

ptg

Praise for The Clean Coder

“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his

expectation for a professional programmer on management interactions, time

management, pressure, on collaboration, and on the choice of tools to use. Beyond

TDD and ATDD, Martin explains what every programmer who considers him- or

herself a professional not only needs to know, but also needs to follow in order to

make the young profession of software development grow.”

 —Markus Gärtner

 Senior Software Developer

 it-agile GmbH

 www.it-agile.de

 www.shino.de

“Some technical books inspire and teach; some delight and amuse. Rarely does a

technical book do all four of these things. Robert Martin’s always have for me and

 The Clean Coder is no exception. Read, learn, and live the lessons in this book and

ptg

you can accurately call yourself a software professional.”

 —George Bullock

 Senior Program Manager

 Microsoft Corp.

“If a computer science degree had ‘required reading for after you graduate,’ this

would be it. In the real world, your bad code doesn’t vanish when the semester’s

over, you don’t get an A for marathon coding the night before an assignment’s due,

and, worst of all, you have to deal with people. So, coding gurus are not necessarily

professionals. The Clean Coder describes the journey to professionalism . . . and it

does a remarkably entertaining job of it.”

 —Jeff Overbey

 University of Illinois at Urbana-Champaign

“The Clean Coder is much more than a set of rules or guidelines. It contains hard-

earned wisdom and knowledge that is normally obtained through many years of

trial and error or by working as an apprentice to a master craftsman. If you call

yourself a software professional, you need this book.”

 —R. L. Bogetti

 Lead System Designer

 Baxter Healthcare

 www.RLBogetti.com

 This page intentionally left blank

ptg

The Clean Coder

ptg

The Robert C. Martin Series

Visit informit.com/martinseries for a complete list of available publications.

ptg

The Robert C. Martin Series is directed at software developers, team-

leaders, business analysts, and managers who want to increase their

skills and proficiency to the level of a Master Craftsman. The series contains

books that guide software professionals in the principles, patterns, and

practices of programming, software project management, requirements

gathering, design, analysis, testing and others.

The Clean Coder

A CODE OF CONDUCT FOR

PROFESSIONAL PROGRAMMERS

ptg

Robert C. Martin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales

international@pearson.com

Visit us on the Web: www.informit.com/ph

ptg

 Library of Congress Cataloging-in-Publication Data

Martin, Robert C.

The clean coder : a code of conduct for professional programmers / Robert Martin.

p. cm.

Includes bibliographical references and index.

ISBN 0-13-708107-3 (pbk. : alk. paper)

1. Computer programming—Moral and ethical aspects. 2. Computer

programmers—Professional ethics. I. Title.

QA76.9.M65M367 2011

005.1092—dc22

2011005962

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department

501 Boylston Street, Suite 900

Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-13-708107-3

ISBN-10:

0-13-708107-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, May 2011

Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from

Teradyne. He and I shared a passion for programming and for clean code.

We would spend nights, evenings, and weekends together playing with different

ptg

programming styles and design techniques. We were continually scheming

about business ideas. Eventually we formed Object Mentor, Inc., together.

I learned many things from Jim as we plied our schemes together. But one of

the most important was his attitude of work ethic; it was something I strove to

emulate. Jim is a professional. I am proud to have worked with him, and to call

him my friend.

 This page intentionally left blank

ptg

CONTENTS

Foreword

xiii

ptg

Preface

xix

Acknowledgments

xxiii

About the Author

xxix

On the Cover

xxxi

Pre-Requisite Introduction

1

Chapter 1

Professionalism

7

Be Careful What You Ask For

8

Taking Responsibility

8

First, Do No Harm

11

Work Ethic

16

Bibliography

22

Chapter 2

Saying No

23

Adversarial Roles

26

High Stakes

29

Being a “Team Player”

30

The Cost of Saying Yes

36

Code Impossible

41

ix

CONTENTS

Chapter 3

Saying Yes

45

A Language of Commitment

47

Learning How to Say “Yes”

52

Conclusion

56

Chapter 4

Coding

57

Preparedness

58

The Flow Zone

62

Writer’s Block

64

Debugging

66

Pacing Yourself

69

Being Late

71

Help

73

Bibliography

76

Chapter 5

Test Driven Development

77

ptg

The Jury Is In

79

The Three Laws of TDD

79

What TDD Is Not

83

Bibliography

84

Chapter 6

Practicing

85

Some Background on Practicing

86

The Coding Dojo

89

Broadening Your Experience

93

Conclusion

94

Bibliography

94

Chapter 7

Acceptance Testing

95

Communicating Requirements

95

Acceptance Tests

100

Conclusion

111

Chapter 8

Testing Strategies

113

QA Should Find Nothing

114

x

CONTENTS

The Test Automation Pyramid

115

Conclusion

119

Bibliography

119

Chapter 9

Time Management

121

Meetings

122

Focus-Manna

127

Time Boxing and Tomatoes

130

Avoidance

131

Blind Alleys

131

Marshes, Bogs, Swamps, and Other Messes

132

Conclusion

133

Chapter 10

Estimation

135

What Is an Estimate?

138

PERT

141

ptg

Estimating Tasks

144

The Law of Large Numbers

147

Conclusion

147

Bibliography

148

Chapter 11

Pressure

149

Avoiding Pressure

151

Handling Pressure

153

Conclusion

155

Chapter 12

Collaboration

157

Programmers versus People

159

Cerebellums

164

Conclusion

166

Chapter 13

Teams and Projects

167

Does It Blend?

168

Conclusion

171

Bibliography

171

xi

CONTENTS

Chapter 14

Mentoring, Apprenticeship, and Craftsmanship

173

Degrees of Failure

174

Mentoring

174

Apprenticeship

180

Craftsmanship

184

Conclusion

185

Appendix A Tooling

187

Tools

189

Source Code Control

189

IDE/Editor

194

Issue Tracking

196

Continuous Build

197

Unit Testing Tools

198

Component Testing Tools

199

Integration Testing Tools

200

ptg

UML/MDA

201

Conclusion

204

Index

205

xii

FOREWORD

ptg

You’ve picked up this book, so I assume you are a software professional. That’s

good; so am I. And since I have your attention, let me tell you why I picked up

this book.

It all starts a short time ago in a place not too far away. Cue the curtain, lights

and camera, Charley ….

Several years ago I was working at a medium-sized corporation selling highly

regulated products. You know the type; we sat in a cubicle farm in a three-story

building, directors and up had private offices, and getting everyone you needed

into the same room for a meeting took a week or so.

We were operating in a very competitive market when the government opened

up a new product.

Suddenly we had an entirely new set of potential customers; all we had to do

was to get them to buy our product. That meant we had to file by a certain

deadline with the federal government, pass an assessment audit by another date,

and go to market on a third date.

xiii

FOREWORD

Over and over again our management stressed to us the importance of those

dates. A single slip and the government would keep us out of the market for a

year, and if customers couldn’t sign up on day one, then they would all sign up

with someone else and we’d be out of business.

It was the sort of environment in which some people complain, and others

point out that “pressure makes diamonds.”

I was a technical project manager, promoted from development. My responsibility

was to get the web site up on go-live day, so potential customers could download

information and, most importantly, enrollment forms. My partner in the endeavor

was the business-facing project manager, whom I’ll call Joe. Joe’s role was to work

the other side, dealing with sales, marketing, and the non-technical requirements.

He was also the guy fond of the “pressure makes diamonds” comment.

If you’ve done much work in corporate America, you’ve probably seen the

ptg

finger-pointing, blamestorming, and work aversion that is completely natural.

Our company had an interesting solution to that problem with Joe and me.

A little bit like Batman and Robin, it was our job to get things done. I met with

the technical team every day in a corner; we’d rebuild the schedule every single

day, figure out the critical path, then remove every possible obstacle from that

critical path. If someone needed software; we’d go get it. If they would “love to”

configure the firewall but “gosh, it’s time for my lunch break,” we would buy

them lunch. If someone wanted to work on our configuration ticket but had

other priorities, Joe and I would go talk to the supervisor.

Then the manager.

Then the director.

We got things done.

It’s a bit of an exaggeration to say that we kicked over chairs, yelled, and

screamed, but we did use every single technique in our bag to get things done,

invented a few new ones along the way, and we did it in an ethical way that I am

proud of to this day.

xiv

FOREWORD

I thought of myself as a member of the team, not above jumping in to write a

SQL statement or doing a little pairing to get the code out the door. At the time,

I thought of Joe the same way, as a member of the team, not above it.

Eventually I came to realize that Joe did not share that opinion. That was a very

sad day for me.

It was Friday at 1:00 pm; the web site was set to go live very early the following

Monday.

We were done. *DONE*. Every system was go; we were ready. I had the entire

tech team assembled for the final scrum meeting and we were ready to flip the

switch. More than “just” the technical team, we had the business folks from

marketing, the product owners, with us.

We were proud. It was a good moment.

ptg

Then Joe dropped by.

He said something like, “Bad news. Legal doesn’t have the enrollment forms

ready, so we can’t go live yet.”

This was no big deal; we’d been held up by one thing or another for the length

of the entire project and had the Batman/Robin routine down pat. I was ready,

and my reply was essentially, “All right partner, let’s do this one more time.

Legal is on the third floor, right?”

Then things got weird.

Instead of agreeing with me, Joe asked, “What are you talking about Matt?”

I said, “You know. Our usual song and dance. We’re talking about four PDF

files, right? That are done; legal just has to approve them? Let’s go hang out in

their cubicles, give them the evil eye, and get this thing done!”

Joe did not agree with my assessment, and answered, “We’ll just go live late next

week. No big deal.”

xv

FOREWORD

You can probably guess the rest of the exchange; it sounded something like this:

Matt: “But why? They could do this in a couple hours.”

Joe:

“It might take more than that.”

Matt: “But they’ve got all weekend. Plenty of time. Let’s do this!”

Joe:

“Matt, these are professionals. We can’t just stare them down and

insist they sacrifice their personal lives for our little project.”

Matt: (pause) “. . . Joe . . . what do you think we’ve been doing to the

engineering team for the past four months?”

Joe:

“Yes, but these are professionals.”

Pause.

Breathe.

ptg

What. Did. Joe. Just. Say?

At the time, I thought the technical staff were professionals, in the best sense of

the word.

Thinking back over it again, though, I’m not so sure.

Let’s look at that Batman and Robin technique a second time, from a different

perspective. I thought I was exhorting the team to its best performance, but I

suspect Joe was playing a game, with the implicit assumption that the technical

staff was his opponent. Think about it: Why was it necessary to run around,

kicking over chairs and leaning on people?

Shouldn’t we have been able to ask the staff when they would be done, get a

firm answer, believe the answer we were given, and not be burned by that belief?

Certainly, for professionals, we should . . . and, at the same time, we could not.

Joe didn’t trust our answers, and felt comfortable micromanaging the tech

xvi

FOREWORD

team—and at the same time, for some reason, he did trust the legal team and

was not willing to micromanage them.

What’s that all about?

Somehow, the legal team had demonstrated professionalism in a way the

technical team had not.

Somehow, another group had convinced Joe that they did not need a babysitter,

that they were not playing games, and that they needed to be treated as peers

who were respected.

No, I don’t think it had anything to do with fancy certificates hanging on walls

or a few extra years of college, although those years of college might have

included a fair bit of implicit social training on how to behave.

ptg

Ever since that day, those long years ago, I’ve wondered how the technical

profession would have to change in order to be regarded as professionals.

Oh, I have a few ideas. I’ve blogged a bit, read a lot, managed to improve my

own work life situation and help a few others. Yet I knew of no book that laid

out a plan, that made the whole thing explicit.

Then one day, out of the blue, I got an offer to review an early draft of a book;

the book that you are holding in your hands right now.

This book will tell step by step exactly how to present yourself and interact as a

professional. Not with trite cliché, not with appeals to pieces of paper, but what

you can do and how to do it.

In some cases, the examples are word for word.

Some of those examples have replies, counter-replies, clarifications, even advice

for what to do if the other person tries to “just ignore you.”

xvii

FOREWORD

Hey, look at that, here comes Joe again, stage left this time:

Oh, here we are, back at BigCo, with Joe and me, once more on the big web site

conversion project.

Only this time, imagine it just a little bit differently.

Instead of shirking from commitments, the technical staff actually makes them.

Instead of shirking from estimates or letting someone else do the planning

(then complaining about it), the technical team actually self-organizes and

makes real commitments.

Now imagine that the staff is actually working together. When the programmers

are blocked by operations, they pick up the phone and the sysadmin actually

gets started on the work.

ptg

When Joe comes by to light a fire to get ticket 14321 worked on, he doesn’t need

to; he can see that the DBA is working diligently, not surfing the web. Likewise,

the estimates he gets from staff seem downright consistent, and he doesn’t get

the feeling that the project is in priority somewhere between lunch and

checking email. All the tricks and attempts to manipulate the schedule are not

met with, “We’ll try,” but instead, “That’s our commitment; if you want to make

up your own goals, feel free.”

After a while, I suspect Joe would start to think of the technical team as, well,

professionals. And he’d be right.

Those steps to transform your behavior from technician to professional? You’ll

find them in the rest of the book.

Welcome to the next step in your career; I suspect you are going to like it.

 —Matthew Heusser

 Software Process Naturalist

xviii

PREFACE

ptg

At 11:39 am EST on January 28, 1986, just 73.124 seconds after launch and at an

altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by

the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts,

including high school teacher Christa McAuliffe, were lost. The expression on

the face of McAuliffe’s mother as she watched the demise of her daughter nine

miles overhead haunts me to this day.

The Challenger broke up because hot exhaust gasses in the failing SRB leaked

out from between the segments of its hull, splashing across the body of the

xix

PREFACE

external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting

the fuel and driving the tank forward to smash into the liquid oxygen tank

above it. At the same time the SRB detached from its aft strut and rotated

around its forward strut. Its nose punctured the liquid oxygen tank. These

aberrant force vectors caused the entire craft, moving well above mach 1.5, to

rotate against the airstream. Aerodynamic forces quickly tore everything to

shreds.

Between the circular segments of the SRB there were two concentric synthetic

rubber O-rings. When the segments were bolted together the O-rings were

compressed, forming a tight seal that the exhaust gasses should not have been

able to penetrate.

But on the evening before the launch, the temperature on the launch pad got

down to 17°F, 23 degrees below the O-rings’ minimum specified temperature

and 33 degrees lower than any previous launch. As a result, the O-rings grew

ptg

too stiff to properly block the hot gasses. Upon ignition of the SRB there was a

pressure pulse as the hot gasses rapidly accumulated. The segments of the

booster ballooned outward and relaxed the compression on the O-rings. The

stiffness of the O-rings prevented them from keeping the seal tight, so some

of the hot gasses leaked through and vaporized the O-rings across 70 degrees

of arc.

The engineers at Morton Thiokol who designed the SRB had known that there

were problems with the O-rings, and they had reported those problems to

managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings

from previous launches had been damaged in similar ways, though not enough

to be catastrophic. The coldest launch had experienced the most damage. The

engineers had designed a repair for the problem, but implementation of that

repair had been long delayed.

The engineers suspected that the O-rings stiffened when cold. They also knew

that temperatures for the Challenger launch were colder than any previous

launch and well below the red-line. In short, the engineers knew that the risk

was too high. The engineers acted on that knowledge. They wrote memos

xx

PREFACE

raising giant red flags. They strongly urged Thiokol and NASA managers not to

launch. In an eleventh-hour meeting held just hours before the launch, those

engineers presented their best data. They raged, and cajoled, and protested. But

in the end, the managers ignored them.

When the time for launch came, some of the engineers refused to watch the

broadcast because they feared an explosion on the pad. But as the Challenger

climbed gracefully into the sky they began to relax. Moments before the

destruction, as they watched the vehicle pass through Mach 1, one of them said

that they’d “dodged a bullet.”

Despite all the protest and memos, and urgings of the engineers, the managers

believed they knew better. They thought the engineers were overreacting. They

didn’t trust the engineers’ data or their conclusions. They launched because they

were under immense financial and political pressure. They hoped everything

would be just fine.

ptg

These managers were not merely foolish, they were criminal. The lives of seven

good men and women, and the hopes of a generation looking toward space

travel, were dashed on that cold morning because those managers set their own

fears, hopes, and intuitions above the words of their own experts. They made a

decision they had no right to make. They usurped the authority of the people

who actually knew: the engineers.

But what about the engineers? Certainly the engineers did what they were

supposed to do. They informed their managers and fought hard for their

position. They went through the appropriate channels and invoked all the right

protocols. They did what they could, within the system—and still the managers

overrode them. So it would seem that the engineers can walk away without

blame.

But sometimes I wonder whether any of those engineers lay awake at night,

haunted by that image of Christa McAuliffe’s mother, and wishing they’d called

Dan Rather.

xxi

PREFACE

ABOUT THIS BOOK

This book is about software professionalism. It contains a lot of pragmatic

advice in an attempt to answer questions, such as

• What is a software professional?

• How does a professional behave?

• How does a professional deal with conflict, tight schedules, and unreasonable

managers?

• When, and how, should a professional say “no”?

• How does a professional deal with pressure?

But hiding within the pragmatic advice in this book you will find an attitude

struggling to break through. It is an attitude of honesty, of honor, of self-

respect, and of pride. It is a willingness to accept the dire responsibility of being

a craftsman and an engineer. That responsibility includes working well and

ptg

working clean. It includes communicating well and estimating faithfully. It

includes managing your time and facing difficult risk-reward decisions.

But that responsibility includes one other thing—one frightening thing. As an

engineer, you have a depth of knowledge about your systems and projects that

no managers can possibly have. With that knowledge comes the responsibility

to act.

BIBLIOGRAPHY

[McConnell87]: Malcolm McConnell, Challenger ‘A Major Malfunction’, New

York, NY: Simon & Schuster, 1987

[Wiki-Challenger]: “Space Shuttle Challenger disaster,”

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

xxii

ACKNOWLEDGMENTS

ptg

My career has been a series of collaborations and schemes. Though I’ve had

many private dreams and aspirations, I always seemed to find someone to share

them with. In that sense I feel a bit like the Sith, “Always two there are.”

The first collaboration that I could consider professional was with John

Marchese at the age of 13. He and I schemed about building computers

together. I was the brains and he was the brawn. I showed him where to solder a

wire and he soldered it. I showed him where to mount a relay and he mounted

it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built

quite a few very impressive-looking objects with relays, buttons, lights, even

Teletypes! Of course, none of them actually did anything, but they were very

impressive and we worked very hard on them. To John: Thank you!

In my freshman year of high school I met Tim Conrad in my German class.

Tim was smart. When we teamed up to build a computer, he was the brains and

I was the brawn. He taught me electronics and gave me my first introduction to

a PDP-8. He and I actually built a working electronic 18-bit binary calculator

out of basic components. It could add, subtract, multiply, and divide. It took us

a year of weekends and all of spring, summer, and Christmas breaks. We worked

furiously on it. In the end, it worked very nicely. To Tim: Thank you!

xxiii

ACKNOWLEDGMENTS

Tim and I learned how to program computers. This wasn’t easy to do in 1968,

but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1,

among others. We devoured them. We wrote programs that we had no hope of

executing because we did not have access to a computer. But we wrote them

anyway for the sheer love of it.

Our high school started a computer science curriculum in our sophomore year.

They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had

an account on the Univac 1108 time-sharing system at the Illinois Institute of

Technology. Tim and I immediately became the de facto operators of that

machine. Nobody else could get near it.

The modem was connected by picking up the telephone and dialing the

number. When you heard the answering modem squeal, you pushed the “orig”

button on the Teletype causing the originating modem to emit its own squeal.

Then you hung up the phone and the data connection was established.

ptg

The phone had a lock on the dial. Only the teachers had the key. But that didn’t

matter, because we learned that you could dial a phone (any phone) by tapping

out the phone number on the switch hook. I was a drummer, so I had pretty

good timing and reflexes. I could dial that modem, with the lock in place, in less

than 10 seconds.

We had two Teletypes in the computer lab. One was the online machine and the

other was an offline machine. Both were used by students to write their

programs. The students would type their programs on the Teletypes with the

paper tape punch engaged. Every keystroke was punched on tape. The students

wrote their programs in IITran, a remarkably powerful interpreted language.

Students would leave their paper tapes in a basket near the Teletypes.

After school, Tim and I would dial up the computer (by tapping of course),

load the tapes into the IITran batch system, and then hang up. At 10 characters

per second, this was not a quick procedure. An hour or so later, we’d call back

and get the printouts, again at 10 characters per second. The Teletype did not

separate the students’ listings by ejecting pages. It just printed one after the next

xxiv

ACKNOWLEDGMENTS

after the next, so we cut them apart using scissors, paper-clipped their input

paper tape to their listing, and put them in the output basket.

Tim and I were the masters and gods of that process. Even the teachers left us

alone when we were in that room. We were doing their job, and they knew it.

They never asked us to do it. They never told us we could. They never gave us

the key to the phone. We just moved in, and they moved out—and they gave us

a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr.

Robien: Thank you!

Then, after all the student homework was done, we would play. We wrote

program after program to do any number of mad and weird things. We wrote

programs that graphed circles and parabolas in ASCII on a Teletype. We wrote

random walk programs and random word generators. We calculated 50 factorial

to the last digit. We spent hours and hours inventing programs to write and

then getting them to work.

ptg

Two years later, Tim, our compadre Richard Lloyd, and I were hired as

programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the

time. We had decided that college was a waste of time and that we should begin

our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big

Jim Carlin, and John Miller. They gave some youngsters the opportunity to

learn what professional programming was all about. The experience was not all

positive and not all negative. It was certainly educational. To all of them, and to

Richard who catalyzed and drove much of that process: Thank you.

After quitting and melting down at the age of 20, I did a stint as a lawn mower

repairman working for my brother-in-law. I was so bad at it that he had to fire

me. Thanks, Wes!

A year or so later I wound up working at Outboard Marine Corporation. By

this time I was married and had a baby on the way. They fired me too. Thanks,

John, Ralph, and Tom!

xxv

ACKNOWLEDGMENTS

Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob

Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss.

Chuck and CK were my buds. I learned so much from all of them. Thanks, guys!

Then there was Mike Carew. At Teradyne, he and I became the dynamic duo.

We wrote several systems together. If you wanted to get something done, and

done fast, you got Bob and Mike to do it. We had a load of fun together.

Thanks, Mike!

Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons &

Dragons together, but quickly formed a collaboration. We wrote software on a

Commodore 64 to support D&D users. We also started a new project at

Teradyne called “The Electronic Receptionist.” We worked together for several

years, and he became, and remains, a great friend. Thanks, Jerry!

I spent a year in England while working for Teradyne. There I teamed up with

ptg

Mike Kergozou. He and I schemed together about all manner of things, though

most of those schemes had to do with bicycles and pubs. But he was a dedicated

programmer who was very focused on quality and discipline (though, perhaps

he would disagree). Thanks, Mike!

Returning from England in 1987, I started scheming with Jim Newkirk. We

both left Teradyne (months apart) and joined a start-up named Clear

Communications. We spent several years together there toiling to make the

millions that never came. But we continued our scheming. Thanks, Jim!

In the end we founded Object Mentor together. Jim is the most direct,

disciplined, and focused person with whom I’ve ever had the privilege to work.

He taught me so many things, I can’t enumerate them here. Instead, I have

dedicated this book to him.

There are so many others I’ve schemed with, so many others I’ve collaborated

with, so many others who have had an impact on my professional life: Lowell

Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean

Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis,

xxvi

ACKNOWLEDGMENTS

Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch,

and an endless list of others. Thank you, one and all.

Of course, the greatest collaborator of my life has been my lovely wife, Ann

Marie. I married her when I was 20, three days after she turned 18. For 38 years

she has been my steady companion, my rudder and sail, my love and my life. I

look forward to another four decades with her.

And now, my collaborators and scheming partners are my children. I work

closely with my eldest daughter Angela, my lovely mother hen and intrepid

assistant. She keeps me on the straight and narrow and never lets me forget a

date or commitment. I scheme business plans with my son Micah, the founder

of 8thlight.com. His head for business is far better than mine ever was. Our

latest venture, cleancoders.com, is very exciting!

My younger son Justin has just started working with Micah at 8th Light. My

ptg

younger daughter Gina is a chemical engineer working for Honeywell. With

those two, the serious scheming has just begun!

No one in your life will teach you more than your children will. Thanks, kids!

xxvii

 This page intentionally left blank

ptg

ABOUT THE AUTHOR

ptg

Robert C. Martin (“Uncle Bob”) has been a programmer since 1970. He is

founder and president of Object Mentor, Inc., an international firm of highly

experienced software developers and managers who specialize in helping

companies get their projects done. Object Mentor offers process improvement

consulting, object-oriented software design consulting, training, and skill

development services to major corporations worldwide.

Martin has published dozens of articles in various trade journals and is a

regular speaker at international conferences and trade shows.

He has authored and edited many books, including:

• Designing Object Oriented C++ Applications Using the Booch Method

• Patterns Languages of Program Design 3

xxix

ABOUT THE AUTHOR

• More C++ Gems

• Extreme Programming in Practice

• Agile Software Development: Principles, Patterns, and Practices

• UML for Java Programmers

• Clean Code

A leader in the industry of software development, Martin served for three years

as editor-in-chief of the C++ Report, and he served as the first chairman of the

Agile Alliance.

Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with

his son Micah Martin of The Clean Coders LLC.

ptg

xxx

ON THE COV E R

ptg

The stunning image on the cover, reminiscent of Sauron’s eye, is M1, the Crab

Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the

star at the tip of the bull’s left horn. The crab nebula is the remnant of a super-

nova that blew its guts all over the sky on the rather auspicious date of July 4th,

1054 ad. At a distance of 6500 light years, that explosion appeared to Chinese

xxxi

ON THE COVER

observers as a new star, roughly as bright as Jupiter. Indeed, it was visible during

 the day! Over the next six months it slowly faded from naked-eye view.

The cover image is a composite of visible and x-ray light. The visible image was

taken by the Hubble telescope and forms the outer envelope. The inner object

that looks like a blue archery target was taken by the Chandra x-ray telescope.

The visible image depicts a rapidly expanding cloud of dust and gas laced with

heavy elements left over from the supernova explosion. That cloud is now 11

light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the

furious rate of 1500 kilometers per second. The kinetic energy of that old

explosion is impressive to say the least.

At the very center of the target is a bright blue dot. That’s where the pulsar is. It was the formation of the pulsar that caused the star to blow up in the first place.

Nearly a solar mass of material in the core of the doomed star imploded into a

ptg

sphere of neutrons about 30 kilometers in diameter. The kinetic energy of that

implosion, coupled with the incredible barrage of neutrinos created when all

those neutrons formed, ripped the star open, and blew it to kingdom come.

The pulsar is spinning about 30 times per second; and it flashes as it spins. We

can see it blinking in our telescopes. Those pulses of light are the reason we call

it a pulsar, which is short for Pulsating Star.

xxxii

PRE -REQUISITE

INTRODUCTION

 (Don’t skip this, you’re going to need it.)

ptg

I presume you just picked up this book because you are a computer

programmer and are intrigued by the notion of professionalism. You should be.

Professionalism is something that our profession is in dire need of.

I’m a programmer too. I’ve been a programmer for 421 years; and in that time—

 let me tell you—I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a

team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant

1. Don’t Panic.

1

PRE-REQUISITE INTRODUCTION

programmers and I’ve worked with slugs.2 I’ve worked on high-tech cutting-

edge embedded software/hardware systems, and I’ve worked on corporate

payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11,

C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems.

I’ve worked with untrustworthy paycheck thieves, and I’ve worked with

consummate professionals. It is that last classification that is the topic of this

book.

In the pages of this book I will try to define what it means to be a professional

programmer. I will describe the attitudes, disciplines, and actions that I consider

to be essentially professional.

How do I know what these attitudes, disciplines, and actions are? Because I had

to learn them the hard way. You see, when I got my first job as a programmer,

professional was the last word you’d have used to describe me.

ptg

The year was 1969. I was 17. My father had badgered a local business named

ASC into hiring me as a temporary part-time programmer. (Yes, my father

could do things like that. I once watched him walk out in front of a speeding

car with his hand out commanding it to “Stop!” The car stopped. Nobody said

“no” to my Dad.) The company put me to work in the room where all the IBM

computer manuals were kept. They had me put years and years of updates into

the manuals. It was here that I first saw the phrase: “This page intentionally left

blank.”

After a couple of days of updating manuals, my supervisor asked me to write a

simple Easycoder3 program. I was thrilled to be asked. I’d never written a

program for a real computer before. I had, however, inhaled the Autocoder

books, and had a vague notion of how to begin.

