dynamics. Indirect communication often closes causal feedback loops 

 

Service Interface Layer 

At the service layer, the interface exposes the system behavior structured as capabilities. In contrast to the informational layer, Itom channels are not individually described at the service layer, but only the interdependencies between the exchanged Itoms are specified. If a system with a need is matched with  a  system  that  offers  the  needed  capability,  the  interdependencies  must  be  resolved  in  the information interface layer with concrete Itom channels. Hence, at the service interface layer there is an instantiable collection of Itom channels per offered capability where generic properties of the Itom channels and their interaction pattern are described. 

Systems may provide many services through their interfaces provided that their internal structure can rely on required services. This concept is a fundamental principle in the Service-oriented Architecture (SoA)  where components in need of capabilities and components that offer capabilities are brought together by means of a service registry, service discovery, and service composition. A service provider is a component that provides a service, while a service consumer is a component that uses a service. The service registry is a repository of Interface Service Specifications (S-Specs) of capabilities that can be provided by a service provider. Service discovery is the process where service consumers match their  service  requirements  against  the  available  S-Specs  in  a  service  registry.  Finally,  service composition is the  integration of multiple  services into a new service. The  benefits of this service-based view are twofold: 

 

First, there is an immediate reduction of complexity because one does not need to regard component relations on the basis of single Itom channels anymore. Service consumers can discover services they depend on, and a scheduler can instantiate the necessary unidirectional Itom channels automatically. 

Second,  the  coupling  of  components  (integrated  in  one  system)  is  loose,  because  the  actual constituents of composed services are unimportant background details in the service-based view. This freedom in service composition allows for self-organized system reconfiguration such that the system can perform optimally in case new services become available and previously active services become un-available. 

•   Level of services, motivated by benefits of Service-oriented Architecture (SoA) 

•    Abstraction over individual information channels 

•     Useful for discussing and managing CPSoS dynamicity and evolution 
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Fig : 18 Interface Layers 

3.2  Relied Upon Interface (RUI) 

This  section  discusses  the  Relied  Upon  Interface  (RUI)  model  at  the  previously introduced interface layers, also showing how interface layers are connected. 

“RUI Connecting Strategy: Part of the interface specification of RUIs is the RUI connecting strategy  which  searches  for  desired,  w.r.t.  connections  available,  and  compatible  RUIs  of other  CSs  and  connects  them  until  they  either  become  undesirable,  unavailable,  or incompatible.” [Ama16].

Example: In the Global Automated Teller Machine (ATM) network a cardholder together with smartcard-based payment card form a CS that is most of the time disconnected from other CSs. The RUI connecting strategy of the payment card CS is influenced by cardholder’s need for cash (desire), nearby located and operational ATM terminals (availability), and whether the ATM terminal accepts the payment card (compatibility). 

Roles of the Relied Upon Interface (RUI):  

• System boundary: Structural decomposition of CPSoS into Constituent Systems (CSs) 

at RUIs 

• Complexity  firewall:  RUI  specification  hides  possibly  complex  behavior  of  CS  from 

CPSoS and vice versa 

•  Information transfer: All for the entire CPSoS operation relevant interactions occur at 

RUIs 

• Emergence:  Identified  purpose  of  CPSoSs  is  to  realize  emergent services  which  are 

located in CSs interactions at RUIs 

• Dynamicity:  Short-term  changes  (e.g.,  number  of  CSs  varies,  faults)  need  to  be 

considered in RUI specification 

• Evolution:  Long-term  changes  (e.g.,  new  emergent  CPSoS  services)  affect  how  RUI 

specifications are updated 

Interfaces of a Constituent System: 

Interfaces  within  Constituent  Systems  (CSs)  that are  not  exposed  to  other  CSs  or  the  CS’s environment  are  called  internal  interfaces.  A  CS  is  embedded  in  its  environment  by  its external interfaces. When applying the principle of separation of concerns, there are three subtypes of external interfaces: Time-Synchronization Interface (TSI), Relied Upon Interface (RUI),  and  utility  interfaces.  The  TSI  enables  external  time-synchronization  to  establish  a global timebase for realizing time-aware CPSoS. Most important for the integration of a CS in a CPSoS is its RUI which is the interface the emergent and operational CPSoS service relies upon. The optional utility interface is an interface of a CS that does not need to be considered for the operational service of CPSoSs. 

The purposes of the utility interfaces are to  configure and update the CS,  diagnose the CS, and  let  the  CS  interact  with  its  remaining  local  environment  which  is  unrelated  to  the operative service of the CPSoS. These three purposes justify the introduction of the following utility interfaces: Configuration Interface (C-Interface), Diagnostic Interface (D-Interface), and Local I/O Interface (L-Interface). Below figure shows all external interfaces of a CS. In time aware CPSoSs, the CSs have access to a synchronized global time base with bounded precision. Such a global time base can be established by external clock synchronization over the TSI to, for example, a Global Navigation Satellite System (GNSS) like GPS. Time-awareness allows  for  temporally  ordering  observed  events  and  temporally  correctly  executing  timely available  actions  in  a  distributed  setting.  Naturally,  in  case  the  communication  or computation  subsystem  or  both  fail  to  deliver  or  execute  an  action  at  its  deadline,  the execution cannot be guaranteed to be temporally correct. However, in a time-aware CPSoS the temporal order of observed events – no matter which CS observed them – can be always determined 
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Fig :19   Interfaces of a Constituent System (CS)

 

Interface Layers of RUIs: 

 

Examination of RUIs at the introduced interface layers. Present RUI model at the different layers. Show how RUI interface layers are connected . 

Focus  on  informational  interface  layer.  Most  suitable  interface  layer  to  study  CPSoS properties  concerning  emergence,  dynamicity  and  evolution.  Propose  a  time-aware execution semantics of RUI model to study CPSoS properties. 

RUI at the Cyber-Physical Layer: 

Below figure gives an overview of cyber-physical interactions at the RUIs of two CSs that are externally time-synchronized and have access to a global timebase. The RUI consists of two sub-interfaces: the Relied Upon Message Interface (RUMI) a cyber interface, and the Relied Upon Physical Interface (RUPI). 
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Fig: 20  RUI at the Cyber-Physical Layer: 

 

RUI at the Informational Layer: 

The informational layer abstracts over informational context-sensitivity and focuses on direct and  indirect  information  flows  among  CSs.  An  indirect  channel  (cyber  or  stigmergic)  is modelled by instantiating an additional Environmental CS (ECS). 

Unifies all physical and cyber interactions of cyber-physical layer by abstracting over  

•  Concrete  implementation  technology  (e.g.,  used  sensors,  actuators,  message 

transport) 

• Informational context-sensitivity by using explicitly defined Itoms (object + meta data) 

 Focus on direct and indirect information flows among CSs 

•  Indirect channels modeled by instantiation of an additional Environmental CS (ECS) 

Informational layer useful for study of CPSoSproperties during design and evolution 

•  Emergence: informational layer captures all causal relations among CS interactions, 

allowing the analysis of emergence 

– Requires RUI specifications and associated interface models, and environmental model – In case of observed differences to cyber-physical layer (monitored actual interactions and actual occurrence of unpredicted emergence): possible presence of hidden channels 

– Hidden channel is latent information flow among CSs not considered in the models 

•  Managed dynamicity: Investigate prompt CPSoSreactions to changes in environment. 

RUI at Service Layer: 

At the service interface layer, we introduce Relied Upon Services (RUSs) that are provided at the RUI of a CS. They are described in the Service Specification (S-Spec) of the RUI as a set of RUS-related  operations.  A  service  operation  is  a  behavioral  abstraction  over  one  or  more unidirectional Itom channels. It groups them together and defines their interaction pattern, i.e.,  the  sequence  of  all  operation-related  Itoms  over  all  channel  endpoints  from  the perspective of the service provider. 

Cyber-Physical interactions realized by some concrete technology 

Example: TCP/IP stack, physical location of CS on street influenced by actuators 

Cyber Channels (CC) and Physical Channels (PC): 

• CC 1 and CC 2 are direct cyber channels of the same RUS Example: a database lookup 

service realized by request- response channels) 

 

• CC 3 and CCs originating from CS3 to n-1 are writers of an indirect channel, CS n is 

reader which observes shared memory via CC 4 Example: writers publish whether an alarm occurred, CS n is alarm monitor. 

• Stigmergic channel (green) where all CSs are able to influence physical state variables 

and also observe them Example: position of CSs on a street. 
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Fig: 21 Connected RUS Interface Layers, Example Informational Layer 

3.3     Handling Evolution at RUIs 

 

Evolution  of  Cyber-Physical  Systems-of-Systems  (CPSoSs)  concerns  design  modifications introduced into the interacting Constituent Systems (CSs) that are triggered by changes in the CPSoS environment. Changes of the CPSoS environment might include, for example, advances in technology, or are changes in societal or business needs. Often these needs originate from the  desire  to  change  a  service  towards  increased  efficiency  or  the  wish  to  introduce  new services  altogether.  Ultimately,  evolutionary  changes  to  the  design  and  consequently operation of the CPSoS should counteract obsolescence in order to keep the CPSoS relevant, increase  its  business  value  for  involved  stake  holders,  while  not  deteriorating  already provided and still needed services. 

Local Evolution concerns changes within CS not affecting RUI 

•    No modification of RUI specification 

•    Important to optimize CS internals 

•    Allows preparation of a global evolutionary step 

•  Harbors risk of introducing hidden channels, i.e., unconsidered interactions, among 

CSs which could lead to emergent effects 

•  Strict  adherence  to  RUI  specification  required  which  forbids  any  undefined 

interactions 

Global Evolution affects interactions of CSs 

•    Change of RUI specification and how changes come into effect 

•  To support continuous evolution, changes to CPSoS carried out in evolutionary steps 

of limited scope with preferably predictable effects 

•  Global  evolution  can  be  seen  as  a  tree-like  search  towards  adaptation  to 

environmental changes, similar to Darwin and natural selection in biological evolution 





Emergence in Cyber-Physical Systems of Systems (CPSoSs) 

4.1   Emergence: 

Emergence  advocates  simple  communication  models,  autonomy,  and  independence, enhancing  robustness  and  self-stabilization.  High-quality  distributed  applications  such  as autonomic systems must satisfy the appropriate non-functional requirements which include scalability, efficiency, robustness, low-latency, and stability. 

A phenomenon of a whole at the macro-level is emergent if and only if it is new with respect to the non-relational phenomena of any of its proper parts at the micro level. 

Example: positive emergence The ATM network results from the combination of smaller networks, standardized interface, agreements. 

Example:  detrimental  emergence  Blackouts  may  result  from  the  independent  and uncoordinated access of multiple consumers to an energy supplier. 
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Fig: 22  Example of Emergence in physical world 

We design SOSes to obtain emergent behaviors that cannot be observed in any individual CS so emergence is the very fundamental essence of our design. 

In our Mental Models we wish to be able to manage emergent phenomena consciously and master their appearance 

As Emergent properties may have beneficial or detrimental effects  

• Govern and manage the emergence so to have only ‘good’ emergence

 

Multi-Level Hierarchy: 

The understanding and analysis of the immense variety of things and their behavior in the non-living  and  living  world  around  us  requires  appropriate  modeling  structures.    Such  a modeling  structure  must  limit  the  overall  complexity  of  a  single  model  and  support  the stepwise integration of a multitude of different models. One such widely identified modeling structure is that of a multi-level hierarchy. 