The program was simply to read records from a tape, and replace the IDs of

those records with new IDs. The new IDs started at 1 and were incremented by

2. A technical term of unknown origins.

3. Easycoder was the assembler for the Honeywell H200 computer, which was similar to

Autocoder for the IBM 1401 computer.

2

PRE-REQUISITE INTRODUCTION

1 for each new record. The records with the new IDs were to be written to a

new tape.

My supervisor showed me a shelf that held many stacks of red and blue

punched cards. Imagine that you bought 50 decks of playing cards, 25 red

decks, and 25 blue decks. Then you stacked those decks one on top of the other.

That’s what these stacks of cards looked like. They were striped red and blue,

and the stripes were about 200 cards each. Each one of those stripes contained

the source code for the subroutine library that the programmers typically used.

Programmers would simply take the top deck off the stack, making sure that

they took nothing but red or blue cards, and then put that at the end of their

program deck.

I wrote my program on some coding forms. Coding forms were large

rectangular sheets of paper divided into 25 lines and 80 columns. Each line

represented one card. You wrote your program on the coding form using block

ptg

capital letters and a #2 pencil. In the last 6 columns of each line you wrote a

sequence number with that #2 pencil. Typically you incremented the sequence

number by 10 so that you could insert cards later.

The coding form went to the key punchers. This company had several dozen

women who took coding forms from a big in-basket, and then “typed” them

into key-punch machines. These machines were a lot like typewriters, except

that the characters were punched into cards instead of printed on paper.

The next day the keypunchers returned my program to me by inter-office mail.

My small deck of punched cards was wrapped up by my coding forms and a

rubber band. I looked over the cards for keypunch errors. There weren’t any. So

then I put the subroutine library deck on the end of my program deck, and

then took the deck upstairs to the computer operators.

The computers were behind locked doors in an environmentally controlled

room with a raised floor (for all the cables). I knocked on the door and an

operator austerely took my deck from me and put it into another in-basket

inside the computer room. When they got around to it, they would run my

deck.

3

PRE-REQUISITE INTRODUCTION

The next day I got my deck back. It was wrapped in a listing of the results of the

run and kept together with a rubber band. (We used lots of rubber bands in

those days!)

I opened the listing and saw that my compile had failed. The error messages in

the listing were very difficult for me to understand, so I took it to my

supervisor. He looked it over, mumbled under his breath, made some quick

notes on the listing, grabbed my deck and then told me to follow him.

He took me up to the keypunch room and sat at a vacant keypunch machine.

One by one he corrected the cards that were in error, and added one or two

other cards. He quickly explained what he was doing, but it all went by like a

flash.

He took the new deck up to the computer room and knocked at the door. He

said some magic words to one of the operators, and then walked into the

ptg

computer room behind him. He beckoned for me to follow. The operator set up

the tape drives and loaded the deck while we watched. The tapes spun, the

printer chattered, and then it was over. The program had worked.

The next day my supervisor thanked me for my help, and terminated my

employment. Apparently ASC didn’t feel they had the time to nurture a

17-year-old.

But my connection with ASC was hardly over. A few months later I got a full-

time second-shift job at ASC operating off-line printers. These printers printed

junk mail from print images that were stored on tape. My job was to load the

printers with paper, load the tapes into the tape drives, fix paper jams, and

otherwise just watch the machines work.

The year was 1970. College was not an option for me, nor did it hold any

particular enticements. The Viet Nam war was still raging, and the campuses

were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1,

PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as

hard as I could to get a job programming.

4

PRE-REQUISITE INTRODUCTION

Twelve months later I achieved that goal. I was promoted to a full-time

programmer at ASC. I, and two of my good friends, Richard and Tim, also 19,

worked with a team of three other programmers writing a real-time accounting

system for a teamster’s union. The machine was a Varian 620i. It was a simple

mini-computer similar in architecture to a PDP-8 except that it had a 16-bit

word and two registers. The language was assembler.

We wrote every line of code in that system. And I mean every line. We wrote the

operating system, the interrupt heads, the IO drivers, the file system for the

disks, the overlay swapper, and even the relocatable linker. Not to mention all

the application code. We wrote all this in 8 months working 70 and 80 hours a

week to meet a hellish deadline. My salary was $7,200 per year.

We delivered that system. And then we quit.

We quit suddenly, and with malice. You see, after all that work, and after having

ptg

delivered a successful system, the company gave us a 2% raise. We felt cheated

and abused. Several of us got jobs elsewhere and simply resigned.

I, however, took a different, and very unfortunate, approach. I and a buddy

stormed into the boss’ office and quit together rather loudly. This was

emotionally very satisfying—for a day.

The next day it hit me that I did not have a job. I was 19, unemployed, with no

degree. I interviewed for a few programming positions, but those interviews did

not go well. So I worked in my brother-in-law’s lawnmower repair shop for four

months. Unfortunately I was a lousy lawnmower repairman. He eventually had

to let me go. I fell into a nasty funk.

I stayed up till 3 am every night eating pizza and watching old monster movies

on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts

where characters in the movies. I stayed in bed till 1 pm because I didn’t want to

face my dreary days. I took a calculus course at a local community college and

failed it. I was a wreck.

5

PRE-REQUISITE INTRODUCTION

My mother took me aside and told me that my life was a mess, and that I had

been an idiot for quitting without having a new job, and for quitting so

emotionally, and for quitting together with my buddy. She told me that you

never quit without having a new job, and you always quit calmly, coolly, and

alone. She told me that I should call my old boss and beg for my old job back.

She said, “You need to eat some humble pie.”

Nineteen-year-old boys are not known for their appetite for humble pie, and I

was no exception. But the circumstances had taken their toll on my pride. In the

end I called my boss and took a big bite of that humble pie. And it worked. He

was happy to re-hire me for $6,800 per year, and I was happy to take it.

I spent another eighteen months working there, watching my Ps and Qs

and trying to be as valuable an employee as I could. I was rewarded with

promotions and raises, and a regular paycheck. Life was good. When I left that

company, it was on good terms, and with an offer for a better job in my pocket.

ptg

You might think that I had learned my lesson; that I was now a professional. Far

from it. That was just the first of many lessons I needed to learn. In the coming

years I would be fired from one job for carelessly missing critical dates, and

nearly fired from still another for inadvertently leaking confidential information

to a customer. I would take the lead on a doomed project and ride it into the

ground without calling for the help I knew I needed. I would aggressively

defend my technical decisions even though they flew in the face of the

customers’ needs. I would hire one wholly unqualified person, saddling my

employer with a huge liability to deal with. And worst of all, I would get two

other people fired because of my inability to lead.

So think of this book as a catalog of my own errors, a blotter of my own crimes,

and a set of guidelines for you to avoid walking in my early shoes.

6

PROFE 1

S S I O N A LI S M

ptg

 “Oh laugh, Curtin, old boy. It’s a great joke played on us by the Lord, or fate,

 or nature, whatever you prefer. But whoever or whatever played it certainly

 had a sense of humor! Ha!”

 — Howard, The Treasure of the Sierra Madre

7

CHAPTER 1 PROFESSIONALISM

So, you want to be a professional software developer do you? You want to hold

your head high and declare to the world: “I am a professional! ” You want people

to look at you with respect and treat you with deference. You want mothers

pointing at you and telling their children to be like you. You want it all. Right?

BE CAREFUL WHAT YOU ASK FOR

Professionalism is a loaded term. Certainly it is a badge of honor and pride, but

it is also a marker of responsibility and accountability. The two go hand in

hand, of course. You can’t take pride and honor in something that you can’t be

held accountable for.

It’s a lot easier to be a nonprofessional. Nonprofessionals don’t have to take

responsibility for the job they do—they leave that to their employers. If a

nonprofessional makes an error, the employer cleans up the mess. But when a

professional makes a mistake , he cleans up the mess.

ptg

What would happen if you allowed a bug to slip through a module, and it cost

your company $10,000? The nonprofessional would shrug his shoulders, say

“stuff happens,” and start writing the next module. The professional would

write the company a check for $10,000!1

Yeah, it feels a little different when it’s your own money, doesn’t it? But that

feeling is the feeling a professional has all the time. Indeed, that feeling is the

essence of professionalism. Because, you see, professionalism is all about taking

responsibility.

TAKING RESPONSIBILITY

You read the introduction, right? If not, go back and do so now; it sets the

context for everything that follows in this book.

I learned about taking responsibility by suffering through the consequences of

not taking it.

1. Hopefully he has a good Errors and Omissions policy!

8

TAKING RESPONSIBILITY

In 1979 I was working for a company named Teradyne. I was the “responsible

engineer” for the software that controlled a mini- and microcomputer-based

system that measured the quality of telephone lines. The central mini-computer

was connected via 300-baud dedicated or dial-up phone lines to dozens of

satellite micro-computers that controlled the measurement hardware. The code

was all written in assembler.

Our customers were the service managers of major telephone companies. Each

had the responsibility for 100,000 telephone lines or more. My system helped

these service area managers find and repair malfunctions and problems in the

telephone lines before their customers noticed them. This reduced the customer

complaint rates that the public utility commissions measured and used to

regulate the rates that the telephone companies could charge. In short, these

systems were incredibly important.

Every night these systems ran through a “nightly routine” in which the central

ptg

mini-computer told each of the satellite micro-computers to test every

telephone line under their control. Each morning the central computer would

pull back the list of faulty lines, along with their failing characteristics. The

service area managers would use this report to schedule repairmen to fix the

faults before the customers could complain.

On one occasion I shipped a new release to several dozen customers. “Ship” is

exactly the right word. I wrote the software onto tapes and shipped those tapes

to the customers. The customers loaded the tapes and then rebooted the

systems.

The new release fixed some minor defects and added a new feature that our

customers had been demanding. We had told them we would provide that new

feature by a certain date. I barely managed to overnight the tapes so that they’d

arrive on the promised date.

Two days later I got a call from our field service manager, Tom. He told me that

several customers had complained that the “nightly routine” had not completed,

and that they had gotten no reports. My heart sank because in order to ship the

software on time, I had neglected to test the routine. I had tested much of the

9

CHAPTER 1 PROFESSIONALISM

other functionality of the system, but testing the routine took hours, and I

needed to ship the software. None of the bug fixes were in the routine code, so I

felt safe.

Losing a nightly report was a big deal. It meant that the repairmen had less to

do and would be overbooked later. It meant that some customers might notice a

fault and complain. Losing a night’s worth of data is enough to get a service

area manager to call Tom and lambaste him.

I fired up our lab system, loaded the new software, and then started a routine. It

took several hours but then it aborted. The routine failed. Had I run this test

before I shipped, the service areas wouldn’t have lost data, and the service area

managers wouldn’t be roasting Tom right now.

I phoned Tom to tell him that I could duplicate the problem. He told me that most

of the other customers had called him with the same complaint. Then he asked me

ptg

when I could fix it. I told him I didn’t know, but that I was working on it. In the

meantime I told him that the customers should go back to the old software. He

was angry at me saying that this was a double blow to the customers since they’d

lost a whole night’s worth of data and couldn’t use the new feature they were

promised.

The bug was hard to find, and testing took several hours. The first fix didn’t

work. Nor did the second. It took me several tries, and therefore several days, to

figure out what had gone wrong. The whole time, Tom was calling me every few

hours asking me when I’d have this fixed. He also made sure I knew about the

earfuls he was getting from the service area managers, and just how

embarrassing it was for him to tell them to put the old tapes back in.

In the end, I found the defect, shipped the new tapes, and everything went back

to normal. Tom, who was not my boss, cooled down and we put the whole

episode behind us. My boss came to me when it was over and said, “I bet you

aren’t going to do that again.” I agreed.

Upon reflection I realized that shipping without testing the routine had been

irresponsible. The reason I neglected the test was so I could say I had shipped

10

FIRST, DO NO HARM

on time. It was about me saving face. I had not been concerned about the

customer, nor about my employer. I had only been concerned about my own

reputation. I should have taken responsibility early and told Tom that the tests

weren’t complete and that I was not prepared to ship the software on time. That

would have been hard, and Tom would have been upset. But no customers

would have lost data, and no service managers would have called.

FIRST, DO NO HARM

So how do we take responsibility? There are some principles. Drawing from the

Hippocratic oath may seem arrogant, but what better source is there? And,

indeed, doesn’t it make sense that the first responsibility, and first goal, of an

aspiring professional is to use his or her powers for good?

What harm can a software developer do? From a purely software point of view,

he or she can do harm to both the function and structure of the software. We’ll

ptg

explore how to avoid doing just that.

DO NO HARM TO FUNCTION

Clearly, we want our software to work. Indeed, most of us are programmers

today because we got something to work once and we want that feeling again.

But we aren’t the only ones who want the software to work. Our customers and

employers want it to work too. Indeed, they are paying us to create software that

works just the way they want it to.

We harm the function of our software when we create bugs. Therefore, in order

to be professional, we must not create bugs.

“But wait!” I hear you say. “That’s not reasonable. Software is too complex to

create without bugs.”

Of course you are right. Software is too complex to create without bugs.

Unfortunately that doesn’t let you off the hook. The human body is too

complex to understand in it’s entirety, but doctors still take an oath to do no

harm. If they don’t take themselves off a hook like that, how can we?

11

CHAPTER 1 PROFESSIONALISM

“Are you telling us we must be perfect?” Do I hear you object?

No, I’m telling you that you must be responsible for your imperfections. The

fact that bugs will certainly occur in your code does not mean you aren’t

responsible for them. The fact that the task to write perfect software is virtually

impossible does not mean you aren’t responsible for the imperfection.

It is the lot of a professional to be accountable for errors even though errors are

virtually certain. So, my aspiring professional, the first thing you must practice

is apologizing. Apologies are necessary, but insufficient. You cannot simply keep

making the same errors over and over. As you mature in your profession, your

error rate should rapidly decrease towards the asymptote of zero. It won’t ever

get to zero, but it is your responsibility to get as close as possible to it.

QA Should Find Nothing

Therefore, when you release your software you should expect QA to find no

ptg

problems. It is unprofessional in the extreme to purposely send code that you

know to be faulty to QA. And what code do you know to be faulty? Any code

you aren’t certain about!

Some folks use QA as the bug catchers. They send them code that they haven’t

thoroughly checked. They depend on QA to find the bugs and report them back

to the developers. Indeed, some companies reward QA based on the number of

bugs they find. The more bugs, the greater the reward.

Never mind that this is a desperately expensive behavior that damages the

company and the software. Never mind that this behavior ruins schedules and

undermines the confidence of the enterprise in the development team. Never

mind that this behavior is just plain lazy and irresponsible. Releasing code to QA

that you don’t know works is unprofessional. It violates the “do no harm” rule.

Will QA find bugs? Probably, so get ready to apologize—and then figure out

why those bugs managed to escape your notice and do something to prevent it

from happening again.

12

FIRST, DO NO HARM

Every time QA, or worse a user, finds a problem, you should be surprised,

chagrined, and determined to prevent it from happening again.

You Must Know It Works

How can you know your code works? That’s easy. Test it. Test it again. Test it up.

Test it down. Test it seven ways to Sunday!

Perhaps you are concerned that testing your code so much will take too much

time. After all you’ve got schedules and deadlines to keep. If you spend all your

time testing, you’ll never get anything else written. Good point! So, automate

your tests. Write unit tests that you can execute on a moment’s notice, and run

those tests as often as you can.

How much of the code should be tested with these automated unit tests? Do

I really need to answer that question? All of it! All. Of. It.

ptg

Am I suggesting 100% test coverage? No, I’m not suggesting it. I’m demanding it.

Every single line of code that you write should be tested. Period.

Isn’t that unrealistic? Of course not. You only write code because you expect it

to get executed. If you expect it to get executed, you ought to know that it

works. The only way to know this is to test it.

I am the primary contributor and committer for an open source project called

FitNesse. As of this writing there are 60ksloc in FitNesse. 26 of those 60 are written

in 2000+ unit tests. Emma reports that the coverage of those 2000 tests is ~90%.

Why isn’t my code coverage higher? Because Emma can’t see all the lines of

code that are being executed! I believe the coverage is much higher than that.

Is the coverage 100%? No, 100% is an asymptote.

But isn’t some code hard to test? Yes, but only because that code has been

 designed to be hard to test. The solution to that is to design your code to be easy to test. And the best way to do that is to write your tests first, before you write

the code that passes them.

13

CHAPTER 1 PROFESSIONALISM

This is a discipline known as Test Driven Development (TDD), which we will

say more about in a later chapter.

Automated QA

The entire QA procedure for FitNesse is the execution of the unit and acceptance

tests. If those tests pass, I ship. This means my QA procedure takes about three

minutes, and I can execute it on a whim.

Now, it’s true that nobody dies if there is a bug in FitNesse. Nobody loses millions

of dollars either. On the other hand, FitNesse has many thousands of users, and a

 very small bug list.

Certainly some systems are so mission-critical that a short automated test is

insufficient to determine readiness for deployment. On the other hand, you as a

developer need a relatively quick and reliable mechanism to know that the code you

have written works and does not interfere with the rest of the system. So, at the very

ptg

least, your automated tests should tell you that the system is very likely to pass QA.

DO NO HARM TO STRUCTURE

The true professional knows that delivering function at the expense of structure

is a fool’s errand. It is the structure of your code that allows it to be flexible. If

you compromise the structure, you compromise the future.

The fundamental assumption underlying all software projects is that software is

easy to change. If you violate this assumption by creating inflexible structures,

then you undercut the economic model that the entire industry is based on.

In short: You must be able to make changes without exorbitant costs.

Unfortunately, all too many projects become mired in a tar pit of poor structure.

Tasks that used to take days begin to take weeks, and then months. Management,

desperate to recapture lost momentum, hires more developers to speed things

up. But these developers simply add to the morass, deepening the structural

damage and raising the impediment.

14

FIRST, DO NO HARM

Much has been written about the principles and patterns of software design that

support structures that are flexible and maintainable.2 Professional software

developers commit these things to memory and strive to conform their software

to them. But there’s a trick to this that far too few software developers follow: If

 you want your software to be flexible, you have to flex it!

The only way to prove that your software is easy to change is to make easy

changes to it. And when you find that the changes aren’t as easy as you thought,

you refine the design so that the next change is easier.

When do you make these easy changes? All the time! Every time you look at a

module you make small, lightweight changes to it to improve its structure.

Every time you read through the code you adjust the structure.

This philosophy is sometimes called merciless refactoring. I call it “the Boy Scout

rule”: Always check in a module cleaner than when you checked it out. Always

make some random act of kindness to the code whenever you see it.

ptg

This is completely counter to the way most people think about software. They

think that making a continuous series of changes to working software is

 dangerous. No! What is dangerous is allowing the software to remain static. If

you aren’t flexing it, then when you do need to change it, you’ll find it rigid.

Why do most developers fear to make continuous changes to their code? They

are afraid they’ll break it! Why are they afraid they’ll break it? Because they

don’t have tests.

It all comes back to the tests. If you have an automated suite of tests that covers

virtually 100% of the code, and if that suite of tests can be executed quickly on

a whim, then you simply will not be afraid to change the code. How do you prove

you are not afraid to change the code? You change it all the time.

Professional developers are so certain of their code and tests that they are

maddeningly casual about making random, opportunistic changes. They’ll

change the name of a class, on a whim. They’ll notice a long-ish method while

2. [PPP2001]

15

CHAPTER 1 PROFESSIONALISM

reading through a module and repartition it as a matter of course. They’ll

transform a switch statement into polymorphic deployment, or collapse an

inheritance hierarchy into a chain-of-command. In short, they treat software

the way a sculptor treats clay—they continuously shape and mold it.

WORK ETHIC

Your career is your responsibility. It is not your employer’s responsibility to

make sure you are marketable. It is not your employer’s responsibility to train

you, or to send you to conferences, or to buy you books. These things are your

responsibility. Woe to the software developer who entrusts his career to his

employer.

Some employers are willing to buy you books and send you to training classes

and conferences. That’s fine, they are doing you a favor. But never fall into the

trap of thinking that this is your employer’s responsibility. If your employer

ptg

doesn’t do these things for you, you should find a way to do them yourself.

It is also not your employer’s responsibility to give you the time you need to

learn. Some employers may provide that time. Some employers may even

demand that you take the time. But again, they are doing you a favor, and you

should be appropriately appreciative. Such favors are not something you should

expect.

You owe your employer a certain amount of time and effort. For the sake of

argument, let’s use the U.S. standard of 40 hours per week. These 40 hours

should be spent on your employer’s problems, not on your problems.

You should plan on working 60 hours per week. The first 40 are for your

employer. The remaining 20 are for you. During this remaining 20 hours you

should be reading, practicing, learning, and otherwise enhancing your career.

I can hear you thinking: “But what about my family? What about my life? Am

I supposed to sacrifice them for my employer?”

16

WORK ETHIC

I’m not talking about all your free time here. I’m talking about 20 extra hours

per week. That’s roughly three hours per day. If you use your lunch hour to

read, listen to podcasts on your commute, and spend 90 minutes per day

learning a new language, you’ll have it all covered.

Do the math. In a week there are 168 hours. Give your employer 40, and your career

another 20. That leaves 108. Another 56 for sleep leaves 52 for everything else.

Perhaps you don’t want to make that kind of commitment. That’s fine, but you

should not then think of yourself as a professional. Professionals spend time

caring for their profession.

Perhaps you think that work should stay at work and that you shouldn’t bring it

home. I agree! You should not be working for your employer during those 20

hours. Instead, you should be working on your career.

ptg

Sometimes these two are aligned with each other. Sometimes the work you do

for your employer is greatly beneficial to your career. In that case, spending

some of that 20 hours on it is reasonable. But remember, those 20 hours are for

 you. They are to be used to make yourself more valuable as a professional.

Perhaps you think this is a recipe for burnout. On the contrary, it is a recipe to

 avoid burnout. Presumably you became a software developer because you are

passionate about software and your desire to be a professional is motivated by

that passion. During that 20 hours you should be doing those things that

 reinforce that passion. Those 20 hours should be fun!

KNOW YOUR FIELD

Do you know what a Nassi-Schneiderman chart is? If not, why not? Do you

know the difference between a Mealy and a Moore state machine? You should.

Could you write a quicksort without looking it up? Do you know what the term

“Transform Analysis” means? Could you perform a functional decomposition

with Data Flow Diagrams? What does the term “Tramp Data” mean? Have you

heard the term “Conascence”? What is a Parnas Table?

17

CHAPTER 1 PROFESSIONALISM

A wealth of ideas, disciplines, techniques, tools, and terminologies decorate the

last fifty years of our field. How much of this do you know? If you want to be a

professional, you should know a sizable chunk of it and constantly be increasing

the size of that chunk.

Why should you know these things? After all, isn’t our field progressing so

rapidly that all these old ideas have become irrelevant? The first part of that

query seems obvious on the surface. Certainly our field is progressing and at a

ferocious pace. Interestingly enough, however, that progress is in many respects

peripheral. It’s true that we don’t wait 24 hours for compile turnaround any

more. It’s true that we write systems that are gigabytes in size. It’s true that we

work in the midst of a globe-spanning network that provides instant access to

information. On the other hand, we are writing the same if and while statements

that we were writing 50 years ago. Much has changed. Much has not.

The second part of the query is certainly not true. Very few ideas of the past 50

ptg

years have become irrelevant. Some have been sidelined, it’s true. The notion of

doing waterfall development has certainly fallen into disfavor. But that doesn’t

mean we shouldn’t know what it is, and what its good and bad points are.

Overall, however, the vast majority of the hard-won ideas of the last 50 years are

as valuable today as they were then. Perhaps they are even more valuable now.

Remember Santayana’s curse: “Those who cannot remember the past are

condemned to repeat it.”

Here is a minimal list of the things that every software professional should be

conversant with:

• Design patterns. You ought to be able to describe all 24 patterns in the GOF book

and have a working knowledge of many of the patterns in the POSA books.

• Design principles. You should know the SOLID principles and have a good

understanding of the component principles.

• Methods. You should understand XP, Scrum, Lean, Kanban, Waterfall,

Structured Analysis, and Structured Design.

18

WORK ETHIC

• Disciplines. You should practice TDD, Object-Oriented design, Structured

Programming, Continuous Integration, and Pair Programming.

• Artifacts: You should know how to use: UML, DFDs, Structure Charts, Petri

Nets, State Transition Diagrams and Tables, flow charts, and decision tables.

CONTINUOUS LEARNING

The frenetic rate of change in our industry means that software developers

must continue to learn copious quantities just to keep up. Woe to the architects

who stop coding—they will rapidly find themselves irrelevant. Woe to the

programmers who stop learning new languages—they will watch as the

industry passes them by. Woe to the developers who fail to learn new disciplines

and techniques—their peers will excel as they decline.

Would you visit a doctor who did not keep current with medical journals?

Would you hire a tax lawyer who did not keep current with the tax laws and

ptg

precedents? Why should employers hire developers who don’t keep current?

Read books, articles, blogs, tweets. Go to conferences. Go to user groups.

Participate in reading and study groups. Learn things that are outside your

comfort zone. If you are a .NET programmer, learn Java. If you are a Java

programmer, learn Ruby. If you are a C programmer, learn Lisp. If you want to

really bend your brain, learn Prolog and Forth!

PR ACTICE

Professionals practice. True professionals work hard to keep their skills sharp

and ready. It is not enough to simply do your daily job and call that practice.

Doing your daily job is performance, not practice. Practice is when you

specifically exercise your skills outside of the performance of your job for the

sole purpose of refining and enhancing those skills.

What could it possibly mean for a software developer to practice? At first

thought the concept seems absurd. But stop and think for a moment. Consider

how musicians master their craft. It’s not by performing. It’s by practicing. And

how do they practice? Among other things, they have special exercises that they

perform. Scales and etudes and runs. They do these over and over to train their

fingers and their mind, and to maintain mastery of their skill.

19

CHAPTER 1 PROFESSIONALISM

So what could software developers do to practice? There’s a whole chapter in

this book dedicated to different practice techniques, so I won’t go into much

detail here. One technique I use frequently is the repetition of simple exercises

such as the Bowling Game or Prime Factors. I call these exercises kata. There are

many such kata to choose from.

A kata usually comes in the form of a simple programming problem to solve, such

as writing the function that calculates the prime factors of an integer. The point of

doing the kata is not to figure out how to solve the problem; you know how to do

that already. The point of the kata is to train your fingers and your brain.

I’ll do a kata or two every day, often as part of settling in to work. I might do it

in Java, or in Ruby, or in Clojure, or in some other language for which I want to

maintain my skills. I’ll use the kata to sharpen a particular skill, such as keeping

my fingers used to hitting shortcut keys, or using certain refactorings.

Think of the kata as a 10-minute warm-up exercise in the morning and a 10-minute

ptg

cool-down in the evening.

COLLABOR ATION

The second best way to learn is to collaborate with other people. Professional

software developers make a special effort to program together, practice together,

design and plan together. By doing so they learn a lot from each other, and they

get more done faster with fewer errors.

This doesn’t mean you have to spend 100% of your time working with others.

Alone time is also very important. As much as I like to pair program with

others, it makes me crazy if I can’t get away by myself from time to time.

MENTORING

The best way to learn is to teach. Nothing will drive facts and values into your

head faster and harder than having to communicate them to people you are

responsible for. So the benefit of teaching is strongly in favor of the teacher.

20

WORK ETHIC

By the same token, there is no better way to bring new people into an organization

than to sit down with them and show them the ropes. Professionals take personal

responsibility for mentoring juniors. They will not let a junior flail about

unsupervised.

KNOW YOUR DOMAIN

It is the responsibility of every software professional to understand the domain

of the solutions they are programming. If you are writing an accounting system,

you should know the accounting field. If you are writing a travel application,

you should know the travel industry. You don’t have to be a domain expert, but

there is a reasonable amount of due diligence that you ought to engage in.

When starting a project in a new domain, read a book or two on the topic.

Interview your customer and users about the foundation and basics of the

domain. Spend some time with the experts, and try to understand their

principles and values.

ptg

It is the worst kind of unprofessional behavior to simply code from a spec

without understanding why that spec makes sense to the business. Rather, you

should know enough about the domain to be able to recognize and challenge

specification errors.

IDENTIFY WITH YOUR EMPLOYER / CUSTOMER

Your employer’s problems are your problems. You need to understand what

those problems are and work toward the best solutions. As you develop a system

you need to put yourself in your employer’s shoes and make sure that the

features you are developing are really going to address your employer’s needs.

It is easy for developers to identify with each other. It’s easy to fall into an us

 versus them attitude with your employer. Professionals avoid this at all costs.

21

CHAPTER 1 PROFESSIONALISM

HUMILITY

Programming is an act of creation. When we write code we are creating

something out of nothing. We are boldly imposing order upon chaos. We are

confidently commanding, in precise detail, the behaviors of a machine that

could otherwise do incalculable damage. And so, programming is an act of

supreme arrogance.

Professionals know they are arrogant and are not falsely humble. A professional

knows his job and takes pride in his work. A professional is confident in his

abilities, and takes bold and calculated risks based on that confidence. A

professional is not timid.

However, a professional also knows that there will be times when he will fail, his

risk calculations will be wrong, his abilities will fall short; he’ll look in the

mirror and see an arrogant fool smiling back at him.

ptg

So when a professional finds himself the butt of a joke, he’ll be the first to laugh.

He will never ridicule others, but will accept ridicule when it is deserved and

laugh it off when it’s not. He will not demean another for making a mistake,

because he knows he may be the next to fail.

A professional understands his supreme arrogance, and that the fates will eventually

notice and level their aim. When that aim connects, the best you can do is take

Howard’s advice: Laugh.

BIBLIOGRAPHY

[PPP2001]: Robert C. Martin, Principles, Patterns, and Practices of Agile Software Development, Upper Saddle River, NJ: Prentice Hall, 2002.

22

S 2

AY I N G N O

ptg

 “Do; or do not. There is no trying.”

 — Yoda

In the early ’70s, I, and two of my nineteen-year-old friends were working on a

real-time accounting system for the Teamster’s union in Chicago for a company

named ASC. If names like Jimmy Hoffa come to mind, they should. You didn’t

mess around with the teamsters in 1971.

Our system was supposed to go live by a certain date. A lot of money was riding

on that date. Our team had been working 60-, 70-, and 80-hour weeks to try to

hold to that schedule.

23

CHAPTER 2 SAYING NO

A week before the go-live date we finally got the system put together in its

entirety. There were lots of bugs and issues to deal with, and we frantically

worked through the list. There was barely time to eat and sleep, let alone think.

Frank, the manager of ASC, was a retired Air Force colonel. He was one of those

loud, in-your-face kind of managers. It was his way or the highway, and he’d put

you on that highway by dropping you from 10,000 feet without a parachute. We

nineteen year olds were barely able to make eye contact with him.

Frank said it had to be done by the date. That was all there was to it. The date

would come, and we would be done. Period. No discussion. Over and out.

My boss, Bill, was a likeable guy. He’d been working with Frank for quite a few

years and understood what was possible with Frank, and what was not. He told

us that we were going live on the date, no matter what.

ptg

So we went live on the date. And it was a blazing disaster.

There were a dozen 300-baud, half-duplex terminals that connected Teamster’s

headquarters in Chicago to our machine thirty miles north in the suburbs. Each

of those terminals locked up every 30 minutes or so. We had seen this problem

before but had not simulated the traffic that the union data-entry clerks were

suddenly slamming into our system.

To make matters worse, the tear sheets being printed on the ASR35 teletypes

that were also connected to our system by 110-baud phone lines would freeze

up in the middle of printing.

The solution to these freeze-ups was to reboot. So they’d have to get everybody

whose terminal was still live to finish their work and then stop. When everyone

was stopped, then they’d call us to reboot. The people who had been frozen

would have to start over. And this was happening more than once per hour.

After half a day of this, the Teamster’s office manager told us to shut the system

down and not bring it up again until we had it working. Meanwhile, they had lost

a half day of work and were going to have to re-enter it all using the old system.

24

SAYING NO

We heard Frank’s wails and roars all through the building. They went on for a

long, long time. Then Bill, and our system’s analyst Jalil, came to us and asked

when we could have the system stable. I said, “four weeks.”

The look on their faces was horror and then determination. “No,” they said, “it

must be running by Friday.”

So I said, “Look, we just barely got this system to sort-of work last week. We

need to shake down the troubles and issues. We need four weeks.”

But Bill and Jalil were adamant. “No, it’s really got to be Friday. Can you at

least try?”

Then our team leader said, “OK, we’ll try.”

Friday was a good choice, The weekend load was a lot lower. We were able to

ptg

find more problems and correct them before Monday came. Even so, the whole

house of cards nearly came tumbling down again. The freeze-up problems kept

on happening once or twice a day. There were other problems too. But

gradually, after a few more weeks, we got the system to the point where the

complaints died down, and normal life looked like it might actually be

possible.

And then, as I told you in the introduction, we all quit. And they were left with

a real crisis on their hands. They had to hire a new batch of programmers to try

to deal with the huge stream of issues coming from the customer.

Who can we blame this debacle on? Clearly, Frank’s style is part of the

problem. His intimidations made it difficult for him to hear the truth.

Certainly Bill and Jalil should have pushed back on Frank much harder than

they did. Certainly our team lead should not have caved in to the Friday

demand. And certainly I should have continued to say “no” instead of getting

in line behind our team lead.

Professionals speak truth to power. Professionals have the courage to say no to

their managers.

25

CHAPTER 2 SAYING NO

How do you say no to your boss? After all, it’s your boss! Aren’t you supposed to

do what your boss says?

No. Not if you are a professional.

Slaves are not allowed to say no. Laborers may be hesitant to say no. But

professionals are expected to say no. Indeed, good managers crave someone who

has the guts to say no. It’s the only way you can really get anything done.

ADV E R SA R IA L ROLES

One of the reviewers of this book truly hated this chapter. He said that it almost

made him put the book down. He had built teams where there were no adversarial

relationships; the teams worked together in harmony and without confrontation.

I’m happy for this reviewer, but I wonder if his teams are really as confrontation

ptg

free as he supposes. And if they are, I wonder if they are as efficient as they

could be. My own experience has been that the hard decisions are best made

through the confrontation of adversarial roles.

Managers are people with a job to do, and most managers know how to do that

job pretty well. Part of that job is to pursue and defend their objectives as

aggressively as they can.

By the same token, programmers are also people with a job to do, and most of

them know how to get that job done pretty well. If they are professionals they

will pursue and defend their objectives as aggressively as they can.

When your manager tells you that the login page has to be ready by tomorrow,

he is pursuing and defending one of his objectives. He’s doing his job. If you

know full well that getting the login page done by tomorrow is impossible, then

you are not doing your job if you say “OK, I’ll try.” The only way to do your job,

at that point, is to say “No, that’s impossible.”

But don’t you have to do what your manager says? No, your manager is

counting on you to defend your objectives as aggressively as he defends his.

That’s how the two of you are going to get to the best possible outcome.

26

ADVERSARIAL ROLES

The best possible outcome is the goal that you and your manager share. The

trick is to find that goal, and that usually takes negotiation.

Negotiation can sometimes be pleasant.

Mike: “Paula, I need the login page done by tomorrow.”

Paula: “Oh, wow! That soon? Well, OK, I’ll try.”

Mike: “OK, that’s great. Thanks!”

That was a nice little conversation. All confrontation was avoided. Both parties

left smiling. Nice.

But both parties were behaving unprofessionally. Paula knows full well that the

login page is going to take her longer than a day, so she’s just lying. She might

not think of it as a lie. Perhaps she thinks she actually will try, and maybe she

holds out some meager hope that she’ll actually get it done. But in the end, it’s

ptg

still a lie.

Mike, on the other hand, accepted the “I’ll try” as “Yes.” That’s just a dumb thing

to do. He should have known that Paula was trying to avoid confrontation, so

he should have pressed the issue by saying, “You seem hesitant. Are you sure you

can get it done tomorrow?”

Here’s another pleasant conversation.

Mike: “Paula, I need the login page done by tomorrow.”

Paula: “Oh, sorry Mike, but it’s going to take me more time than that.”

Mike: “When do you think you can have it done?”

Paula: “How about two weeks from now?”

Mike: (scribbles something in his daytimer) “OK, thanks.”

As pleasant as that was, it was also terribly dysfunctional and utterly

unprofessional. Both parties failed in their search for the best possible outcome.

Instead of asking whether two weeks would be OK, Paula should have been

more assertive: “It’s going to take me two weeks, Mike.”

27

CHAPTER 2 SAYING NO

Mike, on the other hand, just accepted the date without question, as though his

own objectives didn’t matter. One wonders if he’s not going to simply report

back to his boss that the customer demo will have to be postponed because of

Paula. That kind of passive-aggressive behavior is morally reprehensible.

In all these cases neither party has pursued a common acceptable goal. Neither

party has been looking for the best possible outcome. Let’s try this.

Mike: “Paula, I need the login page done by tomorrow.”

Paula: “No, Mike, that’s a two-week job.”

Mike: “Two weeks? The architects estimated it at three days and it’s

already been five!”

Paula: “The architects were wrong, Mike. They did their estimates before

product marketing got hold of the requirements. I’ve got at least

ten more days of work to do on this. Didn’t you see my updated

estimate on the wiki?”

ptg

Mike: (looking stern and trembling with frustration) “This isn’t acceptable

Paula. Customers are coming for a demo tomorrow, and I’ve got to

show them the login page working.”

Paula: “What part of the login page do you need working by

tomorrow?”

Mike: “I need the login page! I need to be able to log in.”

Paula: “Mike, I can give you a mock-up of the login page that will let you

log in. I’ve got that working now. It won’t actually check your

username and password, and it won’t email a forgotten password to

you. It won’t have the company news banner “Times-squaring”

around the top of it, and the help button and hover text won’t

work. It won’t store a cookie to remember you for next time, and it

won’t put any permission restrictions on you. But you’ll be able to

log in. Will that do?”

Mike: “I’ll be able to log in?”

Paula: “Yes, you’ll be able to log in.”

Mike: “That’s great Paula, you’re a life saver!” (walks away pumping the

air and saying “Yes!”)

28

HIGH STAKES

They reached the best possible outcome. They did this by saying no and then

working out a solution that was mutually agreeable to both. They were acting

like professionals. The conversation was a bit adversarial, and there were a few

uncomfortable moments, but that’s to be expected when two people assertively

pursue goals that aren’t in perfect alignment.

WHAT ABOUT THE WHY ?

Perhaps you think that Paula should have explained why the login page was

going to take so much longer. My experience is that the why is a lot less

important than the fact. That fact is that the login page will require two weeks.

Why it will take two weeks is just a detail.

Still, knowing why might help Mike to understand, and therefore to accept, the

fact. Fair enough. And in situations where Mike has the technical expertise and

temperament to understand, such explanations might be useful. On the other

hand, Mike might disagree with the conclusion. Mike might decide that Paula

ptg

was doing it all wrong. He might tell her that she doesn’t need all that testing,

or all that reviewing, or that step 12 could be omitted. Providing too much

detail can be an invitation for micro-management.

HIGH STA K E S

The most important time to say no is when the stakes are highest. The higher

the stakes, the more valuable no becomes.

This should be self-evident. When the cost of failure is so high that the survival

of your company depends upon it, you must be absolutely determined to give

your managers the best information you can. And that often means saying no.

Don (Director of Development): “So, our current estimate for completion

of the Golden Goose project is twelve weeks from today, with an

uncertainty of plus or minus five weeks.”

Charles (CEO): (sits glaring for fifteen seconds as his face reddens) “Do

you mean to sit there and tell me that we might be seventeen weeks

from delivery?”

29

CHAPTER 2 SAYING NO

Don:

“That’s possible, yes.”

Charles: (stands up, Don stands up a second later) “Damm it Don! This

was supposed to be done three weeks ago! I’ve got Galitron

calling me every day wondering where their frakking system is.

I am not going to tell them that they have to wait another four

months? You’ve got to do better.”

Don:

Chuck, I told you three months ago, after all the layoffs, that we’d

need four more months. I mean, Christ Chuck, you cut my staff

twenty percent! Did you tell Galitron then that we’d be late?”

Charles: “You know damned well I didn’t. We can’t afford to lose that order

Don. (Charles pauses, his face goes white) Without Galitron, we’re

really hosed. You know that, don’t you? And now with this delay,

I’m afraid . . . What will I tell the board? (He slowly sits back down

in his seat, trying not to crumble.) Don, you’ve got to do better.”

Don:

“There’s nothing I can do Chuck. We’ve been through this already.

Galitron won’t cut scope, and they won’t accept any interim

ptg

releases. They want to do the installation once and be done with

it. I simply cannot do that any faster. It’s not going to happen.”

Charles: “Damn. I don’t suppose it would matter if I told you your job

was at stake.”

Don:

“Fir

ing me isn’t going to change the estimate, Charles.”

Charles: “We’re done here. Go back to your team and keep this project

moving. I’ve got some very tough phone calls to make.”

Of course, Charles should have told Galitron no three months ago when he first

found out about the new estimate. At least now he’s doing the right thing by

calling them (and the board). But if Don hadn’t stuck to his guns, those calls

might have been delayed even longer.

BEING A “TEAM PLAYER ”

We’ve all heard how important it is to be a “team player.” Being a team player

means playing your position as well as you possibly can, and helping out your

teammates when they get into a jam. A team-player communicates frequently,

keeps an eye out for his or her teammates, and executes his or her own

responsibilities as well as possible.

30

BEING A “TEAM PLAYER”

A team player is not someone who says yes all the time. Consider this scenario:

Paula: “Mike, I’ve got those estimates for you. The team agrees that we’ll be

ready to give a demo in about eight weeks, give or take one week.”

Mike: “Paula, we’ve already scheduled the demo for six weeks from now.”

Paula: “Without hearing from us first? Come on Mike, you can’t push that

on us.”

Mike: “It’s already done.”

Paula: (sigh) “OK, look, I’ll go back to the team and find out what we can

safely deliver in six weeks, but it won’t be the whole system. There’ll

be some features missing, and the data load will be incomplete.”

Mike: “Paula, the customer is expecting to see a complete demo.”

Paula: “That’s not going to happen Mike.”

Mike: “Damn. OK, work up the best plan you can and let me know

tomorrow.”

ptg

Paula: “That I can do.”

Mike: “Isn’t there something you can do to bring this date in? Maybe

there’s a way to work smarter and get creative.”

Paula: “We’re all pretty creative, Mike. We’ve got a good handle on the

problem, and the date is going to be eight or nine weeks, not six.”

Mike: “You could work overtime.”

Paula: “That just makes us go slower, Mike. Remember the mess we made

last time we mandated overtime?”

Mike: “Yeah, but that doesn’t have to happen this time.”

Paula: “It’ll be just like last time, Mike. Trust me. It’s going to be eight or

nine weeks, not six.”

Mike: “OK, get me your best plan, but keep thinking about how to get it

done in six weeks. I know you guys’ll figure out something.”

Paula: “No, Mike, we won’t. I’ll get you a plan for six weeks, but it will be

missing a lot of features and data. That’s just how it’s going to be.”

Mike: “OK, Paula, but I bet you guys can work miracles if you try.”

(Paula walks away shaking her head.)

Later, in the Director’s strategy meeting …

31

CHAPTER 2 SAYING NO

Don: “OK Mike, as you know the customer is coming in for a demo in six

weeks. They’re expecting to see everything working.”

Mike: “Yes, and we’ll be ready. My team is busting their butts on this and

we’re going to get it done. We’ll have to work some overtime, and

get pretty creative, but we’ll make it happen!”

Don: “It’s great that you and your staff are such team players.”

Who were the real team players in this scenario? Paula was playing for the team,

because she represented what could, and could not, be done to the best of her

ability. She aggressively defended her position, despite the wheedling and

cajoling from Mike. Mike was playing on a team of one. Mike is for Mike. He’s

clearly not on Paula’s team because he just committed her to something she

explicitly said she couldn’t do. He’s not on Don’s team either (though he’d

disagree) because he just lied through his teeth.

So why did Mike do this? He wanted Don to see him as a team player, and he

ptg

has faith in his ability to wheedle and manipulate Paula into trying for the six-

week deadline. Mike is not evil; he’s just too confident in his ability to get

people to do what he wants.

TRYI N G

The worst thing Paula could do in response to Mike’s manipulations is say “OK,

we’ll try.” I hate to channel Yoda here, but in this instance he is correct. There is

 no trying.

Perhaps you don’t like that idea? Perhaps you think trying is a positive thing to

do. After all, would Columbus have discovered America if he hadn’t tried?

The word try has many definitions. The definition I take issue with here is “to

apply extra effort.” What extra effort could Paula apply to get the demo ready in

time? If there is extra effort she could apply, then she and her team must not

have been applying all their effort before. They must have been holding some

effort in reserve.1

1. Like Foghorn Leghorn: “I always keep my feathers numbered for just such an emergency.”

32

BEING A “TEAM PLAYER”

The promise to try is an admission that you’ve been holding back, that you have

a reservoir of extra effort that you can apply. The promise to try is an admission

that the goal is attainable through the application of this extra effort; moreover,

it is a commitment to apply that extra effort to achieve the goal. Therefore, by

promising to try you are committing to succeed. This puts the burden on you.

If your “trying” does not lead to the desired outcome, you will have failed.

Do you have an extra reservoir of energy that you’ve been holding back? If you

apply these reserves, will you be able to meet the goal? Or, by promising to try

are you simply setting yourself up for failure?

By promising to try you are promising to change your plans. After all, the plans

you had were insufficient. By promising to try you are saying that you have a

new plan. What is that new plan? What change will you make to your behavior?

What different things are you going to do because now you are “trying”?

ptg

If you don’t have a new plan, if you don’t make a change to your behavior, if

you do everything exactly as you would have before you promised to “try,” then

what does trying mean?

If you are not holding back some energy in reserve, if you don’t have a new plan,

if you aren’t going to change your behavior, and if you are reasonably confident

in your original estimate, then promising to try is fundamentally dishonest. You

are lying. And you are probably doing it to save face and to avoid a confrontation.

Paula’s approach was much better. She continued to remind Mike that the

team’s estimate was uncertain. She always said “eight or nine weeks.” She

stressed the uncertainty and never backed off. She never suggested that there

might be some extra effort, or some new plan, or some change in behavior that

could reduce that uncertainty.

Three weeks later …

Mike: “Paula, the demo is in three weeks, and the customers are

demanding to see File Upload working.”

Paula: “Mike, that’s not on the list of features we agreed to.”

33

CHAPTER 2 SAYING NO

Mike: “I know, but they’re demanding it.”

Paula: “OK, that means that either Single Sign-on or Backup will have to

be dropped from the demo.”

Mike: “Absolutely not! They’re expecting to see those features working as well!”

Paula: “So then, they are expecting to see every feature working. Is that

what you are telling me? I told you that wasn’t going to happen.”

Mike: “I’m sorry Paula, but the customer just won’t budge on this. They

want to see it all.”

Paula: “That’s not going to happen, Mike. It’s just not.”

Mike: “Come on Paula, can’t you guys at least try?”

Paula: “Mike, I could try to levitate. I could try to change lead in to gold.

I could try to swim across the Atlantic. Do you think I’d succeed?”

Mike: “Now you’re being unreasonable. I’m not asking for the impossible.”

Paula: “Yes, Mike, you are.”

ptg

(Mike smirks, nods, and turns to walk away.)

Mike: “I’ve got faith in you Paula; I know you won’t let me down.”

Paula: (speaking to Mike’s back) “Mike, you’re dreaming. This is not going

to end well.”

(Mike just waves without turning around.)

PASSIVE AGGRESSION

Paula’s got an interesting decision to make. She suspects that Mike is not telling

Don about her estimates. She could just let Mike walk off the end of the cliff.

She could make sure that copies of all the appropriate memos were on file, so

that when the disaster strikes she can show what she told Mike, and when she

told him. This is passive aggression. She’d just let Mike hang himself.

Or, she could try to head off the disaster by communicating directly with Don.

This is risky, to be sure, but it’s also what being a team player is really all about.

When a freight train is bearing down on you and you are the only one who can

see it, you can either step quietly off the track and watch everyone else get run

over, or you can yell “Train! Get off the track!”

34

BEING A “TEAM PLAYER”

Two days later …

Paula: “Mike, have you told Don about my estimates? Has he told the

customer that the demo will not have the File Upload feature working?”

Mike: “Paula, you said you’d get that working for me.”

Paula: “No, Mike, I didn’t. I told you that it was impossible. Here’s a copy

of the memo I sent you after our talk.”

Mike: “Yeah, but you were going to try anyway, right?”

Paula: “We’ve already had that discussion Mike. Remember, gold and lead?”

Mike: (sighs) “Look, Paula, you’ve just got to do it. You just have to. Please

do whatever it takes, but you just have to make this happen for me.”

Paula: “Mike. You’re wrong. I don’t have to make this happen for you.

What I have to do, if you don’t, is tell Don.”

Mike: “That’d be going over my head, you wouldn’t do that.”

ptg

Paula: “I don’t want to Mike, but I will if you force me.”

Mike: “Oh, Paula . . .”

Paula: “Look, Mike, the features aren’t going to get done in time for the

demo. You need to get this into your head. Stop trying to convince

me to work harder. Stop deluding yourself that I’m somehow going

to pull a rabbit out of a hat. Face the fact that you have to tell Don,

and you have to tell him today.”

Mike: (Eyes wide) “Today?”

Paula: “Yes, Mike. Today. Because tomorrow I expect to have a meeting

with you and Don about which features to include in the demo. If

that meeting doesn’t happen tomorrow, then I will be forced to go

to Don myself. Here’s a copy of the memo that explains just that.”

Mike: “You’re just covering your ass!”

Paula: “Mike, I’m trying to cover both our asses. Can you imagine the debacle

if the customer comes here expecting a full demo and we can’t deliver?”

What happens in the end to Paula and Mike? I’ll leave it to you to work out the

possibilities. The point is that Paula has behaved very professionally. She has

said no at all the right times, and in all the right ways. She said no when pushed

35

CHAPTER 2 SAYING NO

to amend her estimates. She said no when manipulated, cajoled, and begged.

And, most importantly, she said no to Mike’s self-delusion and inaction. Paula

was playing for the team. Mike needed help, and she used every means in her

power to help him.

THE COST OF SAY I N G YES

Most of the time we want to say yes. Indeed, healthy teams strive to find a way

to say yes. Manager and developers in well-run teams will negotiate with each

other until they come to a mutually agreed upon plan of action.

But, as we’ve seen, sometimes the only way to get to the right yes is to be

unafraid so say no.

Consider the following story that John Blanco posted on his blog.2 It is

reprinted here with permission. As you read it, ask yourself when and how he

ptg

should have said no.

IS GOOD CODE IMPOSSIBLE ?

When you hit your teenage years you decide you want to be a software developer. During

your high school years, you learn how to write software using object-oriented principles.

When you graduate to college, you apply all the principles you’ve learned to areas such as

artificial intelligence or 3D graphics.

And when you hit the professional circuit, you begin your never-ending quest to write

commercial-quality, maintainable, and “perfect” code that will stand the test of time.

Commercial quality. Huh. That’s pretty funny.

I consider myself lucky, I love design patterns. I like studying the theory of coding perfection. I have no problem starting up an hour-long discussion about why my XP

partner’s choice of inheritance hierarchy is wrong—that HAS-A is better than IS-A in so

many cases. But something has been bugging me lately and I am wondering something . . .

. . . Is good code impossible in modern software development?

2. http://raptureinvenice.com/?p=63

36

THE COST OF SAYING YES

T h e Ty p i c a l P r o j e c t P r o p o s a l

As a full-time contract developer (and part-time), I spend my days (and nights) developing

mobile applications for clients. And what I’ve learned over the many years I’ve been doing this is that the demands of client work preclude me from writing the real quality apps that I’d like.

Before I begin, let me just say it’s not for a lack of trying. I love the topic of clean code. I don’t know anyone who pursues that perfect software design like I do. It’s the execution that I find more elusive, and not for the reason you think.

Here, let me tell you a story.

Towards the end of last year, a fairly well-known company put out an RFP (Request for

Proposal) to have an app built for them. They’re a huge retailer, but for the sake of anonymity let’s call them Gorilla Mart. They say they need to create an iPhone presence and would like an app produced for them by Black Friday. The catch? It’s already November 1st. That leaves just under 4 weeks to create the app. Oh, and at this time Apple is still taking two weeks to approve apps. (Ah, the good old days.) So, wait, this app has to be written in . . . TWO WEEKS?!?!

Yes. We have two weeks to write this app. And, unfortunately, we’ve won the bid. (In

ptg

business, client importance matters.) This is going to happen.

“But it’s OK,” Gorilla Mart Executive #1 says. “The app is simple. It just needs to show

users a few products from our catalog and let them search for store locations. We

already do it on our site. We’ll give you the graphics, too. You can probably—what’s

the word—yeah, hardcode it!”

Gorilla Mart Executive #2 chimes in. “And we just need a couple of coupons the user

can show at the cash register. The app will be a throwaway. Let’s get it out the door,

and then for Phase II we’ll do something bigger and better from scratch.”

And then it’s happening. Despite years of constant reminders that every feature a client asks for will always be more complex to write than it is to explain, you go for it. You really believe that this time it really can be done in two weeks. Yes! We can do this! This time it’s different!

It’s just a few graphics and a service call to get a store location. XML! No sweat. We can do this. I’m pumped! Let’s go!

It takes just a day for you and reality to once again make acquaintance.

Me: So, can you give me the info I need to call your store location web service?

The Client: What’s a web service?

Me: …………

 Continues

37

CHAPTER 2 SAYING NO

And that’s exactly how it happened. Their store location service, found right where it’s

supposed to be on the top-right corner of their web site, is not a web service. It’s generated by Java code. Ix-nay with the API-ay. And to boot, it’s hosted by a Gorilla Mart strategic partner.

Enter the nefarious “3rd party.”

In client terms, a “3rd party” is akin to Angelina Jolie. Despite the promise that you’ll be able to have an enlightening conversation over a nice meal and hopefully hook up afterwards … sorry, it ain’t happenin’. You’re just gonna have to fantasize about it while you take care of business yourself.

In my case, the only thing I was able to wrestle out of Gorilla Mart was a current snapshot of their current store listings in an Excel file. I had to write the store location search code from scratch.

The double-whammy came later that day: They wanted the product and coupon data online

so it could be changed weekly. There goes hardcoding! Two weeks to write an iPhone app

have now become two weeks to write an iPhone app, a PHP backend, and integrate them

togeth— . . . What? They want me to handle QA, too?

To make up for the extra work, the coding will have to go a little faster. Forget that abstract factory. Use a big fat for loop instead of the composite, there’s no time!

ptg

Good code has become impossible.

Two We e k s t o C o m p l e t i o n

Let me tell you, that two weeks was pretty miserable. First, two of the days were eliminated

due to all-day meetings for my next project. (That amplifies how short a time frame this was

going to be.) Ultimately, I really had eight days to get things done. The first week I worked 74 hours and the next week . . . God . . . I don’t even recall, it’s been eradicated from my

synapses. Probably a good thing.

I spent those eight days writing code in a fury. I used all the tools available to me to get it done: copy and paste (AKA reusable code), magic numbers (avoiding the duplication of

defining constants and then, gasp!, retyping them), and absolutely NO unit tests! (Who

needs red bars at a time like this, it’d just demotivate me!)

It was pretty bad code and I never had time to refactor. Considering the time frame,

however, it was actually pretty stellar, and it was “throwaway” code after all, right? Does any of this sound familiar? Well just wait, it gets better.

As I was putting the final touches on the app (the final touches being writing the entirety of the server code), I started to look at the codebase and wondered if maybe it was worth it.

The app was done after all. I survived!

“Hey, we just hired Bob, and he’s very busy and he couldn’t make the call, but he says

we should be requiring users to provide their email addresses to get the coupons. He

38

THE COST OF SAYING YES

hasn’t seen the app, but he thinks this would be a great idea! We also want a reporting

system to get those emails from the server. One that’s nice and not too expensive.

(Wait, that last part was Monty Python.) Speaking of coupons, they need to be able to

expire after a number of days we specify. Oh, and …”

Let’s step back. What do we know about what good code is? Good code should be

extendable. Maintainable. It should lend itself to modification. It should read like prose.

Well, this wasn’t good code.

Another thing. If you want to be a better developer, you must always keep this inevitably in

mind: The client will always extend the deadline. They will always want more features. They

will always want change—LATE. And here’s the formula for what to expect:

(# of Executives)2

+ 2 * # of New Executives

+ # of Bob’s Kids

= DAYS ADDED AT LAST MINUTE

Now, executives are decent people. I think. They provide for their family (assuming Satan has ptg

approved of their having one). They want the app to succeed (promotion time!). The

problem is that they all want a direct claim to the project’s success. When all is said and done, they all want to point at some feature or design decision they can each call their very own.

So, back to the story, we added a couple more days to the project and got the email feature

done. And then I collapsed from exhaustion.