Multi-Level Hierarchy – 2: 

Each level of a hierarchy possesses its unique set of laws. 

• The phenomenon of emergence is always associated with levels of a multi-level hierarchy. 

If there are important systems in the world that are complex without being hierarchic, they may to a considerable degree escape our observation or understanding (Simon, 1969, p.219] 

Holon: the Entity of a Two-Levels Hierarchy:

The  term  holon  was  introduced  to  refer  to  the  two-faced  character  of  an  entity  that  is considered a whole at the macro level and an ensemble of parts at the micro level. 
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Fig: 23 The Entity of a Two-Levels Hierarchy 

The word holon is a combination of the Greek “holos”, meaning all, and the suffix “on” which means part. Viewed from the the macro level, a holon is a stable whole that can be accessed by  an  interface  across  its  surface  (green  line).  Viewed  from  the  micro-level,  a  holon  is characterized by a set of confined interacting parts. 

Recursion in a Multi-Level Hierarchy:

A  multi-level  hierarchy  is  a  recursive  structure  where  a  system,  the  whole  at  the  level  of interest (the macro-level), can be taken apart into a set of sub-systems, the parts (holons), that interact statically or dynamically at the level below (the micro-level).  Each one of these sub-systems can be viewed as a system of its own when the focus of observation is shifted from the level above to the level below.  This recursive decomposition ends when the internal structure of a sub-system is of no further interest.  We call such a sub-system at the lowest level of interest an elementary part or a component.  
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Fig : 24  Multi-level Hierarchy (Holarchy) 
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Fig :25  Holarchy relations 

From above example we can derive the level of relations , 3 main points we need to remember  

(i)         Containment: The Whole contains or consists of the parts, forming a nested hierarchy. 

Example: Hierarchy of atoms, molecules, cells . . .  

(ii)        Control: The Whole constrains the Behavior of the parts Example: Blinking of Fireflies – 

Ants - Termites  

(iii)       Description: The Parts can be described at different levels of abstraction 

It is important to note that the different level relations are non exclusive. From the point of view of behavior, the control hierarchy is most relevant. 

Control Hierarchy: 

To support the simplification at the macro-level and establish a hierarchical control level, a control hierarchy must 

on the one side constrain some degrees of freedom of the behavior of the parts but  

on the other side must abstract from, i.e. allow some degrees of freedom of behavior to the parts at the micro-level.  

The  delicate  borderline  between the  constraints from above  on the  behavior of the  parts and  the freedom  of  the  behavior  of  the  micro-parts  is  decisive  for  the  proper  functioning  of  any  control hierarchy. 

Interaction Relations: 

Physical Interactions: come about by force fields, (e.g, electromagnetic or gravitational fields). They are synchronic. Physical structures (e.g, a molecule) are mainly formed by force fields.  

Informational Interactions: come  about the  exchange  of Itoms, either  across message  channels or stigmergic  channels.  They  are  diachronic.  Emergent  behavior  in  systems-of  systems  is  caused  by informational interactions. 

Physical interactions are characterized by 

• distance among the parts,

• force fields among the parts,

• relaxation time or frequency of interactions among the parts.

When we move up the levels of a material hierarchy the distances increases, the force-field decrease and the frequency of interactions decrease. 
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Fig: 26 Informational Interactions 

 

Definition of Emergence: 

The  essence  for  the  occurrence  of  emergent  phenomena  at  the  macrolevel  lies  in  the organization of the parts, i.e., in the relation among parts caused by physical or informational interactions among the parts at the micro-level. 

 

“A phenomenon of a whole at the macro-level is emergent if and only if it is of a new kind with respect to the non-relational phenomena of any of its proper parts at the micro level.”

Conceptual Novelty at the macro-level relative to the world of concepts at the micro-level is thus the landmark of our definition of emergence. 
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Fig:27  Types of Emergence 

 

Emergence is our Friend, not our Enemy: 

The proper conceptualization of emergent phenomena can lead to an abrupt simplification at the next higher Level. 

Examples:  

•   Fault-Tolerant  Distributed  Clock  Synchronization ->  leads  to  the  new  concept  of  a 

Dependable Global Time 

•   The  interactions  among  set  of  properly  connected  transistors ->  A  new  whole  the 

behavior of which can be described by the concepts of Boolean Logic. 

• A multitude of gas atoms leads to a new whole that can be characterized by the new 

concept pressure. 

This  project  will  address  a  case  study  on  distributed  mutual  exclusive  access  to  a  shared resource.  To  implement  exclusive  access  to  a  shared  resource,  the  project  is  created  in MATLAB using the Simulink framework. The name of the project is Smart Farm. In this project, in which a fleet of autonomous robots performs a series of tasks, such as preparing the soil, watering the plants, producing the harvested plants. 

 

4.2 Examples 

 

Examples of Explained Emergence: Deadlock Example: Seat Reservation  

Consider a seat reservation system in a movie theatre. In ideal world no failure for the system. 
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Fig : 28  Example of dead lock

If  only  a  finite  number  of  reservation  processes of  Type  A  are  executed  concurrently.  the system  will  operate  flawlessly  forever.  The  same  will  happen  if  only  a  finite  number  of reservation  processes  of  Type  B  execute  concurrently.  However,  if  a  finite  number  of processes of Type A and processes of Type B operate concurrently, the system will sometimes sop forever (deadlock) . Stopping forever is the novel phenomenon is that is not happening if processes of Type A  or processes of Type  B operate in isolation. 

In the program sketch of above figure there are two semaphore variables, S:"money"" and S"seat"'  initialized  with  the  value  /.  Whenever  a  process  executes  a  Wait  operation  on  a semaphore variable, the process is only allowed to enter the following Critical Section if the value of the semaphore variable is positive al the stare of execution of the atomic operation Wait.  The atomic operation Wait tests the value of the designated semaphore variable. In case the test gives a positive value, it decreases the value of the semaphore variable by I and enters the Critical Section. Otherwise it waits until! the value of the semaphore variable gears positive .The semaphore operation Signal , executed at  the end of a Cri1icol Section, increases the value of the designated semaphore variable by l and thus enables another waiting  process to enter to the Critical Section. 

In  above  figure,  the  semaphore  S"money”  ensures  that  i  n  the  following  Critical  Section, dealing  with  the money only  a  single  process  can  execute  al  an  instant.  Likewise.  the semaphore variable S'seat ' ensures that in the following Critical Section dealing with the seat allocation only a single process can execute at a time. As long as processes of type A execute concurrently, the execution of Wait(S”seat”)  is always followed by Wait(S”seat”)  . 

However, if the executions of processes of  Type A and Type B are interleaved,  then it can happen  that  a  process  of  Type  A  enters  the  Critical  Section  protected  by  S"money"'  and, before the process of Type  A executes the operation  Wait(S"seat') a process of Type B enters its  critical  Section  protected  by  S'"seat".  From  now  on,  a  deadlock  is  u  unavoidable  if  the money and the seat are available since both processes must wait forever on the release of the respective following ng Critical Section.  

The observed phenomenon of deadlock fulfils the requirement of an emergent phenomenon: 

• The phenomenon deadlock-halting- forever -is novel with respect to the simple world 

of an individual processes, where the notion of halti11g forever is not present. 

• There  is  downward  causation.  The  system  of  concurrently  executing  processes 

constraints  the  execution  of  an  individual  process  by  indirect  communication  channels established by the semaphore variables. 

 

Gligor (and others) considers the occurrence of a deadlock in a computer system an emergent phenomenon. 

Let us assume that in the small world of the micro-level everything is perfect—the notion of permanent halt does not exist at the micro-level but appears at the macro-level. 

•    What is the novel phenomena? Permanent halt 

•    Is Deadlock explainable? Yes 

•  Downward  causation  is  realized  by  the  indirect  information  Transfer  (file-based 

information flow) via the semaphore variables 

•  Is Deadlock predictable? No, neither in praxis nor in theory due to the indeterminism 

caused by simultaneity. 

 

4.3   Consequences for System Design 

Emergent  phenomena  in  a  System-of-Systems  are  caused  by  interactions  among  the Constituent  Systems  that  close  a  causal  loop  such  that  the  ensemble  of  parts  at  the macrolevel effects the behavior of an individual part at the microlevel. 

In order to detect actions that can lead to emergence 

• Expose all Information Flow Channels

• Search for Causal Loops

• Identify Capacity Limits

• Analyze Dynamic Mechanisms

Cyber-Physical Constituent systems interact via two types of channels  

• Channels at Cyber level that transport messages and can be observed 

• Channels in the Physical environment Stigmergic channels

Causes of unexpected Emergence: 

We believe all come down to our ignorance 

•   We are ignorant about the full set of system’s behaviors even at micro level (CS level) 

•   Things exacerbate when scaling to SoS…

•   More particularly, we may be ignorant about 

The complete set of requirements we need to address in the SoS 

• The complete set of behaviors of each CPS

• The complete set of interactions among the CPSs 

• The impact of the environment.

So, in Conclusion we can say that Emergence is always associated with levels of a multi-level hierarchy.  A phenomenon of a whole at the macro-level is emergent if and only if it is of a new kind with respect to the non-relational phenomena of any of its proper parts at the micro level. We conjecture that in a multi-level hierarchy emergent phenomena can only appear if there is a causal-loop formed between the parts at micro-level that forms the whole and this whole (i.e., the ensemble of parts) that constrains the behavior of the parts at the micro-level. The proper conceptualization of the new phenomena at the macro level is at the core of the simplifying power of a multi-level hierarchy with emergent phenomena. 





Distributed Coordination 





5.1 Event Ordering 

 

In a centralized system, we can always determine the order in which two events occurred, since the system has a single common memory and clock. Many applications may require us to determine order. For example, in a resource allocation scheme, we specify that a resource can be used only after the resource has been granted. A distributed system, however, has no common memory and no common clock. Therefore, it is sometimes impossible to say which of two events occurred first. The happened-before relation is only a partial ordering of the events in distributed systems. 

Since  the  ability  to  define  a  total  ordering  is  crucial  in  many  applications,  we  present  a distributed  algorithm  for  exterfding  the  happened-before  relation  to  a  consistent  total ordering of all the events in the system. 

Since we are considering only sequential processes, all events executed in a single process are totally ordered. Also, by the law of causality, a message can be received only after it has been sent. Therefore, we can define the happenedbefore relation (denoted by -») on a set of events as follows (assuming that sending and receiving a message constitutes an event): 

 1. If A and B are events in the same process, and A was executed before B, then A -» B. 

2. If A is the event of sending a message by one process and B is the event of receiving that message by another process, then A —»• B. 3. If A -> B and B -» C then A -• C. Since an event cannot happen before itself, the -> relation is an irreflexive partial ordering. 

 If two events, A and B, are not related by the —> relation (that is, A did not happen before B,  and  B  did  not  happen  before  A),  then  we  say  that  these  two  events  were  executed concurrently. In this case, neither event can causally affect the other. If, however, A  -> B, then it is possible for event A to affect event B causally. 

 

Happened-before relation (denoted by →).

✦ If A and B are events in the same process, and A was executed before B, then A → B.

✦ If A is the event of sending a message by one process and B is the event of receiving that message by another process, then A → B.

✦ If A → B and B → C then A → C.
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Fig: 29 Relative Time for Three Concurrent Processes 

Implementation of →

■ Associate a timestamp with each system event. Require that for every pair of events A and B, if A → B, then the timestamp of A is less than the timestamp of B. 