T h e C l i e n t s N eve r C a r e a s M u c h a s Yo u D o

The clients, despite their protestations, despite their apparent urgency, never care as much as you do about the app being on time. The afternoon that I dubbed the app completed, I sent

an email with the final build to all the stakeholders, Executives (hiss!), managers, and so on.

“IT IS DONE! I BRING YOU V1.0! PRAISE THY NAME.” I hit Send, lay back in my chair,

and with a smug grin began to fantasize how the company would run me up onto their

shoulders and lead a procession down 42nd Street while I was crowned “Greatest Developer

Ev-ar.” At the very least, my face would be on all their advertising, right?

Funny, they didn’t seem to agree. In fact, I wasn’t sure what they thought. I heard nothing. Not a peep. Turns out, the folks at Gorilla Mart were eager to and had already moved on to the next thing.

You think I lie? Check this out. I pushed to the Apple store without filling in an app

description. I had requested one from Gorilla Mart, and they hadn’t gotten back to me and

there was no time to wait. (See previous paragraph.) I wrote them again. And again. I got

 Continues

39

CHAPTER 2 SAYING NO

some of our own management on it. Twice I heard back and twice I was told, “What did you

need again?” I NEED THE APP DESCRIPTION!

One week later, Apple started testing the app. This is usually a time of joyousness, but it was instead a time for mortal dread. As expected, later in the day the app was rejected. It was

about the saddest, poorest excuse to allow a rejection I can imagine: “App is missing an app

description.” Functionally perfect; no app description. And for this reason Gorilla Mart

didn’t have their app ready for Black Friday. I was pretty upset.

I’d sacrificed my family for a two-week super sprint, and no one at Gorilla Mart could be

bothered to create an app description given a week of time. They gave it to us an hour after

the rejection—apparently that was the signal to get down to business.

If I was upset before, I would become livid a week and a half after that. You see, they still hadn’t gotten us real data. The products and coupons on the server were fake. Imaginary.

The coupon code was 1234567890. You know, phoney baloney. (Bologna is spelled baloney

when used in that context, BTW.)

And it was that fateful morning that I checked the Portal and THE APP WAS AVAILABLE!

Fake data and all! I cried out in abject horror and called up whoever I could and screamed,

ptg

“I NEED THE DATA!” and the woman on the other end asked me if I needed fire or police,

so I hung up on 911. But then I called Gorilla Mart and was like, “I NEED DATA!” And I’ll

never forget the response:

Oh, hey there John. We have a new VP and we’ve decided not to release. Pull it off the

App Store, would you?

In the end, it turned out that at least 11 people registered their email addresses in the

database, which meant there were 11 people that could potentially walk into a Gorilla Mart

with a fake iPhone coupon in tow. Boy, that might get ugly.

When it was all said and done, the client had said one thing correctly all along: The code was a throwaway. The only problem is, it was never released in the first place.

R e s u l t ? R u s h t o C o m p l e t e , S l ow t o M a r k e t

The lesson in the story is that your stakeholders, whether an external client or internal

management, have figured out how to get developers to write code quickly. Effectively? No.

Quickly? Yes. Here’s how it works:

• Tell the developer the app is simple. This serves to pressure the

development team into a false frame of mind. It also gets the developers

to start working earlier, whereby they …

40

CODE IMPOSSIBLE

• Add features by faulting the team for not recognizing their necessity. In

this case, the hardcoded content was going to require app updates to

change. How could I not realize that? I did, but I’d been handed a false

promise earlier, that’s why. Or a client will hire “a new guy” who’s

recognized there is some obvious omission. One day a client will say they

just hired Steve Jobs and can we add alchemy to the app? Then they’ll …

• Push the deadline. Over and over. Developers work their fastest and

hardest (and BTW are at their most error prone, but who cares about

that, right?) with a couple days to go on a deadline. Why tell them you

can push the date out further while they’re being so productive? Take

advantage of it! And so it goes, a few days are added, a week is added, just

when you had worked a 20-hour shift to get everything just right. It’s like

a donkey and carrot, except you’re not treated as well as the donkey.

It’s a brilliant playbook. Can you blame them for thinking it works? But they don’t see the

God-awful code. And so it happens, time and again, despite the results.

ptg

In a globalized economy, where corporations are held to the almighty dollar and raising the

stock price involves layoffs, overworked staffs, and offshoring, this strategy I’ve shown you of cutting developer costs is making good code obsolete. As developers, we’re going to be asked/

told/conned into writing twice the code in half the time if we’re not careful.

CODE IMPOSSIBLE

In the story when John asks “Is good code impossible?”, he is really asking “Is

professionalism impossible?” After all, it wasn’t just the code that suffered in his

tale of dysfunction. It was his family, his employer, his customer, and the users.

 Everybody lost3 in this adventure. And they lost due to unprofessionalism.

So who was acting unprofessionally? John makes it clear that he thinks it was

the executives at Gorilla Mart. After all, his playbook was a pretty clear

indictment of their bad behavior. But was their behavior bad? I don’t think so.

3. With the possible exception of John’s direct employer, though I’d bet they lost too.

41

CHAPTER 2 SAYING NO

The folks at Gorilla Mart wanted the option to have an iPhone app on Black

Friday. They were willing to pay to have that option. They found someone

willing to provide that option. So how can you fault them?

Yes, it’s true, there were some communications failures. Apparently the

executives didn’t know what a web service really was, and there were all the

normal issues of one part of a big corporation not knowing what another part

is doing. But all that should have been expected. John even admits as much

when he says: “Despite years of constant reminders that every feature a client

asks for will always be more complex to write than it is to explain . . . ”

So if the culprit was not Gorilla Mart, then who?

Perhaps it was John’s direct employer. John didn’t say this explicitly, but there

was a hint when he said, parenthetically, “In business, client importance

matters . ” So did John’s employer make unreasonable promises to Gorilla Mart?

ptg

Did they put pressure on John, directly or indirectly, to make those promises

come true? John doesn’t say this, so we can only wonder.

Even so, where is John’s responsibility in all of this? I put the fault squarely on

John. John is the one who accepted the initial two-week deadline, knowing full

well that projects are usually more complex than they sound. John is the one

who accepted the need to write the PHP server. John is the one who accepted

the email registration, and the coupon expiration. John is the one who worked

20-hour days and 90-hour weeks. John is the one who subtracted himself from

his family and his life to make this deadline.

And why did John do this? He tells us in no uncertain terms: “I hit Send, lay

back in my chair, and with a smug grin began to fantasize how the company

would run me up onto their shoulders and lead a procession down 42nd Street

while I was crowned “Greatest Developer Ev-ar . ” In short, John was trying to be

a hero. He saw his chance for accolades, and he went for it. He leaned over and

grabbed for the brass ring.

Professionals are often heroes, but not because they try to be. Professionals become

heroes when they get a job done well, on time, and on budget. By trying to become

the man of the hour, the savior of the day, John was not acting like a professional.

42

CODE IMPOSSIBLE

John should have said no to the original two-week deadline. Or if not, then he

should have said no when he found there was no web service. He should have

said no to the request for email registration and coupon expiration. He should

have said no to anything that would require horrific overtime and sacrifice.

But most of all, John should have said no to his own internal decision that the

only way to get this job done on time was to make a big mess. Notice what John

said about good code and unit tests:

“To make up for the extra work, the coding will have to go a little faster. Forget

that abstract factory. Use a big fat for loop instead of the composite, there’s no

time!”

And again:

“I spent those eight days writing code in a fury. I used all the tools available to

ptg

me to get it done: copy-and-paste (AKA reusable code), magic numbers

(avoiding the duplication of defining constants and then, gasp!, retyping them),

and absolutely NO unit tests! (Who needs red bars at a time like this, it’d just

demotivate me!)”

Saying yes to those decisions was the real crux of the failure. John accepted that

the only way to succeed was to behave unprofessionally, so he reaped the

appropriate reward.

That may sound harsh. It’s not intended that way. In previous chapters I

described how I’ve made the same mistake in my career, more than once. The

temptation to be a hero and “solve the problem” is huge. What we all have to

realize is that saying yes to dropping our professional disciplines is not the way

to solve problems. Dropping those disciplines is the way you create problems.

With that, I can finally answer John’s initial question:

“Is good code impossible? Is professionalism impossible?”

Answer: I say no.

43

 This page intentionally left blank

ptg

SAY3

 I N G YE S

ptg

Did you know that I invented voice mail? It’s true. Actually there were three of

us who held the patent for voice mail. Ken Finder, Jerry Fitzpatrick, and I. It was

in the very early 80s, and we worked for a company named Teradyne. Our CEO

had commissioned us to come up with a new kind of product, and we invented

“The Electronic Receptionist,” or ER for short.

45

CHAPTER 3 SAYING YES

You all know what ER is. ER is one of those horrible machines that answers the

phone at companies and asks you all kinds of brain-dead questions that you

need to answer by pressing buttons. (“For English, press 1.”)

Our ER would answer the phone for a company and ask you to dial the name of

the person you wanted. It would ask you to pronounce your name, and then it

would call the person in question. It would announce the call and ask whether

it should be accepted. If so, it would connect the call and drop off.

You could tell ER where you were. You could give it several phone numbers to

try. So if you were in someone else’s office, ER could find you. If you were at

home, ER could find you. If you were in a different city, ER could find you.

And, in the end, if ER could not find you, it would take a message. That’s where

the voice mail came in.

Oddly enough, Teradyne could not figure out how to sell ER. The project ran

ptg

out of budget and was morphed into something we knew how to sell—CDS,

The Craft Dispatch System, for dispatching telephone repairmen to their next

job. And Teradyne also dropped the patent without telling us. (!) The current

patent holder filed three months after we did. (!!)1

Long after the morphing of ER into CDS, but long before I found out that the

patent had been dropped. I waited in a tree for the CEO of the company. We

had a big oak tree outside the front of the building. I climbed it and waited for

his Jaguar to pull in. I met him at the door and asked for a few minutes. He

obliged.

I told him we really needed to start up the ER project again. I told him I was

sure it could make money. He surprised me by saying, “OK Bob, work up a

plan. Show me how I can make money. If you do, and I believe it, I’ll start up

ER again.”

I hadn’t expected that. I had expected him to say, “You’re right Bob. I’m going to

start that project up again, and I’m going to figure out how to make money at

1. Not that the patent was worth any money to me. I had sold it to Teradyne for $1, as per my employment contract (and I didn’t get the dollar).

46

A LANGUAGE OF COMMITMENT

it.” But no. He put the burden back on me. And it was a burden I was ambivalent

about. After all, I was a software guy, not a money guy. I wanted to work on the

ER project, not be responsible for profit and loss. But I didn’t want to show my

ambivalence. So I thanked him and left his office with these words:

“Thanks Russ. I’m committed . . . I guess.”

With that, let me introduce you to Roy Osherove, who will tell you just how

pathetic that statement was.

A LANGUAGE OF COMMITMENT

By Roy Osherove

Say. Mean. Do.

ptg

There are three parts to making a commitment.

1. You say you’ll do it.

2. You mean it.

3. You actually do it.

But how often do we encounter other people (not ourselves, of course!) who

never go all the way with these three stages?

• You ask the IT guy why the network is so slow and he says “Yeah. We really

need to get some new routers.” And you know nothing will ever happen in

that category.

• You ask a team member to run some manual tests before checking in the

source code, and he replies, “Sure. I hope to get to it by the end of the day.”

And somehow you feel that you’ll need to ask tomorrow if any testing really

took place before check-in.

• Your boss wanders into the room and mumbles, “we have to move faster.”

And you know he really means YOU have to move faster. He’s not going to do

anything about it.

47

CHAPTER 3 SAYING YES

There are very few people who, when they say something, they mean it and then

actually get it done. There are some who will say things and mean them, but

they never get it done. And there are far more people who promise things and

don’t even mean to do them. Ever heard someone say, “Man, I really need to

lose some weight,” and you knew they are not going to do anything about it? It

happens all the time.

Why do we keep getting that strange feeling that, most of the time, people aren’t

really committed to getting something done?

Worse, often our intuition can fail us. Sometimes we’d like to believe someone

really means what they say when they really don’t. We’d like to believe a

developer when they say, pressed to the corner, that they can finish that two-

week task in one week instead, but we shouldn’t.

Instead of trusting our guts, we can use some language-related tricks to try and

ptg

figure out if people really mean what they say. And by changing what we say, we

can start taking care of steps 1 and 2 of the previous list on our own. When we

 say we will commit to something, and we need to mean it.

RECOGNIZING LAC K OF COMMITMENT

We should look at the language we use when we commit to doing something, as

the telltale sign of things to come. Actually, it’s more a matter of looking for

specific words in what we say. If you can’t find those little magic words, chances

are we don’t mean what we say, or we may not believe it to be feasible.

Here are some examples of words and phrases to look for that are telltale signs

of noncommitment:

• Need\should. “We need to get this done.” “I need to lose weight.” “Someone

should make that happen.”

• Hope\wish. “I hope to get this done by tomorrow.” “I hope we can meet

again some day.” “I wish I had time for that.” “I wish this computer was

faster.”

• Let’s. (not followed by “I . . .”) “Let’s meet sometime.” “Let’s finish this thing.”

48

A LANGUAGE OF COMMITMENT

As you start to look for these words you’ll see that you start spotting them

almost everywhere around you, and even in things you say to others.

You’ll find we tend to be very busy not taking responsibility for things.

And that’s not okay when you or someone else relies on those promises as part

of the job. You’ve taken the first step, though—start recognizing lack of

commitment around you, and in you.

We heard what noncommitment sounds like. How do we recognize real

commitment?

WHAT DOES COMMITMENT SOUND LIKE ?

What’s common in the phrases of the previous section is that they either

assume things are out of “my” hands or they don’t take personal responsibility.

In each of these cases, people behave as if they were victims of a situation

ptg

instead of in control of it.

The real truth is that you, personally, ALWAYS have something that’s under your

control, so there is always something you can fully commit to doing.

The secret ingredient to recognizing real commitment is to look for sentences

that sound like this: I will . . . by . . . (example: I will finish this by Tuesday.)

What’s important about this sentence? You’re stating a fact about something YOU

 will do with a clear end time. You’re not talking about anyone else but yourself.

You’re talking about an action that you will take. You won’t “possibly” take it, or

 “might get to it” ; you will achieve it.

There is (technically) no way out of this verbal commitment. You said you’ll do

it and now only a binary result is possible—you either get it done, or you don’t.

If you don’t get it done, people can hold you up to your promises. You will feel

 bad about not doing it. You will feel awkward telling someone about not having done it (if that someone heard you promise you will).

Scary, isn’t it?

49

CHAPTER 3 SAYING YES

You’re taking full responsibility for something, in front of an audience of at least

one person. It’s not just you standing in front of the mirror, or the computer

screen. It’s you, facing another human being, and saying you’ll do it. That’s the

start of commitment. Putting yourself in the situation that forces you to do

something.

You’ve changed the language you use to a language of commitment, and that

will help you get through the next two stages: meaning it, and following

through.

Here are a number of reasons you might not mean it, or follow through, with

some solutions.

It wouldn’t work because I rely on person X to get this done.

You can only commit to things that you have full control of. For example, if

ptg

your goal is to finish a module that also depends on another team, you can’t

commit to finish the module with full integration with the other team. But

you can commit to specific actions that will bring you to your target. You

could:

• Sit down for an hour with Gary from the infrastructure team to understand

your dependencies.

• Create an interface that abstracts your module’s dependency from the other

team’s infrastructure.

• Meet at least three times this week with the build guy to make sure your

changes work well in the company’s build system.

• Create your own personal build that runs your integration tests for the

module.

See the difference?

If the end goal depends on someone else, you should commit to specific actions

that bring you closer to the end goal.

50

A LANGUAGE OF COMMITMENT

It wouldn’t work because I don’t really know if it can be done.

If it can’t be done, you can still commit to actions that will bring you closer

to the target. Finding out if it can be done can be one of the actions to

commit to!

Instead of committing to fix all 25 remaining bugs before the release (which

may not be possible), you can commit to these specific actions that bring you

closer to that goal:

• Go through all 25 bugs and try to recreate them.

• Sit down with the QA who found each bug to see a repro of that bug.

• Spend all the time you have this week trying to fix each bug.

It wouldn’t work because sometimes I just won’t make it.

That happens. Something unexpected might happen, and that’s life. But you still

ptg

want to live up to expectations. In that case, it’s time to change the expectations,

 as soon as possible.

If you can’t make your commitment, the most important thing is to raise a red

flag as soon as possible to whoever you committed to.

The earlier you raise the flag to all stakeholders, the more likely there will be

time for the team to stop, reassess the current actions being taken, and decide if

something can be done or changed (in terms of priorities, for example). By

doing this, your commitment can still be fulfilled, or you can change to a

different commitment.

Some examples are:

• If you set a meeting for noon at a cafe downtown with a colleague and you

get stuck in traffic, you doubt you’ll be able to follow through on your

commitment to be there on time. You can call your colleague as soon as you

realize you might be late, and let them know. Maybe you can find a closer

place to meet, or perhaps postpone the meeting.

51

CHAPTER 3 SAYING YES

• If you committed to solving a bug you thought was solvable and you realize

at some point the bug is much more hideous than previously thought, you

can raise the flag. The team can then decide on a course of action to make

that commitment (pairing, spiking on potential solutions, brainstorming) or

change the priority and move you over to another simpler bug.

One important point here is: If you don’t tell anyone about the potential

problem as soon as possible, you’re not giving anyone a chance to help you

follow through on your commitment.

SUMMARY

Creating a language of commitment may sound a bit scary, but it can help solve

many of the communication problems programmers face today—estimations,

deadlines, and face-to-face communication mishaps. You’ll be taken as a serious

developer who lives up to their word, and that’s one of the best things you can

ptg

hope for in our industry.

~~~

LEARNING HOW TO SAY “YES ” 

I asked Roy to contribute that article because it struck a chord within me. I’ve 

been preaching about learning how to say no for some time. But it is just as 

important to learn how to say yes. 

THE OTHER SIDE OF “TRY ” 

Let’s imagine that Peter is responsible for some modifications to the rating 

engine. He’s privately estimated that these modifications will take him five or six 

days. He also thinks that writing the documentation for the modifications will 

take a few hours. On Monday morning his manager, Marge, asks him for status. 

Marge:  “Peter, will you have the rating engine mods done by Friday?” 

Peter:  “I think that’s doable.” 

52

LEARNING HOW TO SAY “YES” 

Marge:  “Will that include the documentation?” 

Peter:  “I’ll try to get that done as well.” 

Perhaps Marge can’t hear the dithering in Peter’s statements, but he’s certainly 

not making much of a commitment. Marge is asking questions that demand 

boolean answers but Peter’s boolean responses are fuzzy. 

Notice the abuse of the word try. In the last chapter we used the “extra effort” 

definition of try. Here, Peter is using the “maybe, maybe not” definition. 

Peter would be better off responding like this:

Marge: “Peter, will you have the rating engine mods done by Friday?” 

Peter: “Probably, but it might be Monday.” 

Marge: “Will that include the documentation?” 

ptg

Peter:  “The documentation will take me another few hours, so Monday 

is possible, but it might be as late as Tuesday.” 

In this case Peter’s language is more honest. He is describing his own 

uncertainty to Marge. Marge may be able to deal with that uncertainty. On the 

other hand, she might not. 

COMMITTING WITH DISCIPLINE

Marge:   “Peter, I need a definite yes or no. Will you have the rating engine 

finished and documented by Friday?” 

This is a perfectly fair question for Marge to ask. She’s got a schedule to maintain, 

and she needs a binary answer about Friday. How should Peter respond? 

Peter:  “In that case, Marge, I’ll have to say no. The soonest I can be  sure

that I’ll be done with the mods and the docs is Tuesday.” 

Marge: “You are committing to Tuesday?” 

Peter: “Yes, I will have it all ready on Tuesday.” 

53

CHAPTER 3  SAYING YES

But what if Marge really needs the modifications and documentation done by 

Friday? 

Marge:  “Peter, Tuesday gives me a real problem. Willy, our tech writer, will 

be available on Monday. He’s got five days to finish up the user 

guide. If I don’t have the rating engine docs by Monday morning, 

he’ll never get the manual done on time. Can you do the docs first?” 

Peter:  “No, the mods have to come first, because we generate the docs 

from the output of the test runs.” 

Marge:  “Well, isn’t there some way you can finish up the mods and the 

docs before Monday morning?” 

Now Peter has a decision to make. There is a good chance he’ll be done with the 

rate engine modifications on Friday, and he might even be able to finish up the 

docs before he goes home for the weekend. He  could do a few hours of work on 

Saturday too if things take longer than he hopes. So what should he tell Marge? 

ptg

Peter:   “Look Marge, there’s a good chance that I can get everything done 

by Monday morning if I put in a few extra hours on Saturday.” 

Does that solve Marge’s problem? No, it simply changes the odds, and that’s 

what Peter needs to tell her. 

Marge:  “Can I count on Monday morning then?” 

Peter:  “Probably, but not definitely.” 

That might not be good enough for Marge. 

Marge:   “Look, Peter, I really need a definite on this. Is there  any way you 

can commit to get this done before Monday morning?” 

Peter might be tempted to break discipline at this point. He might be able to get 

done faster if he doesn’t write his tests. He might be able to get done faster if he 

doesn’t refactor. He might be able to get done faster if he doesn’t run the full 

regression suite. 

54

LEARNING HOW TO SAY “YES” 

This is where the professional draws the line. First of all, Peter is just wrong 

about his suppositions. He  won’t get done faster if he doesn’t write his tests. He 

 won’t get done faster if he doesn’t refactor. He  won’t get done faster if he omits the full regression suite. Years of experience have taught us that breaking 

disciplines only slows us down. 

But secondly, as a professional he has a responsibility to maintain certain 

standards. His code needs to be tested, and needs to have tests. His code  

needs to be clean. And he has to be sure he hasn’t broken anything else in 

the system. 

Peter, as a professional, has already made a commitment to maintain these 

standards. All other commitments he makes should be subordinate to that. So 

this whole line of reasoning needs to aborted. 

Peter:  “No, Marge, there’s really no way I can be certain about any date 

before Tuesday. I’m sorry if that messes up your schedule, but it’s 

ptg

just the reality we’re faced with.” 

Marge:  “Damn. I was really counting on bringing this one in sooner. 

You’re sure?” 

Peter: “I’m sure that it might be as late as Tuesday, yes.” 

Marge: “OK, I guess I’ll go talk to Willy to see if he can rearrange his schedule.” 

In this case Marge accepted Peter’s answer and started hunting for other 

options. But what if all Marge’s options have been exhausted? What if Peter 

were the last hope? 

Marge:  “Peter, look, I know this is a huge imposition, but I really need you 

to find a way to get this all done by Monday morning. It’s really 

critical. Isn’t there something you can do?” 

So now Peter starts to think about working some significant overtime, and 

probably most of the weekend. He needs to be very honest with himself about 

his stamina and reserves. It’s easy to  say you’ll get a lot done on the weekends, 

it’s a lot harder to actually muster enough energy to do high-quality work. 

55

CHAPTER 3  SAYING YES

Professionals know their limits. They know how much overtime they can 

effectively apply, and they know what the cost will be. 

In this case Peter feels pretty confident that a few extra hours during the week 

and some time on the weekend will be sufficient. 

Peter:  “OK, Marge, I’ll tell you what. I’ll call home and clear some 

overtime with my family. If they are OK with it, then I’ll get this 

task done by Monday morning. I’ll even come in on Monday 

morning to make sure everything goes smoothly with Willy. But 

then I’ll go home and won’t be back until Wednesday. Deal?” 

This is perfectly fair. Peter knows that he can get the modifications and 

documents done if he works the overtime. He also knows he’ll be useless for a 

couple of days after that. 

ptg

CONCLUSION

Professionals are not required to say yes to everything that is asked of them. 

However, they should work hard to find creative ways to make “yes” possible. 

When professionals say yes, they use the language of commitment so that there 

is no doubt about what they’ve promised. 

56

C 4

O D I N G

ptg

In a previous book1 I wrote a great deal about the structure and nature of  Clean Code. 

This chapter discusses the  act of coding, and the context that surrounds that act. 

When I was 18 I could type reasonably well, but I had to look at the keys. 

I could not type blind. So one evening I spent a few long hours at an IBM 029 

keypunch refusing to look at my fingers as I typed a program that I had written 

on several coding forms. I examined each card after I typed it and discarded 

those that were typed wrong. 

1.  [Martin09]

57

CHAPTER 4  CODING

At first I typed quite a few in error. By the end of the evening I was typing them 

all with near perfection. I realized, during that long night, that typing blind is 

all about  confidence. My fingers knew where the keys were, I just had to gain 

the confidence that I wasn’t making a mistake. One of the things that helped 

with that confidence is that I could  feel when I was making an error. By the end 

of the evening, if I made a mistake, I knew it almost instantly and simply 

ejected the card without looking at it. 

Being able to sense your errors is really important. Not just in typing, but in 

everything. Having error-sense means that you very rapidly close the feedback 

loop and learn from your errors all the more quickly. I’ve studied, and mastered, 

several disciplines since that day on the 029. I’ve found that in each case that the 

key to mastery is confidence and error-sense. 

This chapter describes my personal set of rules and principles for coding. These rules 

and principles are not about my code itself; they are about my behavior, mood, and 

ptg

attitude while writing code. They describe my own mental, moral, and emotional 

context for writing code. These are the roots of my confidence and error-sense. 

You will likely not agree with everything I say here. After all, this is deeply personal 

stuff. In fact, you may violently disagree with some of my attitudes and principles. 

That’s OK—they are not intended to be absolute truths for anyone other than me. 

What they are is one man’s approach to being a professional coder. 

Perhaps, by studying and contemplating my own personal coding milieu you 

can learn to snatch the pebble from my hand. 

PREPAREDNESS

Coding is an intellectually challenging and exhausting activity. It requires a level 

of concentration and focus that few other disciplines require. The reason for 

this is that coding requires you to juggle many competing factors at once. 

1. First, your code must work. You must understand what problem you are 

solving and understand how to solve that problem. You must ensure that the 

code you write is a faithful representation of that solution. You must manage 

58

PREPAREDNESS

every detail of that solution while remaining consistent within the language, 

platform, current architecture, and all the warts of the current system. 

2. Your code must solve the problem set for you by the customer. Often the 

customer’s requirements do not actually solve the customer’s problems. It is 

up to you to see this and negotiate with the customer to ensure that the 

customer’s true needs are met. 

3. Your code must fit well into the existing system. It should not increase the 

rigidity, fragility, or opacity of that system. The dependencies must be well-

managed. In short, your code needs to follow solid engineering principles.2

4. Your code must be readable by other programmers. This is not simply a 

matter of writing nice comments. Rather, it requires that you craft the code in 

such a way that it reveals your intent. This is hard to do. Indeed, this may be 

the most difficult thing a programmer can master. 

Juggling all these concerns is hard. It is physiologically difficult to maintain the 

necessary concentration and focus for long periods of time. Add to this the 

ptg

problems and distractions of working in a team, in an organization, and the 

cares and concerns of everyday life. The bottom line is that the opportunity for 

distraction is high. 

When you cannot concentrate and focus sufficiently, the code you write will be 

wrong. It will have bugs. It will have the wrong structure. It will be opaque and 

convoluted. It will not solve the customers’ real problems. In short, it will have 

to be reworked or redone. Working while distracted creates waste. 

If you are tired or distracted,  do not code. You’ll only wind up redoing what you 

did. Instead, find a way to eliminate the distractions and settle your mind. 

3 AM CODE

The worst code I ever wrote was at 3 am. The year was 1988, and I was working 

at a telecommunications start-up named Clear Communications. We were all 

putting in long hours in order to build “sweat equity.” We were, of course, all 

dreaming of being rich. 

2.  [Martin03]

59

CHAPTER 4  CODING

One very late evening—or rather, one very early morning, in order to solve a 

timing problem—I had my code send a message to itself through the event 

dispatch system (we called this “sending mail”). This was the  wrong solution, 

but at 3 am it looked pretty damned good. Indeed, after 18 hours of solid coding 

(not to mention the 60–70 hour weeks) it was  all I could think of. 

I remember feeling so good about myself for the long hours I was working. 

I remember feeling  dedicated. I remember thinking that working at 3 am is what 

serious professionals do. How wrong I was! 

That code came back to bite us over and over again. It instituted a faulty design 

structure that everyone used but consistently had to work around. It caused all 

kinds of strange timing errors and odd feedback loops. We’d get into infinite 

mail loops as one message caused another to be sent, and then another, 

infinitely. We never had time to rewrite this wad (so we thought) but we always 

seemed to have time to add another wart or patch to work around it. The cruft 

ptg

grew and grew, surrounding that 3 am code with ever more baggage and side 

effects. Years later it had become a team joke. Whenever I was tired or frustrated 

they’d say, “Look out! Bob’s about to send mail to himself!” 

The moral of this story is: Don’t write code when you are tired. Dedication and 

professionalism are more about discipline than hours. Make sure that your sleep, 

health, and lifestyle are tuned so that you can put in eight  good hours per day. 

WORRY CODE

Have you ever gotten into a big fight with your spouse or friend, and then tried 

to code? Did you notice that there was a background process running in your 

mind trying to resolve, or at least review the fight? Sometimes you can feel the 

stress of that background process in your chest, or in the pit of your stomach. 

It can make you feel anxious, like when you’ve had too much coffee or diet 

coke. It’s distracting. 

When I am worried about an argument with my wife, or a customer crisis, or a 

sick child, I can’t maintain focus. My concentration wavers. I find myself with 

my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic. 

60

PREPAREDNESS

Paralyzed. A million miles away working through the problem in the 

background rather than actually solving the coding problem in front of me. 

Sometimes I will force myself to  think about the code. I might drive myself to 

write a line or two. I might push myself to get a test or two to pass. But I can’t 

keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing 

nothing through my open eyes, inwardly churning on the background worry. 

I have learned that this is no time to code. Any code I produce will be trash. So 

instead of coding, I need to resolve the worry. 

Of course, there are many worries that simply cannot be resolved in an hour or 

two. Moreover, our employers are not likely to long tolerate our inability to 

work as we resolve our personal issues. The trick is to learn how to shut down 

the background process, or at least reduce its priority so that it’s not a 

continuous distraction. 

ptg

I do this by partitioning my time. Rather than forcing myself to code while the 

background worry is nagging at me, I will spend a dedicated block of time, 

perhaps an hour, working on the issue that is creating the worry. If my child is 

sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call 

her and talk through the issues. If I have money problems, I’ll spend time 

thinking about how I can deal with the financial issues. I know I’m not likely to 

solve the problems in this hour, but it is very likely that I can reduce the anxiety 

and quiet the background process. 

Ideally the time spent wrestling with personal issues would be personal time. It 

would be a shame to spend an hour at the office this way. Professional developers 

allocate their personal time in order to ensure that the time spent at the office is 

as productive as possible. That means you should specifically set aside time at 

home to settle your anxieties so that you don’t bring them to the office. 

On the other hand, if you find yourself at the office and the background 

anxieties are sapping your productivity, then it is better to spend an hour 

quieting them than to use brute force to write code that you’ll just have to 

throw away later (or worse, live with). 

61

CHAPTER 4  CODING

THE FLOW ZONE

Much has been written about the hyper-productive state known as “flow.” 

Some programmers call it “the Zone.” Whatever it is called, you are probably 

familiar with it. It is the highly focused, tunnel-vision state of consciousness 

that programmers can get into while they write code. In this state they feel 

 productive. In this state they feel  infallible. And so they desire to attain that state, and often measure their self-worth by how much time they can  

spend there. 

Here’s a little hint from someone whose been there and back:  Avoid the Zone. 

This state of consciousness is not really hyper-productive and is certainly not 

infallible. It’s really just a mild meditative state in which certain rational 

faculties are diminished in favor of a sense of speed. 

Let me be clear about this. You  will write more code in the Zone. If you are 

practicing TDD, you will go around the red/green/refactor loop more quickly. 

ptg

And you will  feel a mild euphoria or a sense of conquest. The problem is that 

you lose some of the big picture while you are in the Zone, so you will likely 

make decisions that you will later have to go back and reverse. Code written in 

the Zone may come out faster, but you’ll be going back to visit it more. 

Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes. 

I clear my head by answering a few emails or looking at some tweets. If it’s close 

enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair 

partner. 

One of the big benefits of pair programming is that it is virtually impossible for 

a pair to enter the Zone. The Zone is an uncommunicative state, while pairing 

requires intense and constant communication. Indeed, one of the complaints I 

often hear about pairing is that it blocks entry into the Zone. Good! The Zone 

is  not where you want to be. 

Well, that’s not  quite true. There are times when the Zone is exactly where you 

want to be. When you are  practicing. But we’ll talk about that in another 

chapter. 

62

THE FLOW ZONE

MUSIC

At Teradyne, in the late ’70s, I had a private office. I was the system administrator 

of our PDP 11/60, and so I was one of the few programmers allowed to have a 

private terminal. That terminal was a VT100 running at 9600 baud and connected 

to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles 

from my office to the computer room. 

I had a stereo system in my office. It was an old turntable, amp, and floor 

speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink 

Floyd, and … . Well, you get the picture. 

I used to crank that stereo and then write code. I thought it helped my 

concentration. But I was wrong. 

One day I went back into a module that I had been editing while listening to the 

opening sequence of  The Wall. The comments in that code contained lyrics 

ptg

from the piece, and editorial notations about dive bombers and crying babies. 

That’s when it hit me. As a reader of the code, I was learning more about the 

music collection of the author (me) than I was learning about the problem that 

the code was trying to solve. 

I realized that I simply don’t code well while listening to music. The music does 

not help me focus. Indeed, the act of listening to music seems to consume some 

vital resource that my mind needs in order to write clean and well-designed code. 

Maybe it doesn’t work that way for you. Maybe music  helps you write code. I 

know lots of people who code while wearing earphones. I accept that the music 

may help them, but I am also suspicious that what’s really happening is that the 

music is helping them enter the Zone. 

INTERRUPTIONS

Visualize yourself as you are coding at your workstation. How do you respond 

when someone asks you a question? Do you snap at them? Do you glare? Does your 

body-language tell them to go away because you are busy? In short, are you rude? 

63

CHAPTER 4  CODING

Or, do you stop what you are doing and politely help someone who is stuck? Do 

you treat them as you would have them treat you if you were stuck? 

The rude response often comes from the Zone. You may resent being dragged 

out of the Zone, or you may resent someone interfering with your attempt to 

enter the Zone. Either way, the rudeness often comes from your relationship to 

the Zone. 

Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying 

to understand something complicated that requires concentration. There are 

several solutions to this. 

Pairing can be very helpful as a way to deal with interruptions. Your pair partner 

can hold the context of the problem at hand, while you deal with a phone call, 

or a question from a coworker. When you return to your pair partner, he quickly 

helps you reconstruct the mental context you had before the interruption. 

ptg

TDD is another big help. If you have a failing test, that test holds the context of 

where you are. You can return to it after an interruption and continue to make 

that failing test pass. 

In the end, of course,  there will be interruptions that distract you and cause you 

to lose time. When they happen, remember that next time you may be the one 

who needs to interrupt someone else. So the professional attitude is a polite 

willingness to be helpful. 

WRITER ’S BLOC K

Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen 

it happen to others. You sit at your workstation and nothing happens. 

Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll 

look through books, or schedules, or documents. You’ll call meetings. You’ll 

start up conversations with others. You’ll do  anything so that you don’t have to 

face that workstation and watch as the code refuses to appear. 

64

WRITER’S BLOCK

What causes such blockages? We’ve spoken about many of the factors already. 

For me, another major factor is sleep. If I’m not getting enough sleep, I simply 

can’t code. Others are worry, fear, and depression. 

Oddly enough there is a very simple solution. It works almost every time. It’s easy 

to do, and it can provide you with the momentum to get lots of code written. 

The solution: Find a pair partner. 

It’s uncanny how well this works. As soon as you sit down next to someone else, 

the issues that were blocking you melt away. There is a  physiological change that 

takes place when you work with someone. I don’t know what it is, but I can 

definitely feel it. There’s some kind of chemical change in my brain or body that 

breaks me through the blockage and gets me going again. 

This is not a perfect solution. Sometimes the change lasts an hour or two, only 

ptg

to be followed by exhaustion so severe that I have to break away from my pair 

partner and find some hole to recover in. Sometimes, even when sitting with 

someone, I can’t do more than just agree with what that person is doing. But for 

me the typical reaction to pairing is a recovery of my momentum. 

CREATIVE INPUT

There are other things I do to prevent blockage. I learned a long time ago that 

creative output depends on creative input. 

I read a lot, and I read all kinds of material. I read material on software, politics, 

biology, astronomy, physics, chemistry, mathematics, and much more. However, 

I find that the thing that best primes the pump of creative output is science 

fiction. 

For you, it might be something else. Perhaps a good mystery novel, or poetry, or 

even a romance novel. I think the real issue is that creativity breeds creativity. 

There’s also an element of escapism. The hours I spend away from my usual 

problems, while being actively stimulated by challenging and creative ideas, 

results in an almost irresistible pressure to create something myself. 

65

CHAPTER 4  CODING

Not all forms of creative input work for me. Watching TV does not usually help 

me create. Going to the movies is better, but only a bit. Listening to music does 

not help me create code, but does help me create presentations, talks, and 

videos. Of all the forms of creative input, nothing works better for me than 

good old space opera. 

DEBUGGING

One of the worst debugging sessions in my career happened in 1972. The 

terminals connected to the Teamsters’ accounting system used to freeze once or 

twice a day. There was no way to force this to happen. The error did not prefer 

any particular terminals or any particular applications. It didn’t matter what the 

user had been doing before the freeze. One minute the terminal was working 

fine, and the next minute it was hopelessly frozen. 

It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting 

ptg

more and more upset. Every time there was a freeze-up the person at that 

terminal would have to stop working and wait until they could coordinate all 

the other users to finish their tasks. Then they’d call us and we’d reboot. It was a 

nightmare. 

We spent the first couple of weeks just gathering data by interviewing the 

people who experienced the lockups. We’d ask them what they were doing at 

the time, and what they had done previously. We asked other users if they 

noticed anything on  their terminals at the time of the freeze-up. These 

interviews were all done over the phone because the terminals were located in 

downtown Chicago, while we worked 30 miles north in the cornfields. 

We had no logs, no counters, no debuggers. Our only access to the internals of 

the system were lights and toggle switches on the front panel. We could stop the 

computer, and then peek around in memory one word at a time. But we 

couldn’t do this for more than five minutes because the Teamsters’ needed their 

system back up. 

We spent a few days writing a simple real-time inspector that could be operated 

from the ASR-33 teletype that served as our console. With this we could peek 

66

DEBUGGING

and poke around in memory while the system was running. We added log 

messages that printed on the teletype at critical moments. We created in-memory 

counters that counted events and remembered state history that we could 

inspect with the inspector. And, of course, all this had to be written from 

scratch in assembler and tested in the evenings when the system was not in use. 

The terminals were interrupt driven. The characters being sent to the terminals 

were held in circular buffers. Every time a serial port finished sending a character, 

an interrupt would fire and the next character in the circular buffer would be 

readied for sending. 

We eventually found that when a terminal froze it was because the three variables 

that managed the circular buffer were out of sync. We had no idea why this was 

happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory 

code there was a bug that mishandled one of those pointers. 

ptg

This new knowledge also allowed us to un-freeze terminals manually! We could 

poke default values into those three variables using the inspector, and the 

terminals would magically start running again. Eventually we wrote a little hack 

that would look through all the counters to see if they were misaligned and 

repair them. At first we invoked that hack by hitting a special user-interrupt 

switch on the front panel whenever the Teamsters called to report a freeze-up. 

Later we simply ran the repair utility once every second. 

A month or so later the freeze-up issue was dead, as far as the Teamsters were 

concerned. Occasionally one of their terminals would pause for a half second or 

so, but at a base rate of 30 characters per second, nobody seemed to notice. 

But why were the counters getting misaligned? I was nineteen and determined 

to find out. 

The supervisory code had been written by Richard, who had since gone off to 

college. None of the rest of us were familiar with that code because Richard had 

been quite possessive of it. That code was  his, and we weren’t allowed to know 

it. But now Richard was gone, so I got out the inches-thick listing and started to 

go over it page by page. 

67

CHAPTER 4  CODING

The circular queues in that system were just FIFO data structures, that is, 

queues. Application programs pushed characters in one end of the queue until 

the queue was full. The interrupt heads popped the characters off the other end 

of the queue when the printer is ready for them. When the queue was empty, 

the printer would stop. Our bug caused the applications to think that the queue 

was full, but caused the interrupt heads to think that the queue was empty. 

Interrupt heads run in a different “thread” than all other code. So counters and 

variables that are manipulated by both interrupt heads and other code must be 

protected from concurrent update. In our case that meant turning the 

interrupts off around any code that manipulated those three variables. By the 

time I sat down with that code I knew I was looking for someplace in the code 

that touched the variables but did not disable the interrupts first. 

Nowadays, of course, we’d use the plethora of powerful tools at our disposal to 

find all the places where the code touched those variables. Within seconds we’d 

know every line of code that touched them. Within minutes we’d know which 

ptg

did not disable the interrupts. But this was 1972, and I didn’t have any tools like 

that. What I had were my eyes. 

I pored over every page of that code, looking for the variables. Unfortunately, 

the variables were used  everywhere. Nearly every page touched them in one way 

or another. Many of those references did not disable the interrupts because they 

were read-only references and therefore harmless. The problem was, in that 

particular assembler there was no good way to know if a reference was read-

only without following the logic of the code. Any time a variable was read, it 

might later be updated and stored. And if that happened while the interrupts 

were enabled, the variables could get corrupted. 

It took me days of intense study, but in the end I found it. There, in the middle 

of the code, was one place where one of the three variables was being updated 

while the interrupts were enabled. 

I did the math. The vulnerability was about two microseconds long. There were 

a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given 

the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up 

from this vulnerability one or two times a day. Bingo! 

68

PACING YOURSELF

I fixed the problem, of course, but never had the courage to turn off the 

automatic hack that inspected and fixed the counters. To this day I’m not 

convinced there wasn’t another hole. 

DEBUGGING TIME

For some reason software developers don’t think of debugging time as coding 

time. They think of debugging time as a call of nature, something that just  has

to be done. But debugging time is just as expensive to the business as coding 

time is, and therefore anything we can do to avoid or diminish it is good. 

Nowadays I spend much less time debugging than I did ten years ago. I haven’t 

measured the difference, but I believe it’s about a factor of ten. I achieved this 

truly radical reduction in debugging time by adopting the practice of Test 

Driven Development (TDD), which we’ll be discussing in another chapter. 

ptg

Whether you adopt TDD or some other discipline of equal efficacy,3 it is 

incumbent upon you as a professional to reduce your debugging time as close 

to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal 

nonetheless. 

Doctors don’t like to reopen patients to fix something they did wrong. Lawyers 

don’t like to retry cases that they flubbed up. A doctor or lawyer who did that 

too often would not be considered professional. Likewise, a software developer 

who creates many bugs is acting unprofessionally. 

PAC I N G YOURSELF

Software development is a marathon, not a sprint. You can’t win the race by 

trying to run as fast as you can from the outset. You win by conserving your 

resources and pacing yourself. A marathon runner takes care of her body both 

before and  during the race. Professional programmers conserve their energy and 

creativity with the same care. 

3.  I don’t know of any discipline that is as effective as TDD, but perhaps you do. 

69

CHAPTER 4  CODING

KNOW WHEN TO WALK AWAY

Can’t go home till you solve this problem? Oh yes you can, and you probably 

should! Creativity and intelligence are fleeting states of mind. When you are 

tired, they go away. If you then pound your nonfunctioning brain for hour after 

late-night hour trying to solve a problem, you’ll simply make yourself more 

tired and reduce the chance that the shower, or the car, will help you solve the 

problem. 

When you are stuck, when you are tired, disengage for awhile. Give your 

creative subconscious a crack at the problem. You will get more done in less 

time and with less effort if you are careful to husband your resources. Pace 

yourself, and your team. Learn your patterns of creativity and brilliance, and 

take advantage of them rather than work against them. 

DRIVING HOME

ptg

One place that I have solved a number of problems is my car on the way home 

from work. Driving requires a lot of noncreative mental resources. You must 

dedicate your eyes, hands, and portions of your mind to the task; therefore, you 

must disengage from the problems at work. There is something about 

 disengagement that allows your mind to hunt for solutions in a different and 

more creative way. 

THE SHOWER

I have solved an inordinate number of problems in the shower. Perhaps that 

spray of water early in the morning wakes me up and gets me to review all the 

solutions that my brain came up with while I was asleep. 

When you are working on a problem, you sometimes get so close to it that you 

can’t see all the options. You miss elegant solutions because the creative part of 

your mind is suppressed by the intensity of your focus. Sometimes the best way 

to solve a problem is to go home, eat dinner, watch TV, go to bed, and then 

wake up the next morning and take a shower. 

70

BEING LATE

BEING LAT E

You  will be late. It happens to the best of us. It happens to the most dedicated of 

us. Sometimes we just blow our estimates and wind up late. 

The trick to managing lateness is early detection and transparency. The worst 

case scenario occurs when you continue to tell everyone, up to the very end, 

that you will be on time—and then let them all down.  Don’t do this. Instead, 

 regularly measure your progress against your goal, and come up with three4

fact-based end dates: best case, nominal case, and worst case. Be as honest as 

you can about all three dates.  Do not incorporate hope into your estimates! 

Present all three numbers to your team and stakeholders. Update these 

numbers daily. 

HOPE

What if these numbers show that you  might miss a deadline? For example, let’s 

ptg

say that there’s a trade show in ten days, and we need to have our product there. 

But let’s also say that your three-number estimate for the feature you are 

working on is 8/12/20. 

 Do not hope that you can get it all done in ten days!  Hope is the project killer. 

Hope destroys schedules and ruins reputations. Hope will get you into deep 

trouble. If the trade show is in ten days, and your nominal estimate is 12, you 

 are not going to make it. Make sure that the team and the stakeholders 

understand the situation, and don’t let up until there is a fall-back plan. Don’t 

let anyone else have hope. 

RUSHING

What if your manager sits you down and asks you to try to make the deadline? 

What if your manager insists that you “do what it takes”?  Hold to your estimates! 

Your original estimates are more accurate than any changes you make while  

4.  There’s much more about this in the Estimation chapter. 

71

CHAPTER 4  CODING

your boss is confronting you. Tell your boss that you’ve already considered the 

options (because you have) and that the only way to improve the schedule is to 

reduce scope.  Do not be tempted to rush. 

Woe to the poor developer who buckles under pressure and agrees to  try to 

make the deadline. That developer will start taking shortcuts and working extra 

hours in the vain hope of working a miracle. This is a recipe for disaster because 

it gives you, your team, and your stakeholders false hope. It allows everyone to 

avoid facing the issue and delays the necessary tough decisions. 

There is no way to rush. You can’t make yourself code faster. You can’t make 

yourself solve problems faster. If you try, you’ll just slow yourself down and 

make a mess that slows everyone else down, too. 

So you must answer your boss, your team, and your stakeholders by depriving 

them of hope. 

ptg

OVERTIME

So your boss says, “What if you work an extra two hours a day? What if you work 

on Saturday? Come on, there’s just got to be a way to squeeze enough hours in 

to get the feature done on time.” 

Overtime can work, and sometimes it is necessary. Sometimes you can make an 

otherwise impossible date by putting in some ten-hour days, and a Saturday or 

two. But this is very risky. You are not likely to get 20% more work done by 

working 20% more hours. What’s more, overtime will  certainly fail if it goes on 

for more than two or three weeks. 

Therefore you should  not agree to work overtime unless (1) you can personally 