■  Within  each  process  Pi    a  logical  clock,  LCi  is  associated.  The  logical  clock  can  be implemented as a simple counter that is incremented between any two successive events executed within a process. 

■ A process advances its logical clock when it receives a message whose timestamp is greater than the current value of its logical clock. 

■ If the timestamps of two events A and B are the same, then the events are concurrent. We may use the process identity numbers to break ties and to create a total ordering. 

 

5.2 Mutual Exclusion 

Mutual exclusion is a competition control property that is introduced to prevent conditions of competition. It is necessary that a process cannot enter its critical section while another concurrent process is currently present or running in its critical section, i.e. only one process is authorized to execute the critical section at any given time. 

Mutual exclusion in single computer system vs. distributed system: 

On  single  computer  systems,  memory  and  other  resources  are  shared  between  different processes. The status of shared resources and the status of users is easily available in shared memory, so with the help of the shared variable (for example: semaphores) the problem of mutual exclusion can be easily solved. 

In distributed systems, we have neither shared memory, nor a common physical clock and we cannot  solve  the  problem  of  mutual  exclusion  by  using shared  variables.  To  eliminate  the problem of mutual exclusion in the approach to the distributed system based on the passage of messages is used. 

Requirements of Mutual exclusion Algorithm:

•   No Deadlock:

Two or more site should not endlessly wait for any message that will never arrive. 

•   No Starvation:

Every site who wants to execute critical section should get an opportunity to execute it in finite time. Any site should not wait indefinitely to execute critical section while other site is repeatedly executing critical section 

•   Fairness:

Each site should get a fair chance to execute critical section. Any request to execute critical section must be executed in the order they are made i.e Critical section execution requests should be executed in the order of their arrival in the system. 

•   Fault Tolerance:

In case of failure, it should be able to recognize it by itself to continue functioning without any disruption. 

 

One of the processes in the system is chosen to coordinate the entry to the critical section.  

■ A process that wants to enter its critical section sends a request message to the coordinator. ■ The coordinator decides which process can enter the critical section next, and its sends that process a reply message. 

■  When  the  process  receives  a  reply  message  from  the  coordinator,  it  enters  its  critical section. 

■ After exiting its critical section, the process sends a release message to the coordinator and proceeds with its execution. 

■ This scheme requires three messages per critical-section entry:  

✦ request 

✦ reply  

✦ release 

 

5.3   Atomicity 

Atomicity  is  different  in  terms  of  distributed  systems.  An  atomic  operation  in  distributed systems is an operation whose execution is performed as an individual action 

Either all the operations associated with a program unit are executed to completion, or none are performed.  

■  Ensuring  atomicity  in  a  distributed  system  requires  a  transaction  coordinator,  which  is responsible for the following:  

✦ Starting the execution of the transaction.  ✦  Breaking  the  transaction  into  a  number  of  sub  transactions,  and  distribution  these  sub transactions to the appropriate sites for execution.  

✦ Coordinating the termination of the transaction, which may result in the transaction being committed at all sites or aborted at all sites. 

Two-Phase Commit Protocol (2PC) 

Assumes fail-stop model.  

■ Execution of the protocol is initiated by the coordinator after the last step of the transaction has been reached.  

■ When the protocol is initiated, the transaction may still be executing at some of the local sites.  

■ The protocol involves all the local sites at which the transaction executed.  

■ Example: Let T be a transaction initiated at site Si and let the transaction coordinator at Si be Ci .

Phase 1 

■ Ci adds record to the log. 

■ Ci sends message to all sites. 

■ When a site receives a message, the transaction manager determines if it can commit the 

transaction.  

✦ If no: add record to the log and respond to Ci with .  

✦ If yes:  

✔ add record to the log.  

✔ force all log records for T onto stable storage.  

✔ transaction manager sends message to Ci . 

■ Coordinator collects responses  

✦ All respond “ready”, decision is commit. 

✦ At least one response is “abort”, decision is abort. 

✦ At least one participant fails to respond within time out period, decision is abort. 





■ Coordinator adds a decision record or to its log and forces record onto stable storage.  

■ Once that record reaches stable storage it is irrevocable (even if failures occur).  

■ Coordinator sends a message to each participant informing it of the decision (commit or abort).  

■ Participants take appropriate action locally

 

Phase 2: Recording Decision in the Database 

■ Coordinator adds a decision record 

or  

to its log and forces record onto stable storage. 

■ Once that record reaches stable storage it is irrevocable (even if failures occur). 

■ Coordinator sends a message to each participant informing it of the decision (commit or abort). 

■ Participants take appropriate action locally 

Failure Handling in 2PC – Site Failure 

■ The log contains a record. In this case, the site executes redo(T).  

■ The log contains an record. In this case, the site executes undo(T).  

■ The contains a record; consult Ci . If Ci is down, site sends query-status T message to the  other sites.  

■ The log contains no control records concerning T. In this case, the site executes undo(T). 

Failure Handling in 2PC – Coordinator Ci Failure 

■ If an active site contains a  record in its log, the T must be committed. 

■ If an active site contains an  record in its log, then T must be aborted. 

■  If  some  active  site  does  not  contain  the  record    in  its  log  then  the  failed coordinator Ci cannot have decided to commit T. Rather than wait for Ci to recover, it is 

preferable to abort T. 

■ All active sites have a  record in their logs, but no additional control records. In this case we must wait for the coordinator to recover. 

✦ Blocking problem – T is blocked pending the recovery of site Si 

5.4 Concurrency Control 

 

Concurrency control is the activity of co- ordinating concurrent accesses to a data- base in a multiuser  database management  system (DBMS). Concurrency  control per-  mits  users  to access a database in a multi- programmed fashion while preserving the illusion that each user is executing alone on a dedicated system. 

Concurrency control is a very important issue in distributed database system design. This is because  concurrency  allows  many  transactions  to  be  executing  simultaneously  such  that collection of manipulated data item is left in a consistent state. Database concurrency control permits  users  to  access  a  database  in  a  multi  programmed  fashion  while  preserving  the illusion that user is executing alone on a dedicated system. Besides, it produces the same effect  and  has  the  same  output  on  the  database  as  some  serial  execution  of  the  same transaction. 

Concurrency control in distributed system is achieved by a program which is called scheduler. Scheduler help to order the operations of transaction in such a way that the resulting logs is serializable. There have two type of the concurrency control that are locking approach and non-locking approach. In term of locking approach, two-phase lock is widely used and purpose for  centralized  or  distributed  database  system.  Before  distributed  database,  systems accessing some part of database, it must adopt a locking mechanism such as each transaction has to obtain a lock. After that part is locked by other transaction, the access request will be block and the transaction who making request must wait. Two-phase locking will cause the deadlock problem. This locking induces high communication cost because of the  deadlock problem 

 

5.5    Deadlock Handling 

 

The  two  main  deadlock  handling  concerns  in  a  distributed  database  system  that  are  not present in a centralized system are transaction location and transaction control. Once these concerns are addressed, deadlocks are handled through any of deadlock prevention, deadlock avoidance or deadlock detection and removal. 

Deadlock Detection:

Deadlock detection attempts to find and resolve actual deadlocks.  These strategies rely on a Wait-For-Graph (WFG) that in some schemes is explicitly built and analyzed for cycles.   In the WFG,  the  nodes  represent  processes  and  the  edges  represent  the  blockages  or dependencies.  Thus, if process A is waiting for a resource held by process B, there is an edge in the WFG from the node for process A to the node for process B.  

 In the AND model (resource model), a cycle in the graph indicates a deadlock.  In the OR model,  a  cycle  may  not  mean  a  deadlock  since  any  of  a  set  of  requested  resources  may unblock the process.  A knot in the WFG is needed to declare a deadlock.  A knot exists when all nodes that can be reached from some node in a directed graph can also reach that node. 

In a centralized system, a WFG can be constructed easily.  The WFG can be checked for cycles periodically or every time a process is blocked, thus potentially adding a new edge to the WFG.   When a cycle is found, a victim is selected and aborted. 

 

Centralized Deadlock Detection:

 We use a centralized deadlock  detection algorithm and try to imitate the non-distributed algorithm. 

• Each machine maintains the resource graph for its own processes and resources. 

•   A centralized coordinator maintains the resource graph for the entire system. 

• When the coordinator detects a cycle, it kills off one process to break the deadlock. 

•   In updating the coordinator’s graph, messages must be passed.

• Method 1) Whenever an arc is added or deleted from the resource graph, a message 

has to be sent to the coordinator. 

• Method 2) Periodically, every process can send a list of arcs added and deleted since 

previous update. 

•   Method 3) Coordinator ask for information when it needs it. 

 

False Deadlocks: 

•   When the coordinator gets a message that leads to a suspect deadlock: 

•   It send everybody a message saying “I just received a message with a timestamp T 

which leads to deadlock. If anyone has a message for me with an earlier timestamp, please send it immediately”

•   One  possible  way  to  prevent  false  deadlock  is  to  use  the  Lamport’s  algorithm  to 

provide global timing for the distributed systems. 

• When every machine has replied, positively or negatively, the coordinator will see that 

the deadlock has really occurred or not. 

Deadlock Prevention:

Prevention is the name given to schemes that guarantee that deadlocks can never happen because  of  the  way  the  system  is  structured.    One  of  the  four  conditions  for  deadlock  is prevented, thus preventing deadlocks.  

Collective Requests:

One way to do this is to make processes declare all the resources they might eventually need, when the process is first started.  Only if all the resources are available is the process allowed to continue.  All the resources are acquired together, and the process proceeds, releasing all the resources when it is finished.  Thus, hold and wait cannot occur. 

The major disadvantage of this scheme is that resources must be acquired because they might be  used,  not  because  they  will  be  used.   Also,  the  pre-allocation  requirement  reduces potential concurrency. 

 

5.6   Election Algorithms 

 

Many distributed algorithms require the election of a special coordinator process; one that has a special role, or initiates something, or monitors something. Often it does not matter who the special process is, but one and only one must be elected, and it can't be known in advance who it will be. On a low-level you can think about the monitor in a token ring as an example. 

The assumptions of these algorithms are that every process can be uniquely identified (by IP address, for example), and that each process can find out the id of the other processes. What the processes do not know is which processes are up and which are down at any given point in time. 

We have defined process groups as having peer or hierarchical structure and have seen that a coordinator may p be needed to run a protocol such as 2PC. 

With peer structure, an external process may send an update request to any group member, which then functions as coordinator. We have seen that deadlock may occur. If the group has hierarchical  structure,  one  member  is  elected  as  coordinator.  That  member  must  manage group  protocols,  and  external  requests  must  be  sent  on  to  it.  Note  that  this  solves  the potential deadlock problem of concurrent updates. But a single point of failure is created, and a potential bottleneck, so this is only suitable for small groups 

If the coordinator fails, a new one must be elected. 

For the election algorithm: 

assume that t: - each process has a unique ID known to all members 

- the process with highest ID is coordinator

Bully algorithm 

When a process P sees that the coordinator is no longer responding to requests it initiates an election by sending ELECTION messages to all processes whose id is higher than its own. If no one  responds  to  the  messages,  then  P  is  the  new  coordinator.  If  one  of  the  higher-ups responds, it takes over and P does not have to worry anymore. When a process receives an ELECTION message it sends a response back saying OK. It then holds it's own election (unless it is already holding one). Eventually there is only one process that  has  not  given  up  and  that  is  the  new  coordinator.  It is  also  the  one  with  the  highest number  currently  running.  When  the  election  is  done  the  new  coordinator  sends  a COORDINATOR message to everyone informing them of the change. 