afford it, (2) it is short term, two weeks or less, and (3)  your boss has a fall-back 

 plan in case the overtime effort fails. 

That last criterion is a deal breaker. If your boss cannot articulate to you what 

he’s going to do if the overtime effort fails, then you should not agree to work 

overtime. 

72

HELP

FALSE DELIVERY

Of all the unprofessional behaviors that a programmer can indulge in, perhaps 

the worst of all is saying you are done when you know you aren’t. Sometimes 

this is just an overt lie, and that’s bad enough. But the far more insidious case is 

when we manage to rationalize a new definition of “done.” We convince 

ourselves that we are done  enough, and move on to the next task. We rationalize 

that any work that remains can be dealt with later when we have more time. 

This is a contagious practice. If one programmer does it, others will see and 

follow suit. One of them will stretch the definition of “done” even more, and 

everyone else will adopt the new definition. I’ve seen this taken to horrible 

extremes. One of my clients actually defined “done” as “checked-in.” The code 

didn’t even have to compile. It’s very easy to be “done” if nothing has to work! 

When a team falls into this trap, managers hear that everything is going fine. All 

status reports show that everyone is on time. It’s like blind men having a picnic 

ptg

on the railroad tracks: Nobody sees the freight train of unfinished work bearing 

down on them until it is too late. 

DEFINE “DONE ” 

You avoid the problem of false delivery by creating an independent definition of 

“done.” The best way to do this is to have your business analysts and testers 

create automated acceptance tests5 that must pass before you can say that you 

are done. These tests should be written in a testing language such as FitNesse, 

Selenium, RobotFX, Cucumber, and so on. The tests should be understandable 

by the stakeholders and business people, and should be run frequently. 

HELP

Programming is  hard. The younger you are the less you believe this. After all, it’s 

just a bunch of if and while statements. But as you gain experience you begin to 

realize that the way you combine those if and while statements is critically 

5.  See Chapter 7, “Acceptance Testing.” 

73

CHAPTER 4  CODING

important. You can’t just slather them together and hope for the best. Rather, 

you have to carefully partition the system into small understandable units that 

have as little to do with each other as possible—and that’s hard. 

Programming is so hard, in fact, that it is beyond the capability of one person 

to do it well. No matter how skilled you are, you will certainly benefit from 

another programmer’s thoughts and ideas. 

HELPING OTHERS

Because of this, it is the responsibility of programmers to be available to help 

each other. It is a violation of professional ethics to sequester yourself in a 

cubicle or office and refuse the queries of others. Your work is not so important 

that you cannot lend some of your time to help others. Indeed, as a professional 

you are honor bound to offer that help whenever it is needed. 

ptg

This doesn’t mean that you don’t need some alone time. Of course you do. But 

you have to be fair and polite about it. For example, you can let it be known 

that between the hours of 10 am and noon you should not be bothered, but 

from 1 pm to 3 pm your door is open. 

You should be conscious of the status of your teammates. If you see someone 

who appears to be in trouble, you should offer your help. You will likely be quite 

surprised at the profound effect your help can have. It’s not that you are so 

much smarter than the other person, it’s just that a fresh perspective can be a 

profound catalyst for solving problems. 

When you help someone, sit down and write code together. Plan to spend the 

better part of an hour or more. It may take less than that, but you don’t want to 

appear to be rushed. Resign yourself to the task and give it a solid effort. You 

will likely come away having learned more than you gave. 

BEING HELPED

When someone offers to help you, be gracious about it. Accept the help 

gratefully and give yourself to that help.  Do not protect your turf.  Do not push 

74

HELP

the help away because you are under the gun. Give it thirty minutes or so. If by 

that time the person is not really helping all that much, then politely excuse 

yourself and terminate the session with thanks. Remember, just as you are 

honor bound to offer help, you are honor bound to accept help. 

Learn how to  ask for help. When you are stuck, or befuddled, or just can’t wrap 

your mind around a problem, ask someone for help. If you are sitting in a team 

room, you can just sit back and say, “I need some help.” Otherwise, use yammer, 

or twitter, or email, or the phone on your desk. Call for help. Again, this is a 

matter of professional ethics. It is unprofessional to remain stuck when help is 

easily accessible. 

By this time you may be expecting me to burst into a chorus of  Kumbaya while 

fuzzy bunnies leap onto the backs of unicorns and we all happily fly over 

rainbows of hope and change. No, not quite. You see, programmers  tend to be 

arrogant, self-absorbed introverts. We didn’t get into this business because we 

ptg

like  people. Most of us got into programming because we prefer to deeply focus 

on sterile minutia, juggle lots of concepts simultaneously, and in general prove 

to ourselves that we have brains the size of a planet, all while not having to 

interact with the messy complexities of  other people. 

Yes, this is a stereotype. Yes, it is generalization with many exceptions. But the 

reality is that programmers do not tend to be collaborators.6 And yet collaboration 

is critical to effective programming. Therefore, since for many of us collaboration 

is not an instinct, we require  disciplines that drive us to collaborate. 

MENTORING

I have a whole chapter on this topic later in the book. For now let me simply say 

that the training of less experienced programmers is the responsibility of those 

who have more experience. Training courses don’t cut it. Books don’t cut it. 

Nothing can bring a young software developer to high performance quicker 

6. This is far more true of men than women. I had a wonderful conversation with @desi (Desi McAdam, founder of DevChix) about what motivates women programmers. I told her that when I got a program working, it was like slaying the great beast. She told me that for her and other women she had spoken to, the act of writing code was an act of nurturing creation. 

75

CHAPTER 4  CODING

than his own drive, and effective mentoring by his seniors. Therefore, once 

again, it is a matter of professional ethics for senior programmers to spend time 

taking younger programmers under their wing and mentoring them. By the 

same token, those younger programmers have a professional duty to seek out 

such mentoring from their seniors. 

BIBLIOGRAPHY

[Martin09]: Robert C. Martin,  Clean Code, Upper Saddle River, NJ: Prentice 

Hall, 2009. 

[Martin03]: Robert C. Martin,  Agile Software Development: Principles, Patterns, 

 and Practices, Upper Saddle River, NJ: Prentice Hall, 2003. 

ptg

76



TES 5

T   D R IVE N

DEVELOPMENT

ptg

It has been over ten years since Test Driven Development (TDD) made its debut 

in the industry. It came in as part of the Extreme Programming (XP) wave, but 

has since been adopted by Scrum, and virtually all of the other Agile methods. 

Even non-Agile teams practice TDD. 

When, in 1998, I first heard of “Test First Programming” I was skeptical. Who 

wouldn’t be? Write your unit tests  first? Who would do a goofy thing like that? 

77

CHAPTER 5  TEST DRIVEN DEVELOPMENT

But I’d been a professional programmer for thirty years by then, and I’d seen 

things come and go in the industry. I knew better than to dismiss anything out 

of hand, especially when someone like Kent Beck says it. 

So in 1999 I travelled to Medford, Oregon, to meet with Kent and learn the 

discipline from him. The whole experience was a shocker! 

Kent and I sat down in his office and started to code some simple little problem 

in Java. I wanted to just write the silly thing. But Kent resisted and took me, step 

by step, through the process. First he wrote a small part of a unit test, barely 

enough to qualify as code. Then he wrote just enough code to make that test 

compile. Then he wrote a little more test, then more code. 

The cycle time was completely outside my experience. I was used to writing 

code for the better part of an hour before trying to compile or run it. But Kent 

was literally executing his code every thirty seconds or so. I was flabbergasted! 

ptg

What’s more, I recognized the cycle time! It was the kind of cycle time I’d used 

years before as a kid1 programming games in interpreted languages like Basic or 

Logo. In those languages there is no build time, so you just add a line of code 

and then execute. You go around the cycle very quickly. And because of that, 

you can be  very productive in those languages. 

But in  real programming that kind of cycle time was absurd. In  real

programming you had to spend lots of time writing code, and then lots more 

time getting it to compile. And then even more time debugging it.  I was a C++ 

 programmer, dammit!  And in C++ we had build and link times that took 

minutes, sometimes hours. Thirty-second cycle times were unimaginable. 

Yet there was Kent, cooking away at this Java program in thirty-second cycles 

and without any hint that he’d be slowing down any time soon. So it dawned on 

me, while I sat there in Kent’s office, that using this simple discipline I could 

code in real languages with the cycle time of Logo! I was hooked! 

1. From my vantage point at the time a kid is anyone younger than 35. During my twenties I spent a significant amount of time writing silly little games in interpreted languages. I wrote space war games, adventure games, horse race games, snake games, gambling games, you name it. 

78

THE THREE LAWS OF TDD

THE JURY IS IN

Since those days I’ve learned that TDD is much more than a simple trick to 

shorten my cycle time. The discipline has a whole repertoire of benefits that I’ll 

describe in the following paragraphs. 

But first I need to say this:

• The jury is in! 

• The controversy is over. 

• GOTO is harmful. 

• And TDD works. 

Yes, there have been lots of controversial blogs and articles written about TDD 

over the years and there still are. In the early days they were serious attempts at 

critique and understanding. Nowadays, however, they are just rants. The bottom 

ptg

line is that TDD works, and everybody needs to get over it. 

I know this sounds strident and unilateral, but given the record I don’t think 

surgeons should have to defend hand-washing, and I don’t think programmers 

should have to defend TDD. 

How can you consider yourself to be a professional if you do not  know that all 

your code works? How can you know all your code works if you don’t test it 

every time you make a change? How can you test it every time you make a 

change if you don’t have automated unit tests with very high coverage? How can 

you get automated unit tests with very high coverage without practicing TDD? 

That last sentence requires some elaboration. Just what is TDD? 

THE THREE LAW S OF TDD

1. You are not allowed to write any production code until you have first written 

a failing unit test. 

2. You are not allowed to write more of a unit test than is sufficient to fail—and 

not compiling is failing. 

79

CHAPTER 5  TEST DRIVEN DEVELOPMENT

3. You are not allowed to write more production code that is sufficient to pass 

the currently failing unit test. 

These three laws lock you into a cycle that is, perhaps, thirty seconds long. You 

begin by writing a small portion of a unit test. But within a few seconds you 

must mention the name of some class or function you have not written yet, 

thereby causing the unit test to fail to compile. So you must write production 

code that makes the test compile. But you can’t write any more than that, so you 

start writing more unit test code. 

Round and round the cycle you go. Adding a bit to the test code. Adding a bit to the 

production code. The two code streams grow simultaneously into complementary 

components. The tests fit the production code like an antibody fits an antigen. 

THE LITANY OF BENEFITS

Certainty

ptg

If you adopt TDD as a professional discipline, then you will write dozens of 

tests every day, hundreds of tests every week, and thousands of tests every year. 

And you will keep all those tests on hand and run them any time you make any 

changes to the code. 

I am the primary author and maintainer of FitNesse,2 a Java-based acceptance 

testing tool. As of this writing FitNesse is 64,000 lines of code, of which 28,000 

are contained in just over 2,200 individual unit tests. These tests cover at least 

90% of the production code3 and take about 90 seconds to run. 

Whenever I make a change to any part of FitNesse, I simply run the unit tests. If 

they pass, I am nearly certain that the change I made didn’t break anything. 

How certain is “nearly certain”? Certain enough to ship! 

The QA process for FitNesse is the command: ant release. That command 

builds FitNesse from scratch and then runs all the unit and acceptance tests. 

If those tests all pass, I ship it. 

2. http://fitnesse.org

3. Ninety percent is a minimum. The number is actually larger than that. The exact amount is hard to calculate because the coverage tools can’t see code that runs in external processes or in catch blocks. 

80

THE THREE LAWS OF TDD

Defect Injection Rate

Now, FitNesse is not a mission-critical application. If there’s a bug, nobody 

dies, and nobody loses millions of dollars. So I can afford to ship based on 

nothing but passing tests. On the other hand, FitNesse has thousands of users, 

and despite the addition of 20,000 new lines of code last year, my bug list only 

has 17 bugs on it (many of which are cosmetic in nature). So I know my defect 

injection rate is very low. 

This is not an isolated effect. There have been several reports4 and studies5 that 

describe significant defect reduction. From IBM, to Microsoft, from Sabre to 

Symantec, company after company and team after team have experienced defect 

reductions of 2X, 5X, and even 10X. These are numbers that no professional 

should ignore. 

Courage

ptg

Why don’t you fix bad code when you see it? Your first reaction upon seeing a 

messy function is “This is a mess, it needs to be cleaned.” Your second reaction 

is “I’m not touching it!” Why? Because you know that if you touch it you risk 

breaking it; and if you break it, it becomes yours. 

But what if you could be  sure that your cleaning did not break anything? What 

if you had the kind of certainty that I just mentioned? What if you could click a 

button and  know within 90 seconds that your changes had broken nothing,  and 

 had only done good? 

This is one of the most powerful benefits of TDD. When you have a suite of 

tests that you trust, then you lose all fear of making changes. When you see bad 

code, you simply clean it on the spot. The code becomes clay that you can safely 

sculpt into simple and pleasing structures. 

When programmers lose the fear of cleaning, they clean! And clean code is 

easier to understand, easier to change, and easier to extend. Defects become 

4. http://www.objectmentor.com/omSolutions/agile_customers.html

5.  [Maximilien], [George2003], [Janzen2005], [Nagappan2008]

81

CHAPTER 5  TEST DRIVEN DEVELOPMENT

even less likely because the code gets simpler. And the code base steadily 

 improves instead of the normal rotting that our industry has become used to. 

What professional programmer would allow the rotting to continue? 

Documentation

Have you ever used a third-party framework? Often the third party will send 

you a nicely formatted manual written by tech writers. The typical manual 

employs 27 eight-by-ten color glossy photographs with circles and arrows and a 

paragraph on the back of each one explaining how to configure, deploy, 

manipulate, and otherwise use that framework. At the back, in the appendix, 

there’s often an ugly little section that contains all the code examples. 

Where’s the first place you go in that manual? If you are a programmer, you go 

to the code examples. You go to the code because you know the code will tell 

you the truth. The 27 eight-by-ten color glossy photographs with circles and 

ptg

arrows and a paragraph on the back might be pretty, but if you want to know 

how to use code you need to read code. 

Each of the unit tests you write when you follow the three laws is an example, 

written in code, describing how the system should be used. If you follow the 

three laws, then there will be a unit test that describes how to create every object 

in the system, every way that those objects can be created. There will be a unit 

test that describes how to call every function in the system every way that those 

functions can meaningfully be called. For anything you need to know how to 

do, there will be a unit test that describes it in detail. 

The unit tests are documents. They describe the lowest-level design of the 

system. They are unambiguous, accurate, written in a language that the 

audience understands, and are so formal that they execute. They are the best 

kind of low-level documentation that can exist. What professional would not 

provide such documentation? 

Design

When you follow the three laws and write your tests first, you are faced with a 

dilemma. Often you know exactly what code you want to write, but the three 

82

WHAT TDD IS NOT

laws tell you to write a unit test that fails because that code doesn’t exist! This 

means you have to test the code that you are about to write. 

The problem with testing code is that you have to isolate that code. It is often 

difficult to test a function if that function calls other functions. To write that 

test you’ve got to figure out some way to decouple the function from all the 

others. In other words, the need to test first forces you to think about  good

 design. 

If you don’t write your tests first, there is no force preventing you from coupling 

the functions together into an untestable mass. If you write your tests later, you 

may be able to test the inputs and the outputs of the total mass, but it will 

probably be quite difficult to test the individual functions. 

Therefore, following the three laws, and writing your tests first, creates a force 

that drives you to a better decoupled design. What professional would not 

ptg

employ tools that drove them toward better designs? 

“But I can write my tests later,” you say. No, you can’t. Not really. Oh, you can 

write  some tests later. You can even approach high coverage later if you are careful 

to measure it. But the tests you write after the fact are  defense. The tests you write first are  offense. After-the-fact tests are written by someone who is already vested 

in the code and already knows how the problem was solved. There’s just no way 

those tests can be anywhere near as incisive as tests written first. 

THE PROFESSIONAL OPTION

The upshot of all this is that TDD is the professional option. It is a discipline 

that enhances certainty, courage, defect reduction, documentation, and design. 

With all that going for it, it could be considered  unprofessional not to use it. 

WHAT TDD IS NOT

For all its good points, TDD is not a religion or a magic formula. Following the 

three laws does not guarantee any of these benefits. You can still write bad code 

even if you write your tests first. Indeed, you can write bad tests. 

83

CHAPTER 5  TEST DRIVEN DEVELOPMENT

By the same token, there are times when following the three laws is simply 

impractical or inappropriate. These situations are rare, but they exist. No 

professional developer should ever follow a discipline when that discipline does 

more harm than good. 

BIBLIOGRAPHY

[Maximilien]:  E. Michael Maximilien, Laurie Williams, “Assessing Test-Driven 

Development at IBM, ” http://collaboration.csc.ncsu.edu/laurie/Papers/

MAXIMILIEN_WILLIAMS.PDF

[George2003]: B. George, and L. Williams, “An Initial Investigation of Test-

Driven Development in Industry,” http://collaboration.csc.ncsu.edu/laurie/

Papers/TDDpaperv8.pdf

[Janzen2005]: D. Janzen and H. Saiedian, “Test-driven development concepts, 

taxonomy, and future direction,”  IEEE Computer, Volume 38, Issue 9, 

ptg

pp. 43–50. 

[Nagappan2008]: Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh 

Bhat, and Laurie Williams, “Realizing quality improvement through test 

driven development: results and experiences of four industrial teams,” 

Springer Science + Business Media, LLC 2008: http://research.microsoft. 

com/en-us/projects/esm/nagappan_tdd.pdf

84



PR 6

AC TI C I N G

ptg

All professionals practice their art by engaging in skill-sharpening exercises. 

Musicians rehearse scales. Football players run through tires. Doctors practice 

sutures and surgical techniques. Lawyers practice arguments. Soldiers rehearse 

missions. When performance matters, professionals practice. This chapter is all 

about the ways in which programmers can practice their art. 

85

CHAPTER 6  PRACTICING

SOME BAC KG RO U N D ON PRACTICING

Practicing is not a new concept in software development, but we didn’t 

recognize it as practicing until just after the turn of the millennium. Perhaps  

the first formal instance of a practice program was printed on page 6 of  

[K&R-C]. 

main()

{

printf("hello, world\n"); 

}

Who among us has not written that program in one form or another? We use it 

as a way to prove a new environment or a new language. Writing and executing 

that program is proof that we can write and execute  any program. 

When I was much younger, one of the first programs I would write on a new 

computer was SQINT, the squares of integers. I wrote it in assembler, BASIC, 

ptg

FORTRAN, COBOL, and a zillion other languages. Again, it was a way to prove 

that I could make the computer do what I wanted it to do. 

In the early ’80s personal computers first started to show up in department 

stores. Whenever I passed one, like a VIC-20 or a Commodore-64, or a TRS-80, 

I would write a little program that printed an infinite stream of ‘\’ and ‘/’ characters 

on the screen. The patterns this program produced were pleasing to the eye and 

looked far more complex than the little program that generated them. 

Although these little programs were certainly practice programs, program-

mers in general did not  practice. Frankly, the thought never occurred to us. 

We were too busy writing code to think about practicing our skills. And 

besides, what would have been the point? During those years programming 

did not require quick reactions or nimble fingers. We did not use screen 

editors until the late ’70s. We spent much of our time waiting for compiles 

or debugging long, horrid stretches of code. We had not yet invented the 

short-cycles of TDD, so we did not require the fine-tuning that practice 

could bring. 

86

SOME BACKGROUND ON PRACTICING 

TWENTY-TWO ZEROS

But things have changed since the early days of programming. Some things have 

changed a  lot. Other things haven’t changed much at all. 

One of the first machines I ever wrote programs for was a PDP-8/I. This machine 

had a 1.5-microsecond cycle time. It had 4,096 12-bit words in core memory. 

It was the size of a refrigerator and consumed a significant amount of electrical 

power. It had a disk drive that could store 32K of 12-bit words, and we talked 

to it with a 10-character-per-second teletype. We thought this was a  powerful

machine, and we used it to work miracles. 

I just bought a new Macbook Pro laptop. It has a 2.8GHz dual core processor, 

8GB of RAM, a 512GB SSD, and a 17-inch 1920 ´ 1200 LED screen. I carry it in 

my backpack. It sits on my lap. It consumes less than 85 watts. 

My laptop is eight thousand times faster, has   two million   times more memory, has ptg

sixteen million times more offline storage, requires 1% of the power, takes up 1% of 

the space, and costs one twenty-fifth of the price of the PDP-8/I. Let’s do the math:

8, 000 ´ 2, 000, 000 ´ 16, 000, 000 ´ 100 ´ 100  ´ 25 = 6.4 ´ 1022

This number is  large. We’re talking about  22 orders of magnitude!  That’s how many angstroms there are between here and Alpha Centauri. That’s how many 

electrons there are in a silver dollar. That’s the mass of the Earth in units of 

Michael Moore. This is a big, big, number. And it’s sitting in my lap, and 

probably yours too! 

And what am I doing with this increase in power of 22 factors of ten? I’m doing 

pretty much what I was doing with that PDP-8/I. I’m writing  if statements, 

 while loops, and  assignments. 

Oh, I’ve got better tools to write those statements with. And I have better languages 

to write those statements with. But the nature of the statements hasn’t changed in 

all that time. Code in 2010 would be recognizable to a programmer from the 

1960s. The clay that we manipulate has not changed much in those four decades. 

87

CHAPTER 6  PRACTICING

TURNAROUND TIME

But the  way we work has changed dramatically. In the ’60s I could wait a day 

or two to see the results of a compile. In the late ’70s a 50,000-line program 

might take 45 minutes to compile. Even in the ’90s, long build times were 

the norm. 

Programmers today don’t wait for compiles.1 Programmers today have such 

immense power under their fingers that they can spin around the red-green-

refactor loop in seconds. 

For example, I work on a 64,000-line Java project named FitNesse. A full build, 

including  all unit and integration tests, executes in less than 4 minutes. If those 

tests pass, I’m ready to ship the product.  So the whole QA process, from source 

 code to deployment, requires less than 4 minutes.  Compiles take almost no measur-

able time at all. Partial tests require  seconds. So I can literally spin around the 

compile/test loop  ten times per minute! 

ptg

It’s not always wise to go that fast. Often it is better to slow down and just  think.2

But there are other times when spinning around that loop as fast as possible is 

 highly productive. 

Doing anything quickly requires practice. Spinning around the code/test loop 

quickly requires you to make very quick decisions. Making decisions quickly 

means being able to recognize a vast number of situations and problems and 

simply  know what to do to address them. 

Consider two martial artists in combat. Each must recognize what the other  

is attempting and respond appropriately within milliseconds. In a combat 

situation you don’t have the luxury of freezing time, studying the positions, and 

deliberating on the appropriate response. In a combat situation you simply have 

to  react. Indeed, it is your  body that reacts while your mind is working on a higher-level strategy. 

1. The fact that some programmers do wait for builds is tragic and indicative of carelessness. In today’s world build times should be measured in seconds, not minutes, and certainly not hours. 

2. This is a technique that Rich Hickey calls HDD, or Hammock-Driven Development. 

88

THE CODING DOJO

When you are spinning around the code/test loop several times per minute, it is 

your  body that knows what keys to hit. A primal part of your mind recognizes 

the situation and reacts within milliseconds with the appropriate solution while 

your mind is free to focus on the higher-level problem. 

In both the martial arts case and the programming case, speed depends on 

 practice. And in both cases the practice is similar. We choose a repertoire of 

problem/solution pairs and execute them over and over again until we know 

them cold. 

Consider a guitarist like Carlos Santana. The music in his head simply comes 

out his fingers. He does not focus on finger positions or picking technique. His 

mind is free to plan out higher-level melodies and harmonies while his body 

translates those plans into lower-level finger motions. 

But to gain that kind of ease of play requires  practice. Musicians practice scales 

ptg

and études and riffs over and over until they know them cold. 

THE CODING DOJO

Since 2001 I have been performing a TDD demonstration that I call  The Bowling 

 Game.3 It’s a lovely little exercise that takes about thirty minutes. It experiences 

conflict in the design, builds to a climax, and ends with a surprise. I wrote a 

whole chapter on this example in [PPP2003]. 

Over the years I performed this demonstration hundreds, perhaps thousands, of 

times. I got  very good at it! I could do it in my sleep. I minimized the keystrokes, 

tuned the variable names, and tweaked the algorithm structure until it was just 

right. Although I didn’t know it at the time, this was my first kata. 

In 2005 I attended the XP2005 Conference in Sheffield, England. I attended a 

session with the name  Coding Dojo led by Laurent Bossavit and Emmanuel 

Gaillot. They had everyone open their laptops and code along with them as they 

3.  This has become a very popular kata, and a Google search will find many instances of it. The original is 

here: http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata. 

89

CHAPTER 6  PRACTICING

used TDD to write Conway’s  Game of Life. They called it a “Kata” and credited 

“Pragmatic” Dave Thomas4 with the original idea.5

Since then many programmers have adopted a martial arts metaphor for their 

practice sessions. The name Coding Dojo6 seems to have stuck. Sometimes a 

group of programmers will meet and practice together just like martial artists 

do. At other times, programmers will practice solo, again as martial artists do. 

About a year ago I was teaching a group of developers in Omaha. At lunch they 

invited me to join their Coding Dojo. I watched as twenty developers opened their 

laptops and, keystroke by keystroke, followed along with the leader who was doing 

 The Bowling Game Kata. 

There are several kinds of activities that take place in a dojo. Here are a few:

K ATA

ptg

In martial arts, a  kata is a precise set of choreographed movements that simulates 

one side of a combat. The goal, which is asymptotically approached, is perfection. 

The artist strives to teach his body to make each movement perfectly and to 

assemble those movements into fluid enactment. Well-executed kata are beautiful 

to watch. 

Beautiful though they are, the purpose of learning a kata is not to perform it on 

stage. The purpose is to train your mind and body how to react in a particular 

combat situation. The goal is to make the perfected movements automatic and 

instinctive so that they are there when you need them. 

A programming kata is a precise set of choreographed keystrokes and mouse 

movements that simulates the solving of some programming problem. You 

aren’t actually solving the problem because you already know the solution. 

Rather, you are practicing the movements and decisions involved in solving the 

problem. 

4. We use the “Pragmatic” prefix to disambiguate him from “Big” Dave Thomas from OTI. 

5. http://codekata.pragprog.com

6. http://codingdojo.org/

90

THE CODING DOJO

The asymptote of perfection is once again the goal. You repeat the exercise over 

and over again to train your brain and fingers how to move and react. As you 

practice you may discover subtle improvements and efficiencies either in your 

motions or in the solution itself. 

Practicing a suite of katas is a good way to learn hot keys and navigation 

idioms. It is also a good way to learn disciplines such as TDD and CI. But most 

importantly, it is a good way to drive common problem/solution pairs into your 

subconscious, so that you simply know how to solve them when facing them in 

real programming. 

Like any martial artist, a programmer should know several different kata and 

practice them regularly so that they don’t fade away from memory. Many kata 

are recorded at http://katas.softwarecraftsmanship.org. Others can be found at 

http://codekata.pragprog.com. Some of my favorites are: ptg

•  The Bowling Game: http://butunclebob.com/ArticleS.UncleBob.TheBowling-

GameKata

•  Prime Factors: http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-

Kata

•  Word Wrap: http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-

path.html

For a real challenge, try learning a kata so well that you can set it to music. 

Doing this well is  hard.  7

WASA

When I studied jujitsu, much of our time in the dojo was spent in pairs practicing 

our  wasa. Wasa is very much like a two-man kata. The routines are precisely 

memorized and played back. One partner plays the role of the aggressor, and the 

other partner is the defender. The motions are repeated over and over again as the 

practitioners swap roles. 

7. http://katas.softwarecraftsmanship.org/?p=71

91

CHAPTER 6  PRACTICING

Programmers can practice in a similar fashion using a game known as  ping-

 pong.8 The two partners choose a kata, or a simple problem. One programmer 

writes a unit test, and then the other must make it pass. Then they reverse  

roles. 

If the partners choose a standard kata, then the outcome is known and the 

programmers are practicing and critiquing each other’s keyboarding and 

mousing techniques, and how well they’ve memorized the kata. On the other 

hand, if the partners choose a new problem to solve, then the game can get a bit 

more interesting. The programmer writing a test has an inordinate amount of 

control over how the problem will be solved. He also has a significant amount 

of power to set constraints. For example, if the programmers choose to 

implement a sort algorithm, the test writer can easily put constraints on speed 

and memory space that will challenge his partner. This can make the game quite 

competative . . . and fun. 

ptg

R ANDORI

 Randori is free-form combat. In our jujitsu dojo, we would set up a variety of 

combat scenarios and then enact them. Sometimes one person was told to defend, 

while each of the rest of us would attack him in sequence. Sometimes we would 

set two or more attackers against a single defender (usually the sensei, who almost 

always won). Sometimes we’d do two on two, and so forth. 

Simulated combat does not map well to programming; however, there is a game 

that is played at many coding dojos called randori. It is very much like two-man 

wasa in which the partners are solving a problem. However, it is played with 

many people and the rules have a twist. With the screen projected on the wall, 

one person writes a test and then sits down. The next person makes the test pass 

and then writes the next test. This can be done in sequence around the table, or 

people can simply line up as they feel so moved. In either case these exercises 

can be a  lot of fun. 

8. http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

92



BROADENING YOUR EXPERIENCE

It is remarkable how much you can learn from these sessions. You can gain an 

immense insight into the way other people solve problems. These insights can 

only serve to broaden your own approach and improve your skill. 

BROADENING YOUR EXPERIENCE

Professional programmers often suffer from a lack of diversity in the kinds 

of problems that they solve. Employers often enforce a single language, platform, 

and domain in which their programmers must work. Without a broadening 

influence, this can lead to a very unhealthy narrowing of your resume and your 

mindset. It is not uncommon for such programmers to find themselves unprepared 

for the changes that periodically sweep the industry. 

OPEN SOURCE

One way to stay ahead of the curve is to do what lawyers and doctors do: Take on 

ptg

some pro-bono work by contributing to an open-source project. There are lots of 

them out there, and there is probably no better way to increase your repertoire of 

skills than to actually work on something that someone else cares about. 

So if you are a Java programmer, contribute to a Rails project. If you write a lot 

of C++ for your employer, find a Python project and contribute to it. 

PR ACTICE ETHICS

Professional programmers practice on their own time. It is not your employer’s 

job to help you keep your skills sharp for you. It is not your employer’s job to 

help you keep your resume tuned. Patients do not pay doctors to practice sutures. 

Football fans do not (usually) pay to see players run through tires. Concert-goers 

do not pay to hear musicians play scales. And employers of programmers don’t 

have to pay you for your practice time. 

Since your practice time is your own time, you don’t have to use the same languages 

or platforms that you use with your employer. Pick any language you like and 

keep your polyglot skills sharp. If you work in a .NET shop, practice a little Java 

or Ruby at lunch, or at home. 

93

CHAPTER 6  PRACTICING

CONCLUSION

In one way or another,  all professionals practice. They do this because they 

care about doing the best job they possibly can. What’s more, they practice on 

their own time because they realize that it is their responsibility—and not their 

employer’s—to keep their skills sharp. Practicing is what you do when you  aren’t

getting paid. You do it so that you  will be paid, and paid  well. 

BIBLIOGRAPHY

[K&R-C]: Brian W. Kernighan and Dennis M. Ritchie,  The C Programming 

 Language,  Upper Saddle River, NJ: Prentice Hall, 1975. 

[PPP2003]: Robert C. Martin,  Agile Software Development: Principles, Patterns, 

 and Practices, Upper Saddle River, NJ: Prentice Hall, 2003. 

ptg

94



ACC7

E P TA N C E

TESTING

ptg

The role of the professional developer is a communications role as well as a devel-

opment role. Remember that garbage-in/garbage-out applies to programmers too, 

so professional programmers are careful to make sure that their communication 

with other members of the team, and the business, are accurate and healthy. 

COMMUNICATING REQUIREMENTS

One of the most common communication issues between programmers and 

business is the requirements. The business people state what they believe they 

need, and then the programmers build what they believe the business described. 

At least that’s how it’s supposed to work. In reality, the communication of 

requirements is extremely difficult, and the process is fraught with error. 

95

CHAPTER 7  ACCEPTANCE TESTING

In 1979, while working at Teradyne, I had a visit from Tom, the manager of 

installation and field service. He asked me to show him how to use the ED-402 

text editor to create a simple trouble-ticket system. 

ED-402 was a proprietary editor written for the M365 computer, which was 

Teradyne’s PDP-8 clone. As a text editor it was very powerful. It had a built-in 

scripting language that we used for all kinds of simple text applications. 

Tom was not a programmer. But the application he had in mind was simple, so 

he thought I could teach him quickly and then he could write the application 

himself. In my naivete I thought the same thing. After all, the scripting language 

was little more than a macro language for the editing commands, with very 

rudimentary decision and looping constructs. 

So we sat down together and I asked him what he wanted his application to do. 

He started with the initial entry screen. I showed him how to create a text file 

ptg

that would hold the script statements and how to type the symbolic 

representation of the edit commands into that script. But when I looked into 

his eyes, there was nothing looking back. My explanation simply made no sense 

to him at all. 

This was the first time I had encountered this. For me it was a simple thing to 

represent editor commands symbolically. For example, to represent a control-B 

command (the command that puts the cursor at the beginning of the current 

line) you simply typed ^B into the script file. But this made no sense to Tom. He 

couldn’t make the leap from editing a file to editing a file that edited a file. 

Tom wasn’t dumb. I think he simply realized that this was going to be a lot 

more involved than he initially thought, and he didn’t want to invest the time 

and mental energy necessary to learn something so hideously convoluted as 

using an editor to command an editor. 

So bit by bit I found myself implementing this application while he sat there 

and watched. Within the first twenty minutes it was clear that his emphasis had 

changed from learning how to do it himself to making sure that what  I did was 

what  he wanted. 

96

COMMUNICATING REQUIREMENTS

It took us an entire day. He would describe a feature and I would implement it 

as he watched. The cycle time was five minutes or less, so there was no reason 

for him to get up and do anything else. He’d ask me to do X, and within five 

minutes I had X working. 

Often he would draw what he wanted on a scrap of paper. Some of the things 

he wanted were hard to do in ED-402, so I’d propose something else. We’d 

eventually agree on something that would work, and then I’d make it work. 

But then we’d try it and he’d change his mind. He’d say something like, “Yeah, 

that just doesn’t have the flow I’m looking for. Let’s try it a different way.” 

Hour after hour we fiddled and poked and prodded that application into shape. 

We tried one thing, then another, and then another. It became very clear to me 

that  he was the sculptor, and I was the tool he was wielding. 

ptg

In the end, he got the application he was looking for but had no idea how to  

go about building the next one for himself. I, on the other hand, learned a 

powerful lesson about how customers actually discover what they need. I learned 

that their vision of the features does not often survive actual contact with the 

computer. 

PREMATURE PRECISION

Both business and programmers are tempted to fall into the trap of premature 

precision. Business people want to know exactly what they are going to get before 

they authorize a project. Developers want to know exactly what they are supposed 

to deliver before they estimate the project. Both sides want a precision that simply 

cannot be achieved, and are often willing to waste a fortune trying to attain it. 

The Uncertainty Principle

The problem is that things appear different on paper than they do in a working 

system. When the business actually sees what they specified running in a system, 

they realize that it wasn’t what they wanted at all. Once they see the requirement 

actually running, they have a better idea of what they really want—and it’s 

usually not what they are seeing. 

97

CHAPTER 7  ACCEPTANCE TESTING

There’s a kind of observer effect, or uncertainty principle, in play. When you 

demonstrate a feature to the business, it gives them more information than they 

had before, and that new information impacts how they see the whole system. 

In the end, the more precise you make your requirements, the less relevant they 

become as the system is implemented. 

Estimation Anxiety

Developers, too, can get caught in the precision trap. They know they must 

estimate the system and often think that this requires precision. It doesn’t. 

First, even with perfect information your estimates will have a huge variance. 

Second, the uncertainty principle makes hash out of early precision. The 

requirements  will change making that precision moot. 

Professional developers understand that estimates can, and should, be made 

ptg

based on low precision requirements, and recognize that those estimates  are 

 estimates. To reinforce this, professional developers always include error bars 

with their estimates so that the business understands the uncertainty. (See 

Chapter 10, “Estimation.”)

LAT E AMBIGUITY

The solution to premature precision is to defer precision as long as possible. 

Professional developers don’t flesh out a requirement until they are just about 

to develop it. However, that can lead to another malady: late ambiguity. 

Often stakeholders disagree. When they do, they may find it easier to  wordsmith

their way around the disagreement rather than solve it. They will find some way 

of phrasing the requirement that they can all agree with, without actually 

resolving the dispute. I once heard Tom DeMarco say, “An ambiguity in a 

requirements document represents an argument amongst the stakeholders.”1

Of course, it doesn’t take an argument or a disagreement to create ambiguity. 

Sometimes the stakeholders simply assume that their readers know what they mean. 

1.  XP Immersion 3, May, 2000. http://c2.com/cgi/wiki?TomsTalkAtXpImmersionThree

98

COMMUNICATING REQUIREMENTS

It may be perfectly clear to them in their context, but mean something 

completely different to the programmer who reads it. This kind of contextual 

ambiguity can also occur when customers and programmers are speaking face 

to face. 

Sam (stakeholder): “OK, now these log files need to be backed up.” 

Paula: “OK, how often?” 

Sam: “Daily.” 

Paula: “Right. And where do you want it saved?” 

Sam: “What do you mean?” 

Paula: “Do you want me to save it a particular sub-directory?” 

Sam: “Yes, that’d be good.” 

Paula: “What shall we call it?” 

Sam: “How about ‘backup’?” 

ptg

Paula: “Sure, that’d be fine. So we’ll write the log file into the backup 

directory every day. What time?” 

Sam: “Every day.” 

Paula: “No, I mean what time of day do you want it written?” 

Sam: “Any time.” 

Paula: “Noon?” 

Sam: “No, not during trading hours. Midnight would be better.” 

Paula: “OK, midnight then.” 

Sam: “Great, thanks!” 

Paula: “Always a pleasure.” 

Later, Paula is telling her teammate Peter about the task. 

Paula: “OK, we need to copy the log file into a sub-directory named 

backup every night at midnight.” 

Peter: “OK, what file name should we use?” 

Paula: “log.backup ought to do it.” 

Peter: “You got it.” 

99

CHAPTER 7  ACCEPTANCE TESTING

In a different office, Sam is on the phone with his customer. 

Sam: “Yes, yes, the log files will be saved.” 

Carl:  “OK, it’s vital that we never lose any logs. We need to go back 

through all those log files, even months or years later, whenever 

there’s an outage, event, or dispute.” 

Sam: “Don’t worry, I just spoke to Paula. She’ll be saving the logs into a 

directory named backup every night at midnight.” 

Carl: “OK, that sounds good.” 

I presume you’ve detected the ambiguity. The customer expects all log files to be 

saved, and Paula simply thought they wanted to save last night’s log file. When 

the customer goes looking for months’ worth of log file backups, they’ll just 

find last night’s. 

In this case both Paula and Sam dropped the ball. It is the responsibility of 

ptg

professional developers (and stakeholders) to make sure that all ambiguity is 

removed from the requirements. 

This is  hard, and there’s only one way I know how to do it. 

ACCEPTANCE TESTS

The term  acceptance  test is overloaded and overused. Some folks assume that 

these are the tests that users execute before they accept a release. Other folks 

think these are QA tests. In this chapter we will define acceptance tests as tests 

written by a collaboration of the stakeholders and the programmers  in order to 

 define when a requirement is done. 

THE DEFINITION OF “DONE ” 

One of the most common ambiguities we face as software professionals is the 

ambiguity of “done.” When a developer says he’s done with a task, what does that 

mean? Is the developer done in the sense that he’s ready to deploy the feature 

with full confidence? Or does he mean that he’s ready for QA? Or perhaps he’s 

done writing it and has gotten it to run once but hasn’t really tested it yet. 

100

ACCEPTANCE TESTS

I have worked with teams who had a different definition for the words “done” 

and “complete.” One particular team used the terms “done” and “done-done.” 

Professional developers have a single definition of done: Done means  done. 

Done means all code written, all tests pass, QA and the stakeholders have 

accepted. Done. 

But how can you get this level of done-ness and still make quick progress from 

iteration to iteration? You create a set of automated tests that, when they pass, 

meet all of the above criteria! When the acceptance tests for your feature pass, 

you are  done. 

Professional developers drive the definition of their requirements all the way to 

automated acceptance tests. They work with stakeholder’s and QA to ensure 

that these automated tests are a complete specification of done. 

Sam: “OK, now these log files need to be backed up.” 

ptg

Paula: “OK, how often?” 

Sam: “Daily.” 

Paula: “Right. And where do you want it saved?” 

Sam: “What do you mean?” 

Paula: “Do you want me to save it a particular sub-directory?” 

Sam: “Yes, that’d be good.” 

Paula: “What shall we call it?” 

Sam: “How about ‘backup’ ”? 

Tom (tester): “Wait, backup is too common a name. What are you really 

storing in this directory?” 

Sam: “The backups.” 

Tom: “Backups of what?” 

Sam: “The log files.” 

Paula: “But there’s only one log file.” 

Sam: “No, there are many. One for each day.” 

Tom: “You mean that there is one  active log file, and many log file 

backups?” 

101

CHAPTER 7  ACCEPTANCE TESTING

Sam: “Of course.” 

Paula: “Oh! I thought you just wanted a temporary backup.” 

Sam: “No, the customer wants to keep them all forever.” 

Paula: “That’s a new one on me. OK, glad we cleared that up.” 

Tom: “So the name of the sub-directory should tell us exactly what’s in it.” 

Sam: “It’s got all the old inactive logs.” 

Tom: “So let’s call it old_inactive_logs.” 

Sam: “Great.” 

Tom: “So when does this directory get created?” 

Sam: “Huh?” 

Paula: “We should create the directory when the system starts, but only if 

the directory doesn’t already exist.” 

Tom: “OK, there’s our first test. I’ll need to start up the system and see if 

the old_inactive_logs directory is created. Then I’ll add a file to that 

ptg

directory. Then I’ll shut down, and start again, and make sure both 

the directory and the file are still there.” 

Paula: “That test is going to take you a long time to run. System start-up is 

already 20 seconds, and growing. Besides, I really don’t want to have 

to build the whole system every time I run the acceptance tests.” 

Tom: “What do you suggest?” 

Paula: “We’ll create a SystemStarter class. The main program will load this 

starter with a group of StartupCommand objects, which will follow the 

Command pattern. Then during system start-up the SystemStarter 

will simply tell all the StartupCommand objects to run. One of those 

StartupCommand derivatives will create the old_inactive_logs

directory, but only if it doesn’t already exist.” 

Tom: “Oh, OK, then all I need to test is that StartupCommand derivative. 

I can write a simple FitNesse test for that.” 

Tom goes to the board. 

“The first part will look something like this”:

given the command LogFileDirectoryStartupCommand

given that the old_inactive_logs directory does not exist

102

ACCEPTANCE TESTS

when the command is executed

then the old_inactive_logs directory should exist

and it should be empty

“The second part will look like this”:

given the command LogFileDirectoryStartupCommand

given that the old_inactive_logs directory exists

and that it contains a file named x

When the command is executed

Then the old_inactive_logs directory should still exist

and it should still contain a file named x

Paula: “Yeah, that should cover it.” 

Sam: “Wow, is all that really necessary?” 

Paula: “Sam, which of these two statements isn’t important enough to 

specify?” 

Sam: “I just mean that it looks like a lot of work to think up and write all 

ptg

these tests.” 

Tom: “It is, but it’s no more work than writing a manual test plan. And 

it’s  much more work to repeatedly execute a manual test.” 

COMMUNICATION

The purpose of acceptance tests is communication, clarity, and precision. By 

agreeing to them, the developers, stakeholders, and testers all understand what the 

plan for the system behavior is. Achieving this kind of clarity is the responsibility 

of all parties. Professional developers make it their responsibility to work with 

stakeholders and testers to ensure that all parties know what is about to be built. 

AUTOMATION

Acceptance tests should  always be automated. There is a place for manual 

testing elsewhere in the software lifecycle, but  these kinds of tests should never 

be manual. The reason is simple: cost. 

Consider the image in Figure 7-1. The hands you see there belong to the QA 

manager of a large Internet company. The document he is holding is the  table of 

103



CHAPTER 7  ACCEPTANCE TESTING

 contents for his  manual test plan. He has an army of manual testers in off-shore locations that execute this plan once every six weeks. It costs him over a million 

dollars every time. He’s holding it out for me because he’s just come back from 

a meeting in which his manager has told him that they need to cut his budget 

by 50%. His question to me is, “Which half of these tests should I not run?” 

ptg

Figure 7-1  Manual test plan

To call this a disaster would be a gross understatement. The cost of running the 

manual test plan is so enormous that they have decided to sacrifice it and 

simply live with the fact that  they won’t know if half of their product works! 

Professional developers do not let this kind of situation happen. The cost of 

automating acceptance tests is so small in comparison to the cost of executing 

manual test plans that it makes no economic sense to write scripts for humans 

to execute. Professional developers take responsibility for their part in ensuring 

that acceptance tests are automated. 

104

ACCEPTANCE TESTS

There are many open-source and commercial tools that facilitate the automation 

of acceptance tests. FitNesse, Cucumber, cuke4duke, robot framework, and 

Selenium, just to mention a few. All these tools allow you to specify automated 

tests in a form that nonprogrammers can read, understand, and even author. 

EXTR A WORK

Sam’s point about work is understandable. It  does look like a lot of extra work 

to write acceptance tests like this. But given Figure 7-1 we can see that it’s not 

really extra work at all. Writing these tests is simply the work of specifying the 

system. Specifying at this level of detail is the only way we, as programmers, can 

know what “done” means. Specifying at this level of detail is the only way that 

the stakeholders can ensure that the system they are paying for really does what 

they need. And specifying at this level of detail is the only way to successfully 

automate the tests. So don’t look at these tests as extra work. Look at them as 

massive time and money savers. These tests will prevent you from implementing 

ptg

the wrong system and will allow you to  know when you are done. 

WHO WRITES ACCEPTANCE TESTS , AND WHEN ? 

In an ideal world, the stakeholders and QA would collaborate to write these 

tests, and developers would review them for consistency. In the real world, 

stakeholders seldom have the time or inclination to dive into the required level 

of detail. So they often delegate the responsibility to business analysts, QA, or 

even developers. If it turns out that developers must write these tests, then take 

care that the developer who writes the test is not the same as the developer who 

implements the tested feature. 

Typically business analysts write the “happy path” versions of the tests, because 

those tests describe the features that have business value. QA typically writes the 

“unhappy path” tests, the boundary conditions, exceptions, and corner cases. 

This is because QA’s job is to help think about what can go wrong. 

Following the principle of “late precision,” acceptance tests should be written as 

late as possible, typically a few days before the feature is implemented. In Agile 

projects, the tests are written  after the features have been selected for the next 

Iteration or Sprint. 

105

CHAPTER 7  ACCEPTANCE TESTING

The first few acceptance tests should be ready by the first day of the iteration. 

More should be completed each day until the midpoint of the iteration when all 

of them should be ready. If all the acceptance tests aren’t ready by the midpoint of 

the iteration, then some developers will have to pitch in to finish them off. If this 

happens frequently, then more BAs and/or QAs should be added to the team. 

THE DEVELOPER ’S ROLE

Implementation work on a feature begins when the acceptance tests for that 

feature are ready. The developers execute the acceptance tests for the new 

feature and see how they fail. Then they work to connect the acceptance test to 

the system, and then start making the test pass by implementing the desired 

feature. 

Paula: “Peter, would you give me a hand with this story?” 

Peter:  “Sure, Paula, what’s up?” 

ptg

Paula: “Here’s the acceptance test. As you can see, it’s failing.” 

given the command LogFileDirectoryStartupCommand

given that the old_inactive_logs directory does not exist

when the command is executed

then the old_inactive_logs directory should exist

and it should be empty

Peter:  “Yeah, all red. None of the scenarios are written. Let me write the 

first one.” 

|scenario|given the command _|cmd|

|create command|@cmd|

Paula: “Do we already have a createCommand operation?” 

Peter: “Yeah, it’s in the CommandUtilitiesFixture that I wrote last week.” 

Paula: “OK, so let’s run the test now.” 

Peter: (runs test). “Yeah, the first line is green, let’s move on to the next.” 

Don’t worry too much about Scenarios and Fixtures. Those are just some of  

the plumbing you have to write to connect the tests to the system being tested. 

106

ACCEPTANCE TESTS

Suffice it to say that the tools all provide some way to use pattern matching to 

recognize and parse the statements of the test, and then to call functions that 

feed the data in the test into the system being tested. The amount of effort is 

small, and the Scenarios and Fixtures are reusable across many different tests. 

The point of all this is that it is the developer’s job to connect the acceptance 

tests to the system, and then to make those tests pass. 

TEST NEGOTIATION AND PASSIVE AGGRESSION

Test authors are human and make mistakes. Sometimes the tests as written don’t 

make a lot of sense once you start implementing them. They might be too 

complicated. They might be awkward. They might contains silly assumptions. 

Or they might just be wrong. This can be very frustrating if you are the 

developer who has to make the test pass. 

ptg

As a professional developer, it is your job to negotiate with the test author for a 

better test. What you should  never do is take the passive-aggressive option and 

say to yourself, “Well, that’s what the test says, so that’s what I’m going to do.” 

Remember, as a professional it is your job to help your team create the best 

software they can. That means that everybody needs to watch out for errors and 

slip-ups, and work together to correct them. 

Paula: “Tom, this test isn’t quite right.” 

ensure that the post operation finishes in 2 seconds. 

Tom: “It looks OK to me. Our requirement is that users should not have 

to wait more than two seconds. What’s the problem?” 

Paula: “The problem is we can only make that guarantee in a statistical 

sense.” 

Tom: “Huh? That sounds like weasel words. The requirement is two 

seconds.” 

Paula: “Right, and we can achieve that 99.5% of the time.” 

Tom: “Paula, that’s not the requirement.” 

Paula: “But it’s reality. There’s no way I can make the guarantee any other way.” 

107

CHAPTER 7  ACCEPTANCE TESTING

Tom: “Sam’s going to throw a fit.” 

Paula: “No, actually, I’ve already spoken to him about it. He’s fine as long 

as the  normal user experience is two seconds or less.” 

Tom: “OK, so how do I write this test? I can’t just say that the post 

operation  usually finishes in two seconds.” 

Paula: “You say it statistically.” 

Tom: “You mean you want me to run a thousand post operation and make 

sure no more than five are more than two seconds? That’s absurd.” 

Paula: “No, that would take the better part of an hour to run. How about 

this?” 

execute 15 post transactions and accumulate times. 

ensure that the Z score for 2 seconds is at least 2.57

Tom:  “Whoa, what’s a Z score?” 

Paula: “Just a bit of statistics. Here, how about this?” 

ptg

execute 15 post transactions and accumulate times. 

ensure odds are 99.5% that time will be less than 2 seconds. 

Tom: “Yeah, that’s readable, sort of, but can I trust the math behind the 

scenes?” 

Paula: “I’ll make sure to show all the intermediate calculations in the test 

report so that you can check the math if you have any doubts.” 

Tom: “OK, that works for me.” 

ACCEPTANCE TESTS AND UNIT TESTS

Acceptance tests are not  unit tests. Unit tests are written  by programmers  for programmers. They are formal design documents that describe the lowest level 

structure and behavior of the code. The audience is programmers, not business. 

Acceptance tests are written  by the business  for the business (even when you, the developer, end up writing them). They are formal requirements documents that 

specify how the system should behave from the business’ point of view. The 

audience is the business  and the programmers. 

108

ACCEPTANCE TESTS

It can be tempting to try to eliminate “extra work” by assuming that the two 

kinds of tests are redundant. Although it is true that unit and acceptance tests 

often test the same things, they are not redundant at all. 

First, although they may test the same things, they do so through different 

mechanisms and pathways. Unit tests dig into the guts of the system making 

calls to methods in particular classes. Acceptance tests invoke the system much 

farther out, at the API or sometimes even UI level. So the execution pathways 

that these tests take are very different. 

But the real reason these tests aren’t redundant is that their primary function  is 

 not testing. The fact that they are tests is incidental. Unit tests and acceptance 

tests are documents first, and tests second. Their primary purpose is to formally 

document the design, structure, and behavior of the system. The fact that they 

automatically verify the design, structure, and behavior that they specify is 

wildly useful, but the specification is their true purpose. 

ptg

GUIS AND OTHER COMPLICATIONS

It is hard to specify GUIs up front. It can be done, but it is seldom done well. The 

reason is that the aesthetics are subjective and therefore volatile. People want to 

 fiddle with GUIs. They want to massage and manipulate them. They want to try 

different fonts, colors, page-layouts, and workflows. GUIs are constantly in flux. 

This makes it challenging to write acceptance tests for GUIs. The trick is to 

design the system so that you can treat the GUI as though it were an API rather 

than a set of buttons, sliders, grids, and menus. This may sound strange, but it’s 

really just good design. 

There is a design principle called the Single Responsibility Principle (SRP). This 

principle states that you should separate those things that change for different 

reasons, and group together those things that change for the same reasons. 

GUIs are no exception. 

The layout, format, and workflow of the GUI will change for aesthetic and 

efficiency reasons, but the underlying capability of the GUI will remain the same 

109

CHAPTER 7  ACCEPTANCE TESTING

despite these changes. Therefore, when writing acceptance tests for a GUI you 

take advantage of the underlying abstractions that don’t change very frequently. 

For example, there may be several buttons on a page. Rather than creating tests 

that click on those buttons based on their positions on the page, you may be 

able to click on them based on their names. Better yet, perhaps they each have  

a unique ID that you can use. It is much better to write a test that selects the 

button whose ID is ok_button than it is to select the button in column 3 of row 

4 of the control grid. 

Testing through the Right Interface

Better still is to write tests that invoke the features of the underlying system 

through a real API rather than through the GUI. This API should be the same 

API used by the GUI. This is nothing new. Design experts have been telling us 

for decades to separate our GUIs from our business rules. 

ptg

Testing through the GUI is always problematic unless you are testing  just the 

GUI. The reason is that the GUI is likely to change, making the tests very fragile. 

When every GUI change breaks a thousand tests, you are either going to start 

throwing the tests away or you are going to stop changing the GUI. Neither of 

those are good options. So write your business rule tests to go through an API 

just below the GUI. 

Some acceptance tests specify the behavior of the GUI itself. These tests  must go 

through the GUI. However, these tests do not test business rules and therefore 

don’t require the business rules to be connected to the GUI. Therefore, it is a 

good idea to decouple the GUI and the business rules and replace the business 

rules with stubs while testing the GUI itself. 

Keep the GUI tests to a minimum. They are fragile, because the GUI is volatile. 

The more GUI tests you have the less likely you are to keep them. 

CONTINUOUS INTEGR ATION

Make sure that all your unit tests and acceptance tests are run several times per 

day in a  continuous integration system. This system should be triggered by your 

110

CONCLUSION

source code control system. Every time someone commits a module, the CI 

system should kick off a build, and then run all the tests in the system. The 

results of that run should be emailed to everyone on the team. 

Stop the Presses

It is very important to keep the CI tests running at all times. They should never 

fail. If they fail, then the whole team should stop what they are doing and focus 

on getting the broken tests to pass again. A broken build in the CI system 

should be viewed as an emergency, a “stop the presses” event. 

I have consulted for teams that failed to take broken tests seriously. They were 

“too busy” to fix the broken tests so they set them aside, promising to fix them 

later. In one case the team actually took the broken tests out of the build because 

it was so inconvenient to see them fail. Later, after releasing to the customer, 

they realized that they had forgotten to put those tests back into the build. They 

learned this because an angry customer was calling them with bug reports. 

ptg

CONCLUSION

Communication about details is hard. This is especially true for programmers 

and stakeholders communicating about the details of an application. It is too 

easy for each party to wave their hands and  assume that the other party 

understands. All too often both parties agree that they understand and leave 

with completely different ideas. 

The only way I know of to effectively eliminate communication errors between 

programmers and stakeholders is to write automated acceptance tests. These 

tests are so formal that they execute. They are completely unambiguous, and 

they cannot get out of sync with the application. They are the perfect 

requirements document. 

111

 This page intentionally left blank 

ptg



TESTING8

 STRATEGIES

ptg

Professional developers test their code. But testing is not simply a matter of 

writing a few unit tests or a few acceptance tests. Writing these tests is a good 

thing, but it is far from sufficient. What every professional development team 

needs is a good  testing strategy. 

In 1989, I was working at Rational on the first release of Rose. Every month or 

so our QA manager would call a “Bug Hunt” day. Everyone on the team, from 

programmers to managers to secretaries to database administrators, would sit 

down with Rose and try to make it fail. Prizes were awarded for various types of 

113

CHAPTER 8  TESTING STRATEGIES

bugs. The person who found a crashing bug could win a dinner for two. The 

person who found the most bugs might win a weekend in Monterrey. 

QA SHOULD FIND NOTH I NG

I’ve said this before, and I’ll say it again. Despite the fact that your company 

may have a separate QA group to test the software, it should be the goal of the 

development group that QA find nothing wrong. 

Of course, it’s not likely that this goal will be constantly achieved. After all, when 

you have a group of intelligent people bound and determined to find all the 

wrinkles and deficits in a product, they are likely going to find some. Still, every 

time QA finds something the development team should react in horror. They 

should ask themselves how it happened and take steps to prevent it in the future. 

ptg

QA Is PART OF THE TEAM

The previous section might have made it seem that QA and Development are at 

odds with each other, that their relationship is adversarial. This is not the intent. 

Rather, QA and Development should be working together to ensure the quality 

of the system. The best role for the QA part of the team is to act as specifiers 

and characterizers. 

QA as Specifiers

It should be QA’s role to work with business to create the automated acceptance 

tests that become the true specification and requirements document for the 

system. Iteration by iteration they gather the requirements from business and 

translate them into tests that describe to developers how the system should 

behave (See Chapter 7, “Acceptance Testing”). In general, the business writes the 

happy-path tests, while QA writes the corner, boundary, and unhappy-path tests. 

QA as Characterizers

The other role for QA is to use the discipline of exploratory testing1 to 

characterize the true behavior of the running system and report that behavior 

1. http://www.satisfice.com/articles/what_is_et.shtml

114

THE TEST AUTOMATION PYRAMID

back to development and business. In this role QA is  not interpreting the 

requirements. Rather, they are identifying the actual behaviors of the system. 

THE TEST AUTOMATION PYRAMID

Professional developers employ the discipline of Test Driven Development  

to create unit tests. Professional development teams use acceptance tests to 

specify their system, and continuous integration (Chapter 7, page 110) to 

prevent regression. But these tests are only part of the story. As good as it is to 

have a suite of unit and acceptance tests, we also need higher-level tests to 

ensure that QA finds nothing. Figure 8-1 shows the Test Automation Pyramid,2

a graphical depiction of the kinds of tests that a professional development 

organization needs. 

ptg

5%

M

Exploratory

System tests

10% 

gui

Integration tests

20%

api

Component tests

50%

api

Unit tests

100% 

XUnit

Figure 8-1  The test automation pyramid

2.  [COHN09] pp. 311–312

115







CHAPTER 8  TESTING STRATEGIES

UNIT TESTS

At the bottom of the pyramid are the unit tests. These tests are written by 

programmers, for programmers, in the programming language of the system. 

The intent of these tests is to specify the system at the lowest level. Developers 

write these tests before writing production code as a way to specify what they 

are about to write. They are executed as part of Continuous Integration to 

ensure that the intent of the programmers’ is upheld. 

Unit tests provide as close to 100% coverage as is practical. Generally this 

number should be somewhere in the 90s. And it should be  true coverage as 

opposed to false tests that execute code without asserting its behavior. 

COMPONENT TESTS

These are some of the acceptance tests mentioned in the previous chapter. 

Generally they are written against individual components of the system. The 

ptg

components of the system encapsulate the business rules, so the tests for those 

components are the acceptance tests for those business rules

As depicted in Figure 8-2 a component test wraps a component. It passes input 

data into the component and gathers output data from it. It tests that the 

output matches the input. Any other system components are decoupled from 

the test using appropriate mocking and test-doubling techniques. 

Component

Acceptance test

Figure 8-2  Component acceptance test

116

















































THE TEST AUTOMATION PYRAMID

Component tests are written by QA and Business with assistance from develop-

ment. They are composed in a component-testing environment such as FitNesse, 

JBehave, or Cucumber. (GUI components are tested with GUI testing environ-

ments such as Selenium or Watir.) The intent is that the business should be able 

to read and interpret these tests, if not author them. 

Component tests cover roughly half the system. They are directed more towards 

happy-path situations and very obvious corner, boundary, and alternate-path 

cases. The vast majority of unhappy-path cases are covered by unit tests and are 

meaningless at the level of component tests. 

INTEGR ATION TESTS

These tests only have meaning for larger systems that have many components. 

As shown in Figure 8-3, these tests assemble groups of components and test 

how well they communicate with each other. The other components of the 

ptg

system are decoupled as usual with appropriate mocks and test-doubles. 

Integration tests are  choreography tests. They do not test business rules. Rather, 

they test how well the assembly of components dances together. They are 

 plumbing tests that make sure that the components are properly connected and 

can clearly communicate with each other. 

Component

Component

Component

Integration test

Component

Figure 8-3  Integration test

117

CHAPTER 8  TESTING STRATEGIES

Integration tests are typically written by the system architects, or lead designers, 

of the system. The tests ensure that the architectural structure of the system is 

sound. It is at this level that we might see performance and throughput tests. 

Integration tests are typically written in the same language and environment  

as component tests. They are typically  not executed as part of the Continuous 

Integration suite, because they often have longer runtimes. Instead, these tests 

are run periodically (nightly, weekly, etc.) as deemed necessary by their 

authors. 

SYSTEM TESTS

These are automated tests that execute against the entire integrated system. 

They are the ultimate integration tests. They do not test business rules directly. 

Rather, they test that the system has been wired together correctly and its parts 

interoperate according to plan. We would expect to see throughput and 

ptg

performance tests in this suite. 

These tests are written by the system architects and technical leads. Typically 

they are written in the same language and environment as integration tests for 

the UI. They are executed relatively infrequently depending on their duration, 

but the more frequently the better. 

System tests cover perhaps 10% of the system. This is because their intent is not 

to ensure correct system behavior, but correct system  construction. The correct 

behavior of the underlying code and components have already been ascertained 

by the lower layers of the pyramid. 

MANUAL EXPLOR ATORY TESTS

This is where humans put their hands on the keyboards and their eyes on the 

screens. These tests are not automated,  nor are they scripted. The intent of these 