If a process which was down comes back up, it immediately holds an election. If this process had  previously  been  the  coordinator  it  will  take  this  role  back  from  whoever  is  doing  it currently (hence the name of the algorithm). 
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Fig 30 Election algorithm -Bully 

 

Ring algorithm 

Assumes that processes are logically ordered in some fashion, and that each process knows the  order  and  who  is  coordinator.  No  token  is  involved.  When  a  process  notices  that  the coordinator is not responding it sends an ELECTION message with its own id to its downstream neighbour. If that neighbour doesn't respond it sends it to its neighbour’s neighbour, etc. Each station that receives the ELECTION message adds its own id to the list. When the message circulates back to the originator it selects the highest id in the list and sends a COORDINATOR message announcing the new coordinator. This message circulates once and is removed by the originator. 

If  two  elections  are  held  simultaneously  (say  because  two  different  processes  notice simultaneously that the coordinator is dead) then each comes up with the same list and elects the same coordinator. Some time is wasted, but nothing is really hurt by this. In this model the system is equipped with a distributed oracle (the failure detector) which provides indications (possibly not correct ones) on the processes which suffer a crash.  

Failure Detectors Model 





 Each process has access to a local module of the Failure Detector which monitors the other processes  and  inserts  them in  a  proper  list  when  suspects  their  crash.  (it  is  introduced  to encapsulate some synchrony)  

 These are modules which can fail; therefore, a process can be included in the list even if still progressing and not yet failed. 

 

Suspected list is not static: if a local module realizes it has committed an error in suspecting a process it will update its list by adding or removing the involved process.  

Under this assumption there may exist 2 failure detectors with completely different lists, even in the same instant of time. 

We have also to underline that a mistake of a failure detector must not prevent correct 

processes to behave according to their specification. 

How accurate is the information provided by a FD ?  

The more synchronous is the system the more accurate the information provided  

If the system is completely synchronous it is possible to design an FD able to provide perfect information  

If the system is only partially synchronous the accuracy can vary.  

It is possible then to define several different specifications of FD having different properties. 

 

•  Failure detectors can be partitioned in different classes according to the following 

properties: 

–Completeness: a failure detector eventually suspects every crashed process; 

–Accuracy: correctness of the suspect. 

•  More precisely it is possible to define two completeness and four accuracy properties 

thus having 8 different classes of failure detectors. 

 

•   Completeness can be distinguished in: 

• Strong  completeness:  every  process  that  crashed  sooner  or  later  gets 

permanently      suspected by EVERY correct process. 

• Weak completeness: every process that crashed sooner or later gets permanently 

suspected BY AT LEAST ONE correct process. 

•  NOTE: satisfying the strong completeness property is not sufficient to provide precise 

and  correct  information  on  the  system  behavior  (a  failure  detector  which  suspects every process satisfies strong completeness …). 

Four variants of the accuracy property are defined: 

•   Strong  accuracy:  no  correct  process  is  suspected  before  it  crashes  by  any  correct 

process 

•   Weak accuracy: some correct process is never suspected by any other correct process. 

•   Eventual  strong  accuracy:  there  is  a  time  after  which  correct  processes  are  not 

suspected by any other correct process. 

•   Eventual  weak  accuracy:  there  is  a  time  after  which  some  correct  process  is  not 

suspected by any other correct process. 

From the combination of properties we get the classes of Failure Detectors represented in the table :
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Fig: 31  Failure Detectors represented in the table

 

Relations among the FD classes 

The detector classes are not independent: by means of a reduction algorithm we can prove equivalence relations. 
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Fig 32:  Reduction algorithm 

The reduction  algorithm  is  an  ‘emulator’:  if  we  can  find  an  algorithm  which  transforms  a  FD  C  in another FD D this means that any problem that can be solved using D can also be solved using C. (C is able to behave as D) 

 

If we have such reduction algorithm we say that D can be reduced to C (C ≥ D) or that D is weaker than C (in our case C offers at least the same information on processes offered by D)  If C≥D and D≥C Then C and D are equivalent (C ≅ D).  Among the classes of FD the following relations hold: 
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Reduction algorithm 

Strong completeness: every process that crashed sooner or later gets permanently suspected by EVERY correct process. 

•    Weak accuracy: some correct process is never suspected by any other correct process 

•    The algorithm develops in 3 phases 

•  In the first phase processes execute n-1 asynchronous rounds in which they broadcast 

their proposed values 

• In  each  round  every  process  P  waits  to  receive  a  message  from  any  other  process 

which  is  not  in  its  FDp  (the  list  of  processed  suspected  by  the  failure  detector associated with process P) before moving to the next round. 

In case P waits a message from Q it may happen that Q enters in FDp, In such a case P can move to the next round. 

•  At the end of Phase 2 the  correct processes agree on a vector based on everyone 

proposal (the i-th position in this vector contains the value proposed by process I or the null value ⊥). 

•    In phase 3 process P decides the first non null value of is copy of the vector Vp. 
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Fig: 33 Algorithm S

 

Solution with a FD of class ◊S 

If the maximum number pf processes that may fail is less than half of the totality of processes it is possible to solve consensus with a failure detector of class ◊S (which satisfies the Eventual weak accuracy and the Strong completeness). 

•  The  algorithm  is  based  on  the  paradigm  of  coordinator  rotation:  every  process 

performs in its turn the role of coordinator to determine a value that can be chosen among the various proposals. 

• If the coordinator is correct and is not suspected by the non-faulty processes then it 

will succeed in identifying such a value and will then perform a reliable broadcast of such value. 

All the message exchanges are performed between the coordinator (whose identidy is known: during round r the coordinator will be process (r mod n) +1) and the other processes. 

 

•  Also,  in  this  case  we  have  the  execution  of  many  rounds  (in  each  the  coordinator 

changes) each of which is divided in 4 phases. 

• In phase 1 each process sends to the coordiantor its own estimate of the value that 

should  be  dcided  (its  proposal)  with  a  time  stamp  indicating  the  round  number  in which such an estimate has been taken. 

•  In Phase 2 the coordinator collects the majority of such estimates, selects the one 

with  the  biggest  timestamp  and  sends  it  to  every  process  proposing  it  as  the  new estimate. 

In phase 3 each process p has two possibilities: 

• 1) to receive the estimate from the coordinator and send to it an ack to inditate its adoption of the suggest value; or 

• 2) by checking it FD module suspect the crash of the coordinator and send a nack to it. 

•    In phase 4 the coordinator waits 
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•   (n+1)/2 responses (ack o nack). 

• If all the responses are positive the coordinator knows that a majority of processes 

has  changed  their  estimation  adopting  the  proposed  value,  consequently  it  sends (through an R-Broadcast) the request to decide according to this result, which is then done by every process when executing the R-delivery of such proposal. 

Class ◊W

The solution shown for the class ◊S is important as class ◊S is equivalent to class ◊W.

•    Class  ◊W  is  the  WEAKEST  class  of  FD  which  allows  a  solution  of  the  consensus 

problem. 

To recap failure detectors with a Perpetual Accuracy (classes P, Q, S, W) solve consensus in asynchronous  systems  without  limits  on  the  number  of  failed  processes,  while  failure detectors  with  an  Eventual Accuracy (classes  ◊P,  ◊Q, ◊S,  ◊W)require  a  majority  of  correct processes. 





Consensus Algorithms For Blockchains 





Consensus Algorithm 

 A  consensus  algorithm  can  be  defined  as  the  mechanism  by  which  a  blockchain  network reaches consensus. Public (decentralized) blockchains are developed as distributed systems and, since they are not based on a central authority, distributed nodes must agree on the validity of the transactions. That's where consensus algorithms come in. They ensure that the protocol rules are followed and that all transactions are made correctly, ensuring that coins can only be spent once. Before exploring the different types of consensus algorithms, it is important to understand the differences between an algorithm and a protocol. 

 

Consent algorithm vs protocol

The terms algorithm and protocol are often used interchangeably, but do not mean the same thing. Put simply, we can define a protocol as the set of primary rules of a blockchain and an algorithm as the mechanism through which these rules are enforced. In addition to being widely used in financial systems, blockchain technology can be applied to a wide range of activities, and can be suitable for different use cases. Regardless of the context, a blockchain network will be developed on a protocol that will define how the system will work, therefore all the different parts of the system and all the participants of the network will have to follow the rules of the underlying protocol.  

While the protocol determines what the rules are, the algorithm tells the system what actions to  take  to  comply  with  these  rules  and  produce  the  desired  results.  For  example,  a blockchain's consensus algorithm is what determines the validity of transactions and blocks. Hence, Bitcoin and Ethereum are protocols while Proof of Work and Proof of Stake are the respective consensus algorithms.  

To  further clarify the distinction, we consider that the Bitcoin protocol defines the way in which  nodes  interact,  how  data  must  be  transmitted  to  each  other  and  what  are  the requirements to validate a block successfully. The consensus algorithm, on the other hand, has the task of verifying the balance sheets and signatures, confirming the transactions and actually  performing  the  validation  of  the  blocks  -  and  all  this  depends  on  the  network's consent. 

 

Different Types of Consent Algorithms

There  are  several  types  of  consensus  algorithms.  The  most  common  implementations  are PoW and PoS. Each has different advantages and disadvantages by trying to balance security with functionality and scalability. 

Proof of Work (PoW)  

 

The  PoW  is  the  first  consensus  algorithm  created.  It  is  used  by  Bitcoin  and  many  other cryptocurrencies. The Proof of Work algorithm is an essential part of the mining process. PoW mining  involves  several  hashing  attempts,  so  z  more  computing  power  results  in  more attempts per second. In other words, miners with a higher hash rate are more likely to find a viable solution for the next block (i.e. the block hash). The PoW consensus algorithm allows miners to validate a new block and add it to the blockchain only if the distributed nodes of the network reach consensus and agree that the block hash provided by the miner is a valid proof of work. 

Proof of Stake (PoS)

The PoS consensus algorithm was developed in 2011 as an alternative to PoW. Although PoS 

and PoW share similar purposes, they have some fundamental differences and peculiarities. Especially regarding the validation of new blocks. In a nutshell, the Proof of Stake consensus algorithm replaces PoW mining with a mechanism where blocks are validated based on the stakes  of  the  participants.  The  validator  of  each  block  (also  called  forger  or  minter)  is determined by an investment of the same cryptocurrency and not by the computing power used. Each PoS system can implement the algorithm in different ways but, in general, the blockchain is protected by a pseudo-random election process that considers the wealth of the node and the age of the coins (how long the coins have been blocked or frozen in the stake) - together with a randomization factor. Currently, the Ethereum blockchain is based on a PoW algorithm, but the Casper protocol will eventually be released to move the network from PoW to PoS to try to increase its scalability. 

 

What is the Importance of Consensus Algorithms in Cryptocurrencies? 

As  mentioned  previously,  consensus  algorithms  are  vital  for  maintaining  the  integrity  and security of a cryptocurrency network. They provide a means for distributed nodes to reach consensus on which version of the blockchain is the real one. Agreeing on the current state of the blockchain is essential for the proper functioning of a digital economic system. 

The  Proof  of  Work  consensus  algorithm  is  considered  one  of  the  best  solutions  to  the Byzantine Generals Problem, which made it possible to create Bitcoin as a Byzantine Fault Tolerance system. This means that the Bitcoin blockchain is extremely resistant to attacks, such as 51% attack (or majority attack). Not only because the network is decentralized, but also thanks to the PoW algorithm. The high costs associated with the mining process make it very difficult and unlikely that miners invest their resources to hinder the network. 





PoS Pros 

•   General: 

•   No need for much of energy 

• To invite node to participate to the network there is no need to issue many new coins 

•   It’s build to discourage centralized control 

•   Reduced centralization risk 

•   Various form of 51% attack are more expensive than in PoW 

PoS Cons 

•   Chain-Based: 

•   It is easier to build a complete new blockchain starting from zero 

•   Nothing at stake countermeasure is every time necessary 

•    Sybil attack is easier 

•   BFT-like 

•  Liveness denial: If BFT-like is used, a cartel (>34%) could refuse to finalize blocks 

•    censorship attack possible 

PoX - Prof of X 

Identify a lot of algorithms – Proof of something: 

• Proof of deposit: miners lock an amount of money that can not spend during the mining. Normally, mining voting power is proportional to the coin they have locked.  

• Proof-of-coin-age: miners show possession of quantity of coins and this is weighted by the age of possession. Mining voting power is proportional to this criterion. 

• Proof-of-identity: a miner must show that it knows a private key that corresponds to an approved 

identity cryptographically linked to a transaction. 

 

PoX - Prof of X 

•   Proof of capacity: 

•     Participants vote a new block weighed by their capacity to allocate not trivial space of disk 

•    They should store a large segment of a big file that must be recoverable in case of dealer failure 

or shutdown  

•    The voting power is proportional to the space allocated  

Risk: 

•    Vulnerable to centralization due to participants that outsourcing the file storage to an external 

provider. 

PoET (Proof of Elapsed time 

•   Proof of elapsed time (permissionless) 

•   t runs in a Trusted Execution Environment (TEE), like Intel’s Software Guard Extension 

(SGX). 

•   Basic ideas: 

• each node generates a random number to know how much it has to wait before it is allowed to generate a block 

• the random number is based on a distribution F

• Once that a block is generated, a node must generate a proof of waited activity (helped by SGX) 

• Statistically, it is checked if the node has respected the time distribution to generate a block 

 

The  algorithm  uses  a  model  based  on  the  leader  election  (lottery):  the  election  must  be random between all participants and held in a safe place (TEE) 

•   avoids manipulation 

•   Leader election: 

• Each validator request a wait time from the code of TEE

• The validator with the shortest wait time win the lottery and become a leader 

• The function in TEE are designed to not be tampered. 

 

•   Block generation:

• Whenever a block is generated, it will be verified by other nodes before that is accepted on the system. 

• The check consists in:

–The node had the shortest time 

–It has waited the designate md time to generate the block 

–It has generated the block in a certain amount of time 

•   Security: it depends on the security of the trusted computing area (not 100% secure). 





PBFT (permissioned) 

•   Basics: 

• It’s the first algorithm based on BFT used in blockchain 

• It’s based on deterministic replicas of a server: if they don’t fail, they generate the same result. 

• If f replicas fail, the algorithm works with n=3f+1 nodes

•   Concepts: 

• The protocol works with the primary backup approach: 

– Replicas move in different configurations called views 

– Each view has a primary replica and backup replicas 

– The primary chooses the execution order from client's requests 

PBFT -2 

•   Concepts: 

–The primary replica assigns a number to the request and send it to the backups 

–Replica could fail => backups control number assigned to request: in case of problems, they use a 

time-out and order a change of view 

•   Algorithm’s steps:

•      Request phase:

–The client send request to the primary replica 

PBFT - algorithm steps -1 

• Request phase:

–The replica assigns a number to the request if it is able to serve it 

• Pre-Prepare phase: 

–The primary sends a pre-prepare message inserting the view v, the message m and a digest n 

–The primary inserts the message in its log 

PBFT - algorithm steps – 2 

• Prepare phase:

– the replica accepts a request at condition that….

–The algorithm is in view v, it can verify the message m and that n is in a certain range 

–The message m is accepted by backups, if they have not accepted a message with view v, sequence n and different digest 

–If the request is accepted and a backup has m in its log, it sends to all a prepare message 

PBFT algorithm steps – 3 

Algorithm’s steps:

–Each replica collects messages till it has a message pre-prepare, 2f messages prepare that agree for sequence n, view v and request m. 

• Commit phase

– we have the total order in a view v, but… in the others?

–Each replica sends a message in which affirms that it has a quorum certificate and add all in a log 

–Each replica collect messages till it has 2f+1 commit messages for the view v, message m and number n from different replicas. 

PBFT algorithm steps – 4 

• Commit phase

– each replica executes finally the request, after executing all requests with lower sequence number 

• Reply phase

–Replicas send reply to the client 

–Client replies to replicas 

–If the client does not reply, replicas send messages again 

•   Complexity: quadratic complexity in number of messages exchanged 

Optimistic BFT a Variant of PBFT 

• Optimistic  BFT:  it  has  linear  communications  complexity  in  the  common  case  and 

quadratic only in bad conditions. 

• Randomized  BFT:  it  guarantees  correctness  with  very  high  probability;  it  is  not 

deterministic. 

•   XFT: it tolerates up to n/2 byzantine node 

•   Hybrid BFT: it combines optimistic and deterministic BFT protocols with PBFT. 
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Fig: 34 Algorithm Comparison - table





Real-Time Systems





Distributed real-time system: 

 

A distributed real-time system (DRTS) consists of autonomous computing nodes connected by a real-time network. Nodes in such a system cooperate to achieve a common goal within specified deadlines. Distributed real-time systems are needed for several reasons. 

Any  real  time  computer  control  system  must  have  a  capability  to  measure  the  duration between events in the metric of real time and must respond to a stimulus within a given real time interval. This paper discusses some of the implications which result from the inclusion of this real time metric on the specification, communication and error detection in real time distributed systems. 

Real time system means that the system is subjected to real time, i.e., response should be guaranteed within a specified timing constraint or system should meet the specified deadline. For example: flight control system, real time monitors etc. 

Types of real time systems based on timing constraints: 

Hard real time system –

This type of system can never miss its deadline. Missing the deadline may have disastrous consequences.  The  usefulness  of  result  produced  by  a  hard  real  time  system  decreases abruptly and may become negative if tardiness increases. Tardiness means how late a real time system completes its task with respect to its deadline. Example: Flight controller system. 

Soft real time system –

This type of system can miss its deadline occasionally with some acceptably low probability. Missing the deadline have no disastrous consequences. The usefulness of result produced by a soft real time system decreases gradually with increase in tardiness. Example: Telephone switches. 

Reference  model  of  real  time  system: Our  reference  model  is  characterized  by  three elements: 

1. A workload model: It specifies the application supported by system. 

2. A resource model: It specifies the resources available to the application. 

3. Algorithms: It specifies how the application system will use resources. 

Terms related to real time system: 

•   Job – A job is a small piece of work that can be assigned to a processor and may or 

may not require resources. 

•   Task – A set of related jobs that jointly provide some system functionality. 

•   Release time of a job – It is the time at which job becomes ready for execution. 

•   Execution time of a job – It is the time taken by job to finish its execution. 

•   Deadline of a job – It is the time by which a job should finish its execution. Deadline is 

of two types: absolute deadline and relative deadline. 

•   Response time of a job – It is the length of time from release time of a job to the 

instant when it finishes. 

•   Maximum allowable response time of a job is called its relative deadline. 

•   Absolute deadline of a job is equal to its relative deadline plus its release time. 

• Processors are also known as active resources. They are essential for execution of a 

job. A job must have one or more processors in order to execute and proceed towards completion. Example: computer, transmission links. 

• Resources  are  also  known  as  passive  resources.  A  job  may  or  may  not  require  a 

resource during its execution. Example: memory, mutex 

• Two  resources  are  identical  if  they  can  be  used  interchangeably  else  they  are 

heterogeneous. 
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Fig: 35  Hard Real Time versus Soft Real Time

 

Fail-Safe versus Fail-Operational

A system is fail-safe if there is a safe state in the environment that can be reached in case of a system failure, 

e.g., train signaling system. In a fail-safe application the system must have a high error detection coverage. Fail safeness is a characteristic of the application A system must be fail operational, if the application does not allow to identify a safe state thus such systems in case of a 

failure must continue to be operational e.g., a flight control system aboard an airplane. 

In  fail-operational  applications  the  computer  system  has  to  provide  a  minimum  level  of service, even after the occurrence of a fault. 

Classification of RT Systems 

On the basis of the external requirements 

• Hard Real-Time versus Soft Real Time 

• Fail-Safe versus Fail-operational 

On the basis of the implementation 

• Guaranteed Timeliness versus Best Effort

• Resource Adequacy

• Event Triggered versus Time Triggered

 

Guaranteed Timeliness versus Best Effort 

A system implementation provides guaranteed timeliness if (within the specified load- and fault-hypothesis) the temporal correctness can be substantiated by analytical arguments. 

A  system  implementation  is  best  effort,  if  such  an  analytical  argument  for  the  temporal correctness cannot be made. 

•  The  temporal  verification  of  best  effort  systems  relies  on  probabilistic  arguments,  even within the specified load- and fault hypothesis. 

Hard real-time systems should be based on guaranteed timeliness 

Resource Adequacy 

If  a  system  has  to  provide  guaranteed  timeliness,  there  must  be  sufficient  computational resources to handle the specified peak load and fault scenario. 

In  the  past,  there  have  been  many  applications  where  resource  adequacy  has  been considered too expensive. 

The decreasing cost of hardware makes the implementation of resource adequate designs economically viable. 

• In hard real-time applications, there is no alternative to resource adequate designs. 

Predictability in Rare Event Situations 

 

A  rare  event  is  an  important  event  that  occurs  very  infrequently  during  the  lifetime  of  a system, e.g., the rupture of a pipe in a nuclear reactor A rare event can give rise to many correlated service requests (e.g., an alarm shower) 

In a number of applications, the utility of a system depends on the predictable performance in rare event scenarios, e.g. flight control system In most cases, workload testing will not cover the rare event scenario. 

State and Event 
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Fig: 36   State and Event 

 

A  state  is  a  condition  that  persists  for  an  interval  of  real  time, i.e.,  along  a  section  of  the timeline. An event is an occurrence at an instant. 

State information informs about the attributes of states at the point of observation (itself an event).  Event  information  informs  about  the  difference  in  the  attributes  of  the  states immediately before and after the occurrence of the event and an estimation of the point in time of event occurrence. 

Time Triggered vs. Event Triggered

A Real-Time system is Event Triggered (ET) if the control signals are derived solely from the occurrence of events, e.g., 

- termination of a task 

- reception of a message 

- an external interrupt 

A Real-Time system is Time Triggered (TT) if the control signals, such as 

- sending and receiving of messages 

- recognition of an external state change 

are derived solely from the progression of a (global) notion of time. 

Temporal Requirements 

Temporal accuracy of real-time data: The data elements that are displayed to the operator must be temporally accurate. 

Maximum response time: 

The maximum real-time interval between a stimulus and the response must be known and bounded. 

Predictability: 

The temporal behavior must be predictable, even in a rare event scenario. 
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Fig 37: Temporal parameters are associated with real-time data





Scheduling in real-time Systems 

Task 

A sequence of instructions that in absence of other activities is continuously executed by the processor until completion. It can be a process or a thread depending on the operating system 

A task is an (infinite?) sequence of instances (jobs) 
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Fig: 38 Tasks 

Task: state transition and ready queue 

The ready tasks are kept in a waiting queue, called the ready queue 

[image: ]

Fig: 39  state transition and ready queue

The strategy for choosing the ready task to be executed on the CPU is the scheduling algorithm

 

Scheduling 

A scheduling algorithm is said to be: 

• preemptive: if the running task can be temporarily suspended to execute a more important task 

• non preemptive: if the running task cannot be suspended until completion . A schedule is a particular assignment of tasks to the processor. 

 

A schedule is a particular assignment of tasks to the processor 

given a task set Γ={ τ1, τ2, τ3, … , τn}, a schedule is a mapping σ : R+ → N such that
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At time t1, t2, t3, and t4 a context switch is performed. Each interval [ti , ti+1) is called a time slice 
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Real-time tasks 

ri request time (arrival time ai ) 

si start time 

Ci wcet 

di absolute deadline 

Di relative deadline 

fi finishing time 
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Task criticality  

HARD tasks:  all jobs must meet their deadlines: missing a deadline may have serious consequences.  

FIRM tasks: only some jobs can miss their deadline.  

SOFT tasks: jobs may miss deadlines.  

The goal is to minimize responsiveness. 

Tasks activation modes 

time driven →periodic tasks 

the task is automatically activated by the kernel at regular intervals. 

event driven→ aperiodic tasks 

the task is activated upon the arrival of an event or through an explicit invocation of the activation primitive. 

aperiodic: ri,k+1 > ri,k  

sporadic: ri,k+1 ≥ ri,k + Ti





[image: ]

Types of constraints 
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timing constraints  

• deadline, activation, completion, jitter 

• can be explicit (are included in the specification of the system activities) or implicit (do not appear in the system specification, but must be respected to meet the requirements). 

precedence constraints 

• they impose an ordering in the execution (sometimes tasks must be executed with specific precedence relations, specified by a Directed Acyclic Graph) 

resource constraints  

• they enforce a synchronization in the access of mutually exclusive resources. 





Model-Driven Engineering 

Model-driven  engineering  (acronym  MDE)  is  a  software  development  methodology  that focuses on creating models or abstractions closer to particular domain concepts rather than computational  or  algorithmic  concepts.  It  is  understood  as  an  increase  in  productivity  by maximizing  compatibility  between systems, simplifying  the  design  process,  and  promoting communication between individuals and teamwork on the system. 

Models allow sharing a common vision and knowledge among technical and non-technical stakeholders,  facilitating  and  promoting  the  communication  among  them.  Furthermore, models  make  the  project  planning  more  effective  and  efficient  while  providing  a  more appropriate  view  of  the  system  to  be  developed  and  allowing  the  project  control  to  be achieved according to objective criteria. 

This  section  introduces  the  essential  concepts  underlying  MDE,  namely  the  concepts  of system, model, metamodel and their relations. 

Models and metamodels 

This  section  introduces  the  essential  concepts  underlying  MDE,  namely  the  concepts  of system, model, metamodel and their relations. 

In the context of MDE, we define “system as a generic concept for designating a software application, software platform or any other software artefact”. Additionally, as suggested in below  figure,  a  system  might  be  composed  of  other  subsystems  and  a  system  may  have relations with other systems (e.g., a system may communicate with others). 
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Fig: 40 The System definition. 

 

Model A  model  is  an  abstraction  of  a  system  under  study  (SUS,  also  known  as  the  “Universe  of Discourse” or just “system”), which may already exist or is intended to exist in the future.

 

Model definition 

In the absence of a common definition for “model”, it is relevant to refer some of its popular attempts, namely the following: (1) model is a set of statements about the system under study ;  (2)  model  is  an  abstraction  of  a  (real  or  language-based)  system  allowing  predictions  or inferences to be made ; (3) model is a reduced representation of some system that highlights the properties of interest from a given viewpoint ; and (4) model is a simplification of a system built with an intended goal in mind so a model should be able to answer questions in place of the original system [6]. 

From these definitions there is a consensus that a model defines a system under study (SUS) and  vice-versa.  However,  a  model  is  itself  a  system,  with  its  own  identity,  complexity, elements, relations, etc. In particular, when we think about a model of a model we have to consider that one of them plays the role of the system under study and, consequently, it is itself a system. To sum up, and as suggested in below figure  we define “model as a system that  helps  to  define  and  to  give  answers  of  the  system  under  study  without  the  need  to consider it directly”.
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Fig: 41 The Model definition: relationships between model and system 

 

Metamodel Like for the model definition, there is a variety of definitions for metamodel, some of them are unclear or too weak, such as the OMG ׳s definition that simply states that “a metamodel is  a  model  of  models”  [51].  However,  some  authors  have  reflected  extensively  on  these concepts,  and  give  the  following  definitions:  (1)  a  metamodel  is  a  model  that  defines  the language for expressing a model; (2) a metamodel is a model of a language of models; (3) a metamodel is a specification model for which the systems under study being specified are models in a certain modeling language. However, the deepest analysis of this subject is maybe authored  by  Kühne  that  introduced  important  concerns  for  this  discussion,  such  as  the classification of models as token (or instance) versus type models, ontological versus linguistic instantiations, and the language definition stack. 

Metamodel definition 

Based on the previous referred works we define “metamodel as a model that defines the structure of a modeling language”. However, from below figure we still have to understand the following facts: First, through the relationship Element Of, between Model and Modeling Language, a modeling language is a set of models (or a model is an element of a modeling language).  Second,  through  the  relationship  Defines,  between  Metamodel  and  Modeling Language, a metamodel is a model of a modeling language structure (or a modeling language is defined by a metamodel). Third, a metamodel is a model of a set of models or is a model of models.  Finally,  a  model  conforms  with  a  metamodel  (via  the  ConformsWith  relation), meaning  that  the  model  should  satisfy  the  rules  defined  at  the  level  of  its  metamodel  as extensively discussed by Kühne and others. 
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Fig 42: The metamodel definition: relationships between metamodel and model

 

Meta-metamodel, metamodel and model A well-known and recurring problem of metamodeling is how to set the initial metamodel. If a metamodel is a model of a modeling language, there must be a meta-metamodel describing its modeling language, and so on, in higher levels and more abstract meta-metamodels. The common solution to overcome this problem is to use a language that, at a particular level of this  hierarchy,  describes  itself  in  its  own  language.  There  are  numerous  examples  of  this solution. In the field of natural languages, the English Language describes itself in English at the level of grammar definition, dictionaries, etc. In the field of programming languages, Lisp is  a  well-known  example  of  a  language  that  describes  itself,  providing  in  particular  a  Lisp compiler written in Lisp. 

In  the  field  of  modeling  languages  the  solution  proposed  by  OMG,  based  on  a  four-layer architecture,  and  directly  supported  through  the  Meta  Object  Facility  (MOF)  is  a  popular example. At the top of that hierarchy there is the meta-metamodeling layer (designated as M3)  that  is  mainly  responsible  for  providing  a  language  to  specify  metamodels.  MOF  is  a unique meta-metamodel layer because it is instantiated from its own model, i.e., the MOF is defined in MOF (technically using a restricted set of meta-classes designated by Infrastructure Library). In the layer below (designated as M2), metamodels are defined by instantiation of the  meta-metamodel  (i.e.,  each  element  of  the  metamodel  is  an  instance  of  an  element defined in the meta-metamodel). UML or Common Warehouse Metamodel (CWM) are some examples  of  those  metamodels,  i.e.  examples  of  MOF  instances.  In  the  layer  below  M2 (designated as M1), the models are defined according to the interest and needs of its users: typically for different application domains and different levels of abstraction, e.g. at the level of business definition, technical requirements, or software design. Note that a user model can contain either model elements (i.e., classes and concrete types e.g., Video) or instances of these types (e.g., the instance: Video). Finally, the lowest level of the hierarchy (the M0 layer) contains real instances of elements defined in the model that actually exist in the context of a computational environment or even in the real world. 

 

Modeling language 

As mentioned in the previous section, a modeling language is defined by a metamodel and is a set of all possible models that are conformant with its respective metamodel. However, to provide a complete definition we should consider other aspects or facets (as suggested in below figure), and consequently we define “modeling language as a set of all possible models that are  conformant  with  the  modeling language ׳s  abstract  syntax,  represented by  one or more concrete syntaxes and that satisfy a given semantics. Additionally, the pragmatics (of a modeling language) helps and guides how to use it in the most appropriate way”. Metamodel and notation are common synonyms to, respectively, abstract syntax and concrete syntax. 
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Fig 43:  The Modeling Language definition.

 

Classification of a modeling language 

In  addition  to  the  aspects  of  a  modeling  language  (introduced  above)  there  is  some controversy and debate in the community in what concerns their classification. For example a  modeling  language  might  be  classified  as general-purpose (GPML)  or domain-specific modeling language (DS(M)L). A GPML is characterized by having a greater number of generic constructs, which encourages a wider and widespread use in different fields of application. UML  or  SysML  are  popular  examples  of  GPMLs  by  providing  large  sets  of  constructs  and notations used for specifying and documenting, respectively, software systems according to the  object-oriented  paradigm,  or  any  kind  of  systems  as  understood  by  the  system engineering discipline. On the other hand, DSLs tend to use few constructs or concepts which are  closer  to  its  application  domain.  Since  a DSL  is  expressed  using  domain  concepts, it is normally easier to read, understand, validate and communicate with, facilitating cooperation between  developers  and  domain  experts.  Moreover,  some  argue  that  DSLs  can  improve productivity, reliability, maintainability and portability. On the other hand, the use of a DSL can raise some problems, such as the cost of learning, implementing and maintaining a new language, as well as the support tools to develop with it. 

However,  others  argue  that,  due  to  the  high-quality  and  sophistication  level  of  current language  workbenches,  the  tool  support  is  not  anymore  a  main  constraint.  Furthermore, some  recent  studies  have  shown  that  software  language  engineers  do  not  even  have  the common  practice  of  evaluating  their  own  languages,  and  conclude  that  more  research  is mandatory  in  the  area  of  software  language  processes,  particularly  in  what  concerns  the design, development and evaluation of these languages. 

Below  figure  shows  that  a  modeling  language  can  be  classified  according  its  application domain      attribute      (e.g.,      based      on      the      values      defined      in 

the ApplicationDomainKind enumeration) and can be structured by one or more viewpoints. 
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Fig : 44 The classification of a modeling language and its companion viewpoints. 

 

10.1  Designing a metamodel for CPSoS 

 

System-of-Systems  (SoS)  is  an  integration  of  a  finite  number  of  Constituent  Systems  (CS) which are independent and operable, andwhich are networked together for a period of Time to achieve a certain higher goal. 

A SoS integrates CSs. 

[image: ]





[image: ]

A Constituent System (CS):A system consisting of a  computer system(the cyber system), a controlled object(a physical system)and possibly of interacting humans. 
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A SoS can be: 

Directed Sos: An SoS with a central managed purpose and central ownership of all CSs. An example would be the set of control system in an unmanned rocket  

Acknowledged SoS: independent ownership of the CSs, but cooperative agreements among the owner to an aligned purpose  

Collaborative SoS: Voluntary interactions of independent CSs to achieve a goal that is beneficial to the individual CS. 

Virtual SoS: lack of central purpose and central alignment  
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Each CS has an interface, where the services are offered to other CSs, namely: 

 

Relied upon Interface (RUI): An interface of a CS where the services of the CS are offered to other CSs. 

RUI is composed of 

•   Relied upon Message Interface (RUMI): 

•   Relied upon Physical Interface (RUPI): 
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10.2  Blockly 4SoS 

Blockly is a library for building block programming apps. Block programming allows users to create scripts and programs by using visual blocks, even if they do not know any programming language. Blockly includes everything you need for defining and rendering blocks in a drag-n-drop editor. Each block represents a chunk of code that can be easily stacked and translated into code. It can be used to let users customize components and add behaviors to parts of the app. 

 

Modelling SoS 

When  the  tool  is  launched,  it  creates  a  default  SoS  block  called  “example_block”  as  an example. All the blocks required to build an SoS can be found in the toolbox on left hand side. These blocks are imported from the AMADEOS SysML profile provided by a profile expert. Each block in the tool contains information taken from the AMADEOS. 
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Fig : 45 SysML imported to Blockly 

 

conceptual model to guide the SoS designer. For example, help for CS block  can be found by right clicking  a  block  and  selecting  Help.  Also,  each  imported  block  in  Blockly  is  associated  with  a viewpoint/building-block, for example all blocks associated with Communication viewpoint is present in the Communication category in the toolbox. 

Traditionally, Blockly requires users to drag and  drop blocks from flyout/toolbox to create new blocks. To improve usability and correctness, a Blockly API: Blockly. Field Dropdown() is used to show the list of blocks compatible to be connected for a given block; this lets the user create blocks in an easier way. Figure 13 shows an example, where to add a Technique block, the  tool  shows  that  the  following  new  compatible  blocks  can  be  added:  “Fault  forecast”, “Fault  prevention”,  “Fault  removal”,  and  “Fault  tolerance”.  In  the  profile,  Technique  is  an abstract block and the above four blocks inherit the Technique block. 

A block once created can have three views, (i) collapsed view, (ii) partially-collapsed view, and (iii) un collapsed view as shown in below figure. Collapsed view allows the user to reduce the number of blocks screen on the screen and to focus on the current editing block. Partially collapsed  block  only  shows  the  non-empty  attributes  of  a  block  hence  the  designer  may choose to view only the attributes defined. Full view/un collapsed view is used to see all the attributes of a block. A user can cycle between the three views by double-clicking the block. 
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Fig: 46: Aiding user to add new blocks through dropdown 

Also, for each block it is possible to see the attributes related to selected viewpoints/building-blocks as shown in below figures This is achieved by providing a mutator button for each block at top left hand side. 

To provide an intuitive modeling environment, the supporting facility uses a readily available open source plug-in called Type-Indicator5 . This plugin indicates all the blocks compatable (with yellow color) with current block while it is being dragged, as shown in Fig. 17 (the block cs4 is currently being dragged). 

Requirements  Management.  Requirements  management  is  an  important  aspect  of  an  SoS design, where traceability of requirements must be viewed/monitored. Requirements may be  divided  based  on  the  viewpoints  and  building-blocks:  Architecture,  Communication, Dependability,  etc.  Each  block  maintains  the  list  of  requirements  it  meets  and  each requirement block maintains the list of blocks which satisfy it; thus offering full traceability (below Figs.). Blockly also supports adding comments to blocks to make the design clearer. 
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Fig: 47 Three ways to view a block (i. Collapsed, ii. Partially-collapsed, and iii. Un-collapsed)
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Fig : 48 Viewpoints/building-blocks of a block can be enabled or disabled 

 

each on change event of block. Constraints rely on the variables exported by a block. 

Below Figure shows an example use of constraints. Constraints may also be used to detect causal loops which  may  lead  to  emergence  scenario  in  SoS .  Model  Querying.  On  large  models  it  is  difficult  to visualize the entire SoS, and then the need for custom viewpoints arises. Blockly does not use lines to show relationship between blocks and uses collapsed views to hide the complexity of an SoS model. Model querying can be used search for blocks which satisfy a given condition (using a query).  

It may also be used to visualize a model in traditional view (i.e. showing blocks and its relationship with other blocks using lines). To query a given model, a user can right click on workspace and choose “show query diagram. In the query diagram, user may write a filter function for querying the model. For example, return true; indicates  that no filtering is required (i.e.: show  all blocks  for the  model depicted in below Fig.); which results in the graph as shown in below fig. Using the filter “return b.

of_type == ‘RUMI’;” which indicates to highlight all blocks of type “RUMI”, this query returns the graph depicted in below  (note that b is a shortcut for variable block). Model querying helps in visualizing custom viewpoints of SoS and can be helpful in identifying issues in the SoS design. Adding a Link to a Block. One way to design a SoS is by using links to existing blocks. Creating links can help reuse an existing block; however, this is different from copy-pasting a block in blockly. Links are reference to the linked blocks. For example: CSs can be created on workspace and only links may be added to the SoS block, as shown below Fig.  
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Fig 49: Filtered view of SoS
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Use of Type-Indicator Plug-in (compatible connections for cs4 are indicated by yellow colour) (Color figure online) 
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Fig:  50 Example of blocks related to requirements management

 

[image: ]

 

Each block can satisfy a requirement (by providing the requirement ID it satisfies)
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Fig: 51 An example of a constraint where the member variable m_valid is checked

Grouping  for  Modular  SoS  Design.  The  supporting  facility  allows  grouping  of  compatible blocks together to modularize the design. For example, all CSs can be grouped together as shown in below Fig.  The group block helps in organizing the model into meaningful groups. Also, when a block of a group blocks is refered, the group name is indicated to distinguish it from other blocks which may have similar names. 

Simulation Environment for SoS 

Behaviour. Once a static model is defined, behaviours may be added to any block. To add a behavior, the user can right click on the interested block, and choose “Add behavior”. The behavior represents the code to be executed during simulation, and can be written in Python programming language (as shown in below fig.). The function names 
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Fig : 52 Detecting emergence in model through constraints
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Fig : 53 Model querying large models (for query “return true;” i.e. show all blocks)

init, start, and run can be defined and are executed during initialization, start of the block, and during the course of simulation respectively. The run function for a service block has a special meaning and is exposed as a TCP/IP server.  

All the behavior code written for all blocks are integrated in to a single file for code generation. XML and Code Generation. After the model is loaded, it can be exported to XML and code for simulation by clicking on the appropriate buttons on the top right hand side of the tool. Unique object names are generated for all blocks in a format: __. 
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Fig: 54  Result of “return true;” query

 

Simulator Components. The simulator is a set of Python programs meant for executing the desired scenarios created by designer (the scenarios may also be represented using sequence-diagrams). The simulator consists of the following main components: Object initializer, Registry, Sequence diagram, GUI, Runtime sequence diagram, log generator, and Clock

Object Initializer. The simulation initializes each object/block defined in the model using the block’s constructor. Single inputs are considered as strings/integers/object; whereas multiple inputs are considered as array. If a value for single input is not provided, its value is considered as None in Python; whereas for multiple inputs it is considered as an empty array []. 

 

Certain blocks such as CS/Wrapper/Roleplayer/CPS can have a member called “cardinality” (Fig.  29).  It  indicates  number  of  objects  to  be  simulated.  This  is  implemented  by  using copy.deepcopy  ()  function  of  Python  on  the  original  object.  Each  instance  is  assigned  a _instance_id (1 to N); where N is the cardinality specified in the model. Example: the below model creates an SoS called MySoS and has 200 CSs having name cs1. Each of the CSs will have _instance_id attribute from 1 to 200. 

Registry. Registry is one of the main components of the simulator. It is a service that maintains the list of services offered by various CSs registered in a SoS. It is used by the CSs to search for a particular service. In the simulator, the registry is implemented as a TCP/IP server, where CSs can add/remove/update their own service information. Having a known common registry allows  the  possibility  to  run  the  simulation  across  several  computer  systems  connected together Sequence Diagram. Blockly blocks related to sequence diagrams helps to create non-ambiguous sequence diagrams, which can be readily converted to code. Simulator follows the exact  sequence  as  defined  in  the  sequence-diagram  created  by  the  user.  Thus,  the  code generated from the sequence diagram (Below Fig. ) is executed right after the simulator has been started and initialized. A sequence diagram is added to model to simulate a scenario (Below Fig.); the sequence diagram designed in supporting facility tool. 
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.                       Fig :55 Reusing an existing block (cs1) using links.
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Fig : 56 Similar blocks can be grouped together
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Fig: 57 Example of behaviour for a service
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Fig: 58 Specifying the cardinality for CS – cs1

 

can also be visualized in classical sequence by right clicking the sequence diagram block and selecting “load sequence diagram”. This loads the sequence diagram in sequence diagram window,  which  can  be  viewed  by  right  clicking  workspace  and selecting  “Show  sequence diagram”. GUI. The GUI of the simulator is the starting point of the simulator, and it lets the user select the systems to be run on the current machine and displays the progress of the simulation by logging activities performed by blocks (such as CS/RUMI, etc.). 

Runtime Sequence Diagrams. Given the sequence diagram created by the user, the simulator starts executing the sequence diagram. While executing, each activity performed by RUIs are logged as sequence diagram in PlantUML format by adding timestamp to each activity. This creates  a  runtime-sequence  diagram  (in  result.seq  file),  which  shows  what  actions  have occurred with its timestamp. The runtime-sequence diagram also shows the delay between each action. 
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Fig: 59  Sequence diagram in supporting facility tool using Blockly





  Project using MATLAB-Smart-Farm 

 





Introduction to Smart Farm Project: 

 

This  project  will  address  a  case  study  on  distributed  mutual  exclusive  access  to  a  shared resource.  To  implement  exclusive  access  to  a  shared  resource,  the  project  is  created  in MATLAB using the Simulink framework. The name of the project is Smart Farm. In this project, in which a fleet of autonomous robots performs a series of tasks, such as preparing the soil, watering the plants, producing the harvested plants. 

 

The project was designed with 3 robots and these robots make it move cyclically between the fields and the main agricultural buildings and stores. The geography of the farm is such that there  are  two  main  production  fields  (named  North  and  South)  While  implementing  this project the movements of robots, satisfying three basic requirements of Concurrency Control in  Distributed  System  Using  Mutual  Exclusion.  Those  are 1.  Mutual  exclusion,  Safety,  2. Liveness 3. Fairness. 

 

In Addition to that the system is based on a totally distributed algorithm, without any element of centralization. The robots do not refer to a common clock, but each clock is autonomous and not synchronized. 

 

1. System Implementation:  

The project is implemented in MATLAB and Robots are designed with the help of Simulink tool. Below MATLAB dependencies are needed for implementation: 

•   Simulink 

•   Stateflow 

•   Robotics System Toolbox 

•   Navigation Toolbox 

Below inbuilt features are available in Simulink and it is used in this project. 

2.1 Environment Models: 

In MATLAB inbuilt Robot Visualizer allows you to create a 2D mobile robotics scenario for simulation and algorithm prototyping. Additionally, The Multi-Robot Environment allows to create a 2D multi-robot mobile robotics scenario for simulation and algorithm prototyping. These features are available in MATLAB and Simulink interface. 

2.2 Sensor Models: 

In this project used Lidar Sensor, which allows to simulate 2D line-of-sight sensors for visualization and algorithm prototyping. This feature is available in MATLAB and Simulink interface. 
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2.3 Multi-Robot Lidar Sensor: 

In addition to above feature, used Multi-Robot Lidar Sensor which allows to simulate 2D line-of-sight sensors for visualization and algorithm prototyping of multi-robot environments. This sensor will test for line-of-sight with an occupancy map as well as other robots with finite radius in the environment.  This feature is available in MATLAB and Simulink interface. 
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2. System Architecture: 

In this project implemented Two-Phase Commit protocol technology for the movement of Robots. In the System architecture, only one process can execute the critical section (CS) at any given time. In a distributed  system,  shared variables  (semaphores)  or  a  local  kernel  cannot  be  used  to  implement mutual exclusion. Message passing is the sole means for implementing distributed mutual exclusion.  

Distributed mutual exclusion algorithms is deal with unpredictable message delays and incomplete knowledge of the system state. 

To avoid collision among Robots which passing through Bridge , the architecture is designed in a such a way that when a robot needs to move to a field or to the farm building it enters Ask4Bridge mode, in which it asks for access to the bridge, communicating this request to the other robots which are in Ask4Bridge.  So, the distributed communication protocol (Two-Phase Commit protocol) that allows exclusive access, to avoid collisions over the bridge. 

[image: ]

In  above  architecture,  a  transaction  is  defined  as  a  sequence  of  operations.  Each  transaction  is assigned a deadline based on the application requirements. It is assumed that the transactions are firm  real-time  and  have  the  same  criticality  level.  A  transaction  with  an  expired  deadline  will  be aborted  immediately.  The  2PC  protocol  begins  at  the  end  of  transaction  processing  when  the transaction is ready to “commit”. It is initiated by a single, coordinator machine (In this case Robot 1). Other Participants are Robot 2 and Robot 3 and it will wait for instructions from coordinator (Robot 1).This mechanism ensures the atomicity property of transactions: either the entire transaction will be reflected in the final state of the system, or none of it. If even just a single worker cannot commit, then  the  entire  transaction  will  be  aborted.  In  other  words:  each  worker  has  “veto-phase”  for  a transaction.  The basic flow of the 2PC protocol is shown in the figure below. 
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3. System Modeling 

The entire modeling is done with the help of MATLAB. Using Simulink tool, I have developed Stateflow model  for  the  movement  of  Robots.  To  move  Robots,  I  have  used Robotics  System  Toolbox  and Navigation Toolbox (Free plugin available in MATLAB). 

4.1Robot Visualizer and Lidar Sensor: 

Robot Visualizer is used to develop Robot architecture. Additionally , usedLidar Sensorfor sensor to each  Robots,  and  then  Lidar  Sensor  also  allows  you  to  simulate  2D  line-of-sight  sensors  for visualization and algorithm prototyping , as shown below . 
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Lidar Sensor 

 

<--Robot Visualizer 

 

4.2 Obstacle avoidance logic and 2PC protocol concept:

To avoid Robots collision while moving from one state to another state I have applied 2PC protocol concept for transition. To implement this concept, I added different mode of movement for Robots (based on vote).  If One Robots wants to move to different state, it would ask for Ask4Bridge mode. Then Coordinator checks, whether if any other Robots are request for same mode. If not, it allows for further movement. To avoid collision of Robots while moving, I also used obstacle avoidance logic which is available in MATHLAB.  

[image: ]

 

 logic                                
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4.3 Architecture of North & South Farm and Store house: 

[image: ]

There is a feature in MATHLAB, called Multi Robot Environment used for construction different fields, like North and South Farm and then Store. In this platform we could build “n” number of Robots and track the movement of Robots. This is inbuilt feature which is available in Navigation Toolbox plugin in MATHLAB. Note:  According  to  MATHLAB  definition  on Multi  Robot  Environment  is: “The  Multi-Robot Environment  allows  you  to  create  a  2D  multi-robot  mobile  robotics  scenario  for  simulation  and algorithm prototyping”. 
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Model Architecture of North & South Farm and Store house 
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4. Implementation of Two-Phase Commit protocol: 

 

 

The  2PC  protocol  begins  at  the  end  of  transaction  processing  when  the  transaction  is  ready  to “commit”. It is initiated by a single, coordinator machine (Robot 1 in initial stage).

 

The basic flow of the 2PC protocol has 2 phases as shown in the below: 

Assumptions: Consider  in  initial  stage  Robot  1  as  Coordinator  and  Robot  2,  and  Robot  3  as participants.  

Phase 1: Robot 1, the coordinator asks each worker whether they have successfully completed their responsibilities for that transaction and are ready to commit. Each participant responds ‘yes’ or ‘no’. 

Phase  2: The  coordinator  counts  all  the  responses.  If  every  worker  responded  ‘yes’,  then  the transaction will commit. Otherwise, it will abort. The  coordinator sends a message to each worker with the final commit decision and receives an acknowledgement back. 

 

This mechanism ensures the atomicity property of transactions: either the entire transaction will be reflected in the final state of the system, or none of it. If even just a single participant cannot commit, then the entire transaction will be aborted. In other words: each participant has “veto-power” for a transaction. 

 

It also ensures transaction durability. Each participant ensures that all the writes of a transaction have been  durably  written  to  storage  prior to  responding  ‘yes’  in  phase  1.  This  gives  the  coordinator freedom to make a final decision about a transaction without concern for the fact that a participant may fail after voting ‘yes’.





5. Requirements: 

While  implementing  this  project  the  movements  of  robots,  satisfying  three  basic  requirements  of Concurrency Control in Distributed System Using Mutual Exclusion. Those  are 1. Mutual exclusion, Safety, 2. Liveness 3. Fairness. 

Concurrent access of processes to a shared resource or data is executed in mutually exclusive manner. 

1. In a distributed system there are no shared variables that can be used to implement mutual 

exclusion and semaphores. 

2.    Message passing is the only means for exchanging information. 

6. 1. Mutual exclusion, Safety:  

At any instant, only one process can execute the critical section. 

 

6. 2. Liveness: 

(absence of deadlock and starvation). Two or more processes should not endlessly   wait for messages which will never arrive. 

 

6. 3. Fairness:  

Each process gets a fair chance to execute the critical section. Fairness generally means that the critical section execution requests are executed in the order of their arrival in the system. 

 

Apart from above requirements, we also have implemented below requirements:  

1. That  is  the  system  is  composed  of  a  non-predetermined  number  of  identical  robots, 

communicating with each other via a wireless connection – With the help of Lidar sensor and Obstacle avoidance logic.  

2.   Each robot follows the cyclic modes of operation behaviour – With the help of Robot Visualizer 

tool. 

3. A robot that is not granted the bridge access permission waits until the bridge is cleared, and 

only then issues a new access request-With the help of 2PC protocol concept.

4. The system is based on a totally distributed algorithm, without any element of centralization-

With the help of 2PC protocol concept.





6. Problem Encountered: 

While implementing noticed below problems: 

1. Lack of scalability due to the blocking nature of the  2-phase commit protocol. The greatest 

disadvantage  of  the  two-phase  commit  protocol  is  that  it  is  a  blocking  protocol.  If  the coordinator fails permanently, some participants will never resolve their transactions: After a participant has sent an agreement message to the coordinator, it will block until a commit or rollback is received. 

2. once a participant has acknowledged that it is ready to commit, it must be able to commit the 

transaction  afterwards  even  if  it  crashed  in-between.  This  requires  checkpointing  to persistence storage. 

3. The worst-case scenario is when the co-ordinator is itself a participant and grants itself a vote 

on the outcome  of the  protocol. Then a crash to the co-ordinator takes  out both it and a participant,  guaranteeing  that  the  protocol  will  remain  blocked,  and  because  of  only  one failure. 

 

2PC is still a very popular consensus protocol, because it has a low message complexity although in the  failure  case,  if  every  node  decides  to  be  the  recovery  node  the  complexity  can  go  to O(n2)O(n^2)O(n2) ). A client that talks to the co-ordinator can have a reply in 3 message delays’ time. This low latency is very appealing for some applications. 

However, the fact the 2PC can block on co-ordinator failure is a significant problem that dramatically hurts availability. If transactions can be rolled back at any time, then the protocol can recover as nodes time out, but if the protocol has to respect any commit decisions as permanent, the wrong failure can bring the  whole  thing to a juddering halt.  However now we have Three-Phase Commit protocol, which removes the blocking problems from 2PC at the cost of an extra message delay. 





Conclusions: 

 

This book will be helpful for software engineers. This book will also be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policymakers. 

 

*********************************** 
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    bc.height = window.innerHeight  + 'px !important';
    bc.marginTop = '0px !important';
    bc.webkitColumnWidth = window.innerWidth + 'px !important';
    bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+  window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */


function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}




index-93_2.jpg
Oupicate
Akt Comment
Delets lock

Creatoaink .
Mark he biock as Singetonfor simudato)
© Add constait






index-14_2.jpg
L&
e





index-77_1.png
=&
Mt = Mc* Ty

T(Ci, Ti, Di) T






index-75_2.png
idle






index-105_4.png
jose
Robat 1
Vieusizer

aes

RonarT

pose

Robot2
Vieusizer
ges

T

jose
Robota
Vieusizer

aes

Roners





index-12_1.jpg





index-93_1.jpg
Description of
Reautrenent 111

11 e 110
53 pies) |

505 Requirement

Architecture

Compo;

Composite requirement : (£3) AR
2.1 [ Title 2.1

S2)) Title.22

pendabilty

oynamicity





index-97_1.jpg
CS (0] CD

s composed of

s (New)
Prime movr (Now)
Wrapper (Now)
—>oseest






index-57_1.png
Ol procedure propose(vp)

02 Vyi=(LL,..1) - pestimateof
the proposed values

03 V,[pl=v,

04 D,=V,

05 phasel: {asynchronous rounds ,
,1sr,<n-1}

06 forr,:=lton-1

07 send(t,,D,p)toall

08 wait until (Vq: received(r,, D,
,qorqeFD)

®  mesE)={6,. Dy, 9 |
received (t,, Dy, @)}

10 D,=(LL.1)

11 fork=1ton

12

13
14
15
16

17

18
19

20

if Vp(k)=_Land E (rp,Dq,q) €
msgsp(rp)
with Dq(k) not= L then
Vp(k):=Dq(k)
Dp(k):=Da(k)
phase2: send Vp to all
wait until (V q: received Vq or q
< FDp)
lastmsgsp = {Vq | received Vq}
for k:=1 ton
if V Vq € lastmsgsp with Vq(k)
=0
then Vp(k):=1
phase3: decide (first non L compon
of Vp)






index-75_1.jpg
(k>0 if 7 is running
ot)=<
Lo if the processor is idle





index-88_1.jpg
Has - Gomectng steay (1)

Has .- ntertsco speifcaton (1)

Has - nttace g 1) Has - Mossage cassfcaton(1): G
Has 3 Aoent envonmen 1) Hasa- Teaer () €I

Has - Eferentenionment (1)
Has .- mrace e (1)

Provies xchange o -Seie 5
o —
Connects - RUM )

s monsore ough - rese )

Sttt e condtonof - Securty )