tests is to explore the system for unexpected behaviors while confirming expected 

behaviors. Toward that end we need human brains, with human creativity, 

working to investigate and explore the system. Creating a written test plan for 

this kind of testing defeats the purpose. 

118

BIBLIOGRAPHY

Some teams will have specialists do this work. Other teams will simply declare a 

day or two of “bug hunting” in which as many people as possible, including 

managers, secretaries, programmers, testers, and tech writers, “bang” on the 

system to see if they can make it break. 

The goal is not coverage. We are not going to prove out every business rule and 

every execution pathway with these tests. Rather, the goal is to ensure that the 

system behaves well under human operation and to creatively find as many 

“peculiarities” as possible. 

CONCLUSION

TDD is a powerful discipline, and Acceptance Tests are valuable ways to express 

and enforce requirements. But they are only part of a total testing strategy. To 

make good on the goal that “QA should find nothing,” development teams need 

to work hand in hand with QA to create a hierarchy of unit, component, inte-

ptg

gration, system, and exploratory tests. These tests should be run as frequently as 

possible to provide maximum feedback and to ensure that the system remains 

continuously clean. 

BIBLIOGRAPHY

[COHN09]: Mike Cohn,  Succeeding with Agile,  Boston, MA: Addison-Wesley, 

2009. 

119

 This page intentionally left blank 

ptg



TIME M9

A N AG E M E NT

ptg

Eight hours is a remarkably short period of time. It’s just 480 minutes or 28,800 

seconds. As a professional, you expect that you will use those few precious 

seconds as efficiently and effectively as possible. What strategy can you use to 

ensure that you don’t waste the little time you have? How can you effectively 

manage your time? 

In 1986 I was living in Little Sandhurst, Surrey, England. I was managing  

a 15-person software development department for Teradyne in Bracknell. My 

121

CHAPTER 9  TIME MANAGEMENT

days were hectic with phone calls, impromptu meetings, field service issues, 

and interruptions. So in order to get any work done I had to adopt some pretty 

drastic time-management disciplines. 

• I awoke at 5 every morning and rode my bicycle to the office in Bracknell by 

6 am. That gave me 2- 1 

_ hours of quiet time before the chaos of the day 

2

began. 

• Upon arrival I would write a schedule on my board. I divided time into 

15-minute increments and filled in the activity I would work on during that 

block of time. 

• I completely filled the first 3 hours of that schedule. Starting at 9 am I started 

leaving one 15-minute gap per hour; that way I could quickly push most 

interruptions into one of those open slots and continue working. 

• I left the time after lunch unscheduled because I knew that by then all hell 

would have broken loose and I’d have to be in reactive mode for the rest of 

the day. During those rare afternoon periods that the chaos did not intrude, 

ptg

I simply worked on the most important thing until it did. 

This scheme did not always succeed. Waking up at 5 am was not always feasible, 

and sometimes the chaos broke through all my careful strategies and consumed 

my day. But for the most part I was able to keep my head above water. 

MEETINGS

Meetings cost about $200 per hour per attendee. This takes into account 

salaries, benefits, facilities costs, and so forth. The next time you are in a 

meeting, calculate the cost. You may be amazed. 

There are two truths about meeting. 

1. Meetings are necessary. 

2. Meetings are huge time wasters. 

Often these two truths equally describe the same meeting. Some in attendance 

may find them invaluable; others may find them redundant or useless. 

122

MEETINGS

Professionals are aware of the high cost of meetings. They are also aware that 

their own time is precious; they have code to write and schedules to meet. 

Therefore, they actively resist attending meetings that don’t have an immediate 

and significant benefit. 

DECLINING

You do not have to attend every meeting to which you are invited. Indeed, it is 

unprofessional to go to too many meetings. You need to use your time wisely. So 

be very careful about which meetings you attend and which you politely refuse. 

The person inviting you to a meeting is not responsible for managing your 

time. Only  you can do that. So when you receive a meeting invitation, don’t 

accept unless it is a meeting for which your participation is immediately and 

significantly necessary to the job you are doing now. 

ptg

Sometimes the meeting will be about something that interests you, but is not 

immediately necessary. You will have to choose whether you can afford the time. Be 

careful—there may be more than enough of these meetings to consume your days. 

Sometimes the meeting will be about something that you can contribute to but 

is not immediately significant to what you are currently doing. You will have to 

choose whether the loss to your project is worth the benefit to theirs. This may 

sound cynical, but your responsibility is to  your projects first. Still, it is often 

good for one team to help another, so you may want to discuss your 

participation with your team and manager. 

Sometimes your presence at the meeting will be requested by someone in 

authority, such as a very senior engineer in another project or the manager of a 

different project. You will have to choose whether that authority outweighs your 

work schedule. Again, your team and your supervisor can be of help in making 

that decision. 

One of the most important duties of your manager is to keep you  out of meetings. 

A good manager will be more than willing to defend your decision to decline 

attendance because that manager is just as concerned about your time as you are. 

123

CHAPTER 9  TIME MANAGEMENT

LEAVING

Meetings don’t always go as planned. Sometimes you find yourself sitting in a 

meeting that you would have declined had you known more. Sometimes new 

topics get added, or somebody’s pet peeve dominates the discussion. Over the 

years I’ve developed a simple rule: When the meeting gets boring, leave. 

Again, you have an obligation to manage your time well. If you find yourself 

stuck in a meeting that is not a good use of your time, you need to find a way to 

politely exit that meeting. 

Clearly you should not storm out of a meeting exclaiming “This is boring!” 

There’s no need to be rude. You can simply ask, at an opportune moment, if your 

presence is still necessary. You can explain that you can’t afford a lot more time, 

and ask whether there is a way to expedite the discussion or shuffle the agenda. 

The important thing to realize is that remaining in a meeting that has become a 

ptg

waste of time for you, and to which you can no longer significantly contribute, 

is unprofessional. You have an obligation to wisely spend your employer’s time 

and money, so it is not unprofessional to choose an appropriate moment to 

negotiate your exit. 

H AV E   A N  A G E N DA  A N D  A  G OA L

The reason we are willing to endure the cost of meetings is that we sometimes 

 do need the participants together in a room to help achieve a specific goal. To 

use the participants’ time wisely, the meeting should have a clear agenda, with 

times for each topic and a stated goal. 

If you are asked to go to a meeting, make sure you know what discussions are on 

the table, how much time is allotted for them, and what goal is to be achieved. If 

you can’t get a clear answer on these things, then politely decline to attend. 

If you go to a meeting and you find that the agenda has been high-jacked or 

abandoned, you should request that the new topic be tabled and the agenda be 

followed. If this doesn’t happen, you should politely leave when possible. 

124

MEETINGS

STA N D - UP MEETINGS

These meetings are part of the Agile cannon. Their name comes from the fact 

that the participants are expected to stand while the meeting is in session. Each 

participant takes a turn to answer three questions:

1.   What did I do yesterday? 

2.   What am I going to do today? 

3.   What’s in my way? 

That’s all. Each question should require  no more than twenty seconds, so 

each participant should require no more than one minute. Even in a group 

of ten people this meeting should be over well before ten minutes has 

elapsed. 

ptg

ITER ATION PLANNING MEETINGS

These are the most difficult meetings in the Agile canon to do well. Done 

poorly, they take far too much time. It takes skill to make these meetings go 

well, a skill that is well worth learning. 

Iteration planning meetings are meant to select the backlog items that will be 

executed in the next iteration. Estimates should already be done for the candi-

date items. Assessment of business value should already be done. In really good 

organizations the acceptance/component tests will already be written, or at least 

sketched out. 

The meeting should proceed quickly with each candidate backlog item being 

briefly discussed and then either selected or rejected. No more than five or ten 

minutes should be spent on any given item. If a longer discussion is needed, it 

should be scheduled for another time with a subset of the team. 

My rule of thumb is that the meeting should take no more than 5% of the total 

time in the iteration. So for a one week iteration (forty hours) the meeting 

should be over within two hours. 

125

CHAPTER 9  TIME MANAGEMENT

ITER ATION RESTROSPECTIVE AND DEMO

These meetings are conducted at the end of each iteration. Team members 

discuss what went right and what went wrong. Stakeholders see a demo of the 

newly working features. These meetings can be badly abused and can soak up a 

lot of time, so schedule them 45 minutes before quitting time on the last day of 

the iteration. Allocate no more than 20 minutes for retrospective and 25 

minutes for the demo. Remember, it’s only been a week or two so there 

shouldn’t be all that much to talk about. 

ARGUMENTS / DISAGREEMENTS

Kent Beck once told me something profound: “Any argument that can’t be 

settled in five minutes can’t be settled by arguing.” The reason it goes on so long 

is that there is no clear evidence supporting either side. The argument is 

probably religious, as opposed to factual. 

ptg

Technical disagreements tend to go off into the stratosphere. Each party has all 

kinds of justifications for their position but seldom any data. Without data, any 

argument that doesn’t forge agreement within a few minutes (somewhere 

between five and thirty) simply won’t ever forge agreement. The only thing to 

do is to go get some data. 

Some folks will try to win an argument by force of character. They might yell, 

or get in your face, or act condescending. It doesn’t matter; force of will doesn’t 

settle disagreements for long. Data does. 

Some folks will be passive-aggressive. They’ll agree just to end the argument, 

and then sabotage the result by refusing to engage in the solution. They’ll say to 

themselves, “This is the way they wanted it, and now they’re going to get what 

they wanted.” This is probably the worst kind of unprofessional behavior there 

is. Never, ever do this. If you agree, then you  must engage. 

How do you get the data you need to settle a disagreement? Sometimes you can 

run experiments, or do some simulation or modeling. But sometimes the best 

alternative is to simply flip a coin to choose one of the two paths in question. 

126

FOCUS-MANNA

If things work out, then that path was workable. If you get into trouble, you can 

back out and go down the other path. It would be wise to agree on a time as 

well as a set of criteria to help determine when the chosen path should be 

abandoned. 

Beware of meetings that are really just a venue to vent a disagreement and to 

gather support for one side or the other. And avoid those where only one of the 

arguers is presenting. 

If an argument must truly be settled, then ask each of the arguers to present 

their case to the team in five minutes or less. Then have the team vote. The 

whole meeting will take less than fifteen minutes. 

FOCUS - MANNA

Forgive me if this section seems to smell of New Age metaphysics, or perhaps of 

ptg

Dungeons & Dragons. It’s just that this is the way I think about this topic. 

Programming is an intellectual exercise that requires extended periods of 

concentration and focus. Focus is a scarce resource, rather like manna.1 After 

you have expended your focus-manna, you have to recharge by doing unfocused 

activities for an hour or more. 

I don’t know what this focus-manna is, but I have a feeling that it is a physical 

substance (or possibly its lack) that affects alterness and attention. Whatever it 

may be, you can  feel when it’s there, and you can feel when it’s gone. 

Professional developers learn to manage their time to take advantage of their 

focus-manna. We write code when our focus-manna is high; and we do other, 

less productive things when it’s not. 

Focus-manna is also a decaying resource. If you don’t use it when it’s there, you 

are likely to lose it. That’s one of the reasons that meetings can be so 

1. Manna is a common commodity in fantasy and role-playing games like Dungeons & Dragons. Every player has a certain amount of manna, which is a magical substance expended whenever a player casts a magical spell. The more potent the spell, the more of that player’s manna is consumed. Manna recharges at a slow, fixed daily rate. So it’s easy to use it all up in a few spell-casting sessions. 

127

CHAPTER 9  TIME MANAGEMENT

devastating. If you spend all your focus-manna in a meeting, you won’t have 

any left for coding. 

Worry and distractions also consume focus-manna. The fight you had with 

your spouse last night, the dent you put in your fender this morning, or the bill 

you forgot to pay last week will all suck the focus-manna out of you quickly. 

SLEEP

I can’t stress this one strongly enough. I have the most focus-manna after a 

good night’s sleep. Seven hours of sleep will often give me a full eight hours’ 

worth of focus-manna. Professional developers manage their sleep schedule to 

ensure that they have topped up their focus-manna by the time they get to work 

in the morning. 

CAFFEINE

ptg

There is no doubt that some of us can make more efficient use of our focus-

manna by consuming moderate amounts of caffeine. But take care. Caffeine 

also puts a strange “jitter” on your focus. Too much of it can send your focus off 

in very strange directions. A really strong caffeine buzz can cause you to waste 

an entire day hyper-focussing on all the wrong things. 

Caffeine usage and tolerance is a personal thing. My personal preference is a 

single strong cup of coffee in the morning and a diet coke with lunch. 

I sometimes double this dose, but seldom do more than that. 

RECHARGING

Focus-manna can be partially recharged by de-focussing. A good long walk, a 

conversation with friends, a time of just looking out a window can all help to 

pump the focus-manna back up. 

Some people meditate. Other people grab a power nap. Others will listen to a 

podcast or thumb through a magazine. 

128

FOCUS-MANNA

I have found that once the manna is gone, you can’t force the focus. You can 

still write code, but you’ll almost certainly have to rewrite it the next day, or live 

with a rotting mass for weeks or months. So it’s better to take thirty, or even 

sixty minutes to de-focus. 

MUSCLE FOCUS

There is something peculiar about doing physical disciplines such as martial 

arts, tai-chi or yoga. Even though these activities require significant focus, it is a 

different kind of focus from coding. It’s not intellectual, it’s muscle. And 

somehow muscle focus helps to recharge mental focus. It’s more than a simple 

recharge though. I find that a regular regimen of muscle focus increases my 

capacity for mental focus. 

My chosen form of physical focus is bike riding. I’ll ride for an hour or two, 

sometimes covering twenty or thirty miles. I ride on a trail that parallels the Des 

ptg

Plaines river, so I don’t have to deal with cars. 

While I ride I listen to podcasts about astronomy or politics. Sometimes I just 

listen to my favorite music. And sometimes I just turn the headphones off and 

listen to nature. 

Some people take the time to work with their hands. Perhaps they enjoy 

carpentry, or building models, or gardening. Whatever the activity, there is 

something about activities that focus on muscles that enhances the ability to 

work with your mind. 

INPUT VERSUS OUTPUT

Another thing I find essential for focus is to balance my output with 

appropriate input. Writing software is a  creative exercise. I find that I am most 

creative when I am exposed to other people’s creativity. So I read lots of science 

fiction. The creativity of those authors somehow stimulates my own creative 

juices for software. 

129

CHAPTER 9  TIME MANAGEMENT

TIME BOXI N G AND TOMATOES

One very effective way that I’ve used to manage my time and focus is to use the 

well-known Pomodoro Technique,2 otherwise knows as  tomatoes. The basic idea 

is very simple. You set a standard kitchen timer (traditionally shaped like a 

tomato) for 25 minutes. While that timer is running, you let  nothing interfere 

with what you are doing. If the phone rings you answer and politely ask if you 

can call back within 25 minutes. If someone stops in to ask you a question you 

politely ask if you can get back to them within 25 minutes. Regardless of the 

interruption, you simply defer it until the timer dings. After all, few interruptions 

are so horribly urgent that they can’t wait 25 minutes! 

When the tomato timer dings you stop what you are doing  immediately. You 

deal with any interruptions that occurred during the tomato. Then you take a 

break of five minutes or so. Then you set the timer for another 25 minutes and 

start the next tomato. Every fourth tomato you take a longer break of 30 

minutes or so. 

ptg

There is quite a bit written about this technique, and I urge you to read it. 

However, the description above should provide you with the gist of the technique. 

Using this technique your time is divided into tomato and non-tomato time. 

Tomato time is productive. It is within tomatoes that you get real work done. 

Time outside of tomatoes is either distractions, meetings, breaks, or other time 

that is not spent working on your tasks. 

How many tomatoes can you get done in a day? On a good day you might get 12 

or even 14 tomatoes done. On a bad day, you might only get two or three done. 

If you count them, and chart them, you’ll get a pretty quick feel for how much of 

your day you spend productive and how much you spend dealing with “stuff.” 

Some people get so comfortable with the technique that they estimate their tasks 

in tomatoes and then measure their weekly tomato velocity. But this is just icing 

on the cake. The real benefit of the Pomodoro Technique is that 25-minute 

window of productive time that you aggressively defend against all interruptions. 

2. http://www.pomodorotechnique.com/

130

BLIND ALLEYS

AVO I DA N C E

Sometimes your heart just isn’t in your work. It may be that the thing that 

needs doing is scary or uncomfortable or boring. Perhaps you think it will force 

you into a confrontation or lead you into an inescapable rat hole. Or maybe you 

just plain don’t want to do it. 

PRIORITY INVERSION

Whatever the reason, you find ways to avoid doing the real work. You convince 

yourself that something else is more urgent, and you do that instead. This is 

called  priority inversion. You raise the priority of a task so that you can postpone 

the task that has the true priority. Priority inversions are a lie we tell ourselves. 

We can’t face what needs to be done, so we convince ourselves that another task 

is more important. We know it’s not, but we lie to ourselves. 

ptg

Actually, we aren’t lying to ourselves. What we are really doing is preparing for 

the lie we’ll tell when someone asks us what we are doing and why we are doing 

it. We are building a defense to protect us from the judgment of others. 

Clearly this is unprofessional behavior. Professionals evaluate the priority of 

each task, disregarding their personal fears and desires, and execute those tasks 

in priority order. 

BLIND ALLEYS

Blind alleys are a fact of life for all software craftsmen. Sometimes you will 

make a decision and wander down a technical pathway that leads to nowhere. 

The more vested you are in your decision, the longer you will wander in the 

wilderness. If you’ve staked your professional reputation, you’ll wander 

forever. 

Prudence and experience will help you avoid certain blind alleys, but you’ll 

never avoid them all. So the real skill you need is to quickly realize when you are 

in one, and have the courage to back out. This is sometimes called  The Rule of 

 Holes: When you are in one, stop digging. 

131

CHAPTER 9  TIME MANAGEMENT

Professionals avoid getting so vested in an idea that they can’t abandon it and 

turn around. They keep an open mind about other ideas so that when they hit a 

dead end they still have other options. 

MARSHES , BOGS , SWA M P S , AND OTHER MESSES

Worse than blind alleys are messes. Messes slow you down, but don’t stop you. 

Messes impede your progress, but you can still make progress through sheer 

brute force. Messes are worse than blind alleys because you can always see the 

way forward, and it always looks shorter than the way back (but it isn’t). 

I have seen products ruined and companies destroyed by software messes. I’ve 

seen the productivity of teams decrease from jitterbug to dirge in just a few 

months. Nothing has a more profound or long-lasting negative effect on the 

productivity of a software team than a mess. Nothing. 

ptg

The problem is that starting a mess, like going down a blind alley, is 

unavoidable. Experience and prudence can help you to avoid them, but 

eventually you will make a decision that leads to a mess. 

The progression of such a mess is insidious. You create a solution to a simple 

problem, being careful to keep the code simple and clean. As the problem grows 

in scope and complexity you extend that code base, keeping it as clean as you 

can. At some point you realize that you made a wrong design choice when you 

started, and that your code doesn’t scale well in the direction that the 

requirements are moving. 

This is the inflection point! You can still go back and fix the design. But you can 

also continue to go forward. Going back looks expensive because you’ll have to 

rework the existing code, but going back will  never be easier than it is now. If 

you go forward you will drive the system into a swamp from which it may never 

escape. 

132

CONCLUSION

Professionals fear messes far more than they fear blind alleys. They are always 

on the lookout for messes that start to grow without bound, and will expend all 

necessary effort to escape from them as early and as quickly as possible. 

Moving forward through a swamp, when you  know it’s a swamp, is the worst 

kind of priority inversion. By moving forward you are lying to yourself, lying to 

your team, lying to your company, and lying to your customers. You are telling 

them that all will be well, when in fact you are heading to a shared doom. 

CONCLUSION

Software professionals are diligent in the management of their time and their 

focus. They understand the temptations of priority inversion and fight it as a 

matter of honor. They keep their options open by keeping an open mind about 

alternate solutions. They never become so vested in a solution that they can’t 

abandon it. And they are always on the lookout for growing messes, and they 

ptg

clean them as soon as they are recognized. There is no sadder sight than a team 

of software developers fruitlessly slogging through an ever-deepening bog. 

133

 This page intentionally left blank 

ptg



E 10

STI M ATI O N

ptg

Estimation is one of the simplest, yet most frightening activities that software 

professionals face. So much business value depends on it. So much of our 

reputations ride on it. So much of our angst and failure are caused by it. It is 

the primary wedge that has been driven between business people and developers. 

It is the source of nearly all the distrust that rules that relationship. 

135

CHAPTER 10  ESTIMATION

In 1978, I was the lead developer for a 32K embedded Z-80 program written 

in assembly language. The program was burned onto 32 1K ´ 8 EEprom 

chips. These 32 chips were inserted into three boards, each of which held 12 

chips. 

We had hundreds of devices in the field, installed in telephone central offices  

all over the United States. Whenever we fixed a bug or added a feature, we’d 

have to send field service techs to each of those units and have them replace  

all 32 chips! 

This was a nightmare. The chips and the boards were fragile. The pins on the 

chips could bend and break. The constant flexing of the boards could damage 

solder joints. The risk of breakage and error were enormous. The cost to the 

company was far too high. 

My boss, Ken Finder, came to me and asked me to fix this. What he wanted was 

ptg

a way to make a change to a chip that did not require all the other chips to 

change. If you’ve read my books, or heard my talks, you know I rant a lot about 

independent deployability. This is where I first learned that lesson. 

Our problem was that the software was a single linked executable. If a new line 

of code was added to the program, all the addresses of the following lines of 

code changed. Since each chip simply held 1K of the address space, the contents 

of virtually all the chips would change. 

The solution was pretty simple. Each chip had to be decoupled from all the 

others. Each had to be turned into an independent compilation unit that could 

be burned independently of all the others. 

So I measured the sizes of all the functions in the application and wrote a 

simple program that fit them, like a jigsaw puzzle, into each of the chips, 

leaving 100 bytes of space or so for expansion. At the beginning of each chip 

I put a table of pointers to all the functions on that chip. At boot-up these 

pointers were moved into RAM. All the code in the system was changed so 

that functions were called only through these RAM vectors and never 

directly. 

136

ESTIMATION

Yes, you got it. The chips were objects, with vtables. All functions were poly-

mor phically deployed. And, yes, this is how I learned some of the principles of 

OOD, long before I knew what an object was. 

The benefits were enormous. Not only could we deploy individual chips, we 

could also make patches in the field by moving functions into RAM and 

rerouting the vectors. This made field debugging and hot patching much easier. 

But I digress. When Ken came to me and asked me to fix this problem he 

suggested something about pointers to functions. I spent a day or two 

formalizing the idea and then presented him with a detailed plan. He asked me 

how long it would take, and I responded that it would take me about a month. 

It took  three months. 

I’ve only been drunk two times in my life, and only  really drunk once. It was at 

ptg

the Teradyne Christmas party in 1978. I was 26 years old. 

The party was held at the Teradyne office, which was mostly open lab space. 

Everybody got there early, and then there was a huge blizzard that prevented the 

band and the caterer from getting there. Fortunately there was plenty of booze. 

I don’t remember much of that night. And what I  do remember I wish I didn’t. 

But I will share one poignant moment with you. 

I was sitting cross-legged on the floor with Ken (my boss, who was all of 29 

years old at the time and  not drunk) weeping about how long the vectorization 

job was taking me. The alcohol had released my pent up fears and insecurities 

about my estimate. I don’t  think my head was in his lap, but my memory just 

isn’t very clear about that kind of detail. 

I do remember asking him if he was mad at me, and if he thought it was taking 

me too long. Although the night was a blur, his response has remained clear 

through the following decades. He said, “Yes, I think it’s taken you a long time, 

but I can see that you are working hard on it, and making good progress. It’s 

something we really need. So, no, I’m not mad.” 

137

CHAPTER 10  ESTIMATION

WHAT IS AN ESTIMATE ? 

The problem is that we view estimates in different ways. Business likes to view 

estimates as commitments. Developers like to view estimates as guesses. The 

difference is profound. 

A COMMITMENT

A commitment is something you must achieve. If you commit to getting 

something done by a certain date, then you simply  have to get it done by that 

date. If that means you have to work 12 hours a day, on weekends, skipping family 

vacations, then so be it. You’ve made the commitment, and you have to honor it. 

Professionals don’t make commitments unless they  know they can achieve them. 

It’s really as simple as that. If you are asked to commit to something that you 

aren’t  certain you can do, then you are honor bound to decline. If you are asked 

to commit to a date that you know you  can achieve, but would require long 

ptg

hours, weekends, and skipped family vacations, then the choice is yours; but 

you’d better be willing to do what it takes. 

Commitment is about  certainty. Other people are going to accept your commitments 

and make plans based upon them. The cost of missing those commitments, to them, 

and to your reputation, is enormous. Missing a commitment is an act of 

dishonesty only slightly less onerous than an overt lie. 

AN ESTIMATE

An estimate is a guess. No commitment is implied. No promise is made. 

Missing an estimate is not in any way dishonorable. The reason we make 

estimates is because  we don’t know how long something will take. 

Unfortunately, most software developers are terrible estimators. This is not because 

there’s some secret skill to estimating—there’s not. The reason we are often so bad 

at estimating is because we don’t understand the true nature of an estimate. 

An estimate is not a number. An estimate is a  distribution. Consider:

138

WHAT IS AN ESTIMATE ? 

Mike:  “What is your estimate for completing the Frazzle task?” 

Peter:  “Three days.” 

Is Peter really going to be done in three days? It’s possible, but how likely is it? 

The answer to that is: We have no idea. What did Peter mean, and what has 

Mike learned? If Mike comes back in three days, should he be surprised if Peter 

is not done? Why would he be? Peter has not made a commitment. Peter has 

not told him how likely three days is versus four days or five days. 

What would have happened if Mike had asked Peter how likely his estimate of 

three days was? 

Mike: “How likely is it that you’ll be done in three days? 

Peter: “Pretty likely.” 

Mike: “Can you put a number on it?” 

Peter: “Fifty or sixty percent.” 

ptg

Mike: “So there’s a good chance that it’ll take you four days.” 

Peter: “Yes, in fact it might even take me five or six, though I doubt it.” 

Mike: “How much do you doubt it?” 

Peter: “Oh, I don’t know … I’m ninety-five percent certain I’ll be done 

before six days have passed.” 

Mike: “You mean it might be seven days?” 

Peter: “Well, only if everything goes wrong. Heck, if  everything goes 

wrong, it could take me ten or even eleven days. But it’s not very 

likely that so much will go wrong.” 

Now we’re starting to hone in on the truth. Peter’s estimate is a  probability 

 distribution. In his mind, Peter sees the likelihood of completion like what is 

shown is Figure 10-1. 

You can see why Peter gave the original estimate as three days. It’s the highest 

bar on the chart. So in Peter’s mind it is the most likely duration for the task. 

But Mike sees things differently. He looks at the right-hand tail of the chart and 

worries that Peter might really take eleven days to finish. 

139

CHAPTER 10  ESTIMATION

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0% 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11

Figure 10-1  Probability distribution

Should Mike be worried about this? Of course! Murphy1 will have his way with 

ptg

Peter, so some things are probably going to go wrong. 

IMPLIED COMMITMENTS

So now Mike has a problem. He’s uncertain about the time it will take Peter to 

get the task done. To minimize that uncertainty he may ask Peter for a 

commitment. This is something the Peter is in no position to give. 

Mike: “Peter, can you give me a hard date when you’ll be done?” 

Peter: “No, Mike. Like I said, it’ll probably be done in three, maybe four, 

days.” 

Mike: “Can we say four then?” 

Peter: “No, it  could be five or six.” 

So far, everyone is behaving fairly. Mike has asked for a commitment and Peter 

has carefully declined to give him one. So Mike tries a different tack:

1.  Murphy’s Law holds that if anything can go wrong, it will go wrong. 

140

PERT

Mike: “OK, Peter, but can you  try to make it no more than six days?” 

Mike’s plea sounds innocent enough, and Mike certainly has no ill intentions. 

But what, exactly, is Mike asking Peter to do? What does it mean to “try”? 

We talked about this before, back in Chapter 2. The word  try is a loaded term. If 

Peter agrees to “try” then he is committing to six days. There’s no other way to 

interpret it. Agreeing to try is agreeing to succeed. 

What other interpretation could there be? What is it, precisely, that Peter is 

going to do in order to “try”? Is he going to work more than eight hours? That’s 

clearly implied. Is he going to work weekends? Yes, that’s implied too. Will he 

skip family vacations? Yes, that also part of the implication. All of those things 

are part of “trying.” If Peter doesn’t do those things, then Mike could accuse 

him of not trying hard enough. 

ptg

Professionals draw a clear distinction between estimates and commitments. 

They do not commit unless they know for certain they will succeed. They are 

careful not to make any  implied commitments. They communicate the proba-

bility distribution of their estimates as clearly as possible, so that managers can 

make appropriate plans. 

PERT

In 1957, the Program Evaluation and Review Technique (PERT) was created to 

support the U.S. Navy’s Polaris submarine project. One of the elements of PERT is 

the way that estimates are calculated. The scheme provides a very simple, but very 

effective way to convert estimates into probability distributions suitable for managers. 

When you estimate a task, you provide three numbers. This is called  trivariate 

 analysis:

• O: Optimistic Estimate. This number is  wildly optimistic. You could only 

get the task done this quickly if absolutely everything went right. Indeed, 

in order for the math to work this number should have much less than a 

141

CHAPTER 10  ESTIMATION

1% chance of occurrence.2 In Peter’s case, this would be 1 day, as shown in 

Figure 10-1. 

• N: Nominal Estimate. This is the estimate with the greatest chance of success. 

If you were to draw a bar chart, it would be the highest bar, as shown in 

Figure 10-1. It is 3 days. 

• P: Pessimistic Estimate. Once again this is  wildly pessimistic. It should 

include everything except hurricanes, nuclear war, stray black holes, and 

other catastrophes. Again, the math only works if this number has much less 

than a 1% chance of success. In Peter’s case this number is off the chart on 

the right. So 12 days. 

Given these three estimates, we can describe the probability distribution as 

follows:

 O + 4 N +  P 

• μ = 

6

ptg

μ is the expected duration of the task. In Peter’s case it is (1+12+12)/6, or 

about 4.2 days. For most tasks this will be a somewhat pessimistic number 

because the right-hand tail of the distribution is longer than the left-hand 

tail.3

 P − O

• σ = 

6

s is the standard deviation4 of the probability distribution for the task. It is a 

measure of how uncertain the task is. When this number is large, the 

uncertainty is large too. For Peter this number is (12 – 1)/6, or about 1.8 days. 

Given Peter’s estimate of 4.2/1.8, Mike understands that this task will likely be 

done within five days but might also take 6, or even 9, days to complete. 

2.  The precise number for a normal distribution is 1:769, or 0.13%, or 3 sigma. Odds of one in a thousand are probably safe. 

3. PERT presumes that this approximates a beta distribution. This makes sense since the minimum duration for a task is often much more certain than the maximum. [McConnell2006] Fig. 1-3. 

4. If you don’t know what a standard deviation is, you should find a good summary of probability and statistics. The concept is not hard to understand, and it will serve you very well. 

142

PERT

But Mike is not just managing one task. He’s managing a project of many tasks. 

Peter has three of those tasks that he must work on in sequence. Peter has 

estimated these tasks as shown in Table 10-1. 

Table 10-1 Peter’s Tasks

Task 

Optimistic 

Nominal 

Pessimistic 

μ

σ

Alpha 

1 

3 

12 

4.2 

1.8

Beta 

1 

1.5 

14 

3.5 

2.2

Gamma 

3 

6.25 

11 

6.5 

1.3

What’s up with that “beta” task? It looks like Peter is pretty confident about it, 

but that something could possibly go wrong that would derail him significantly. 

How should Mike interpret that? How long should Mike plan for Peter to 

complete all three tasks? 

It turns out that, with a few simple calculations, Mike can combine all of Peter’s 

tasks and come up with a probability distribution for the entire set of tasks. The 

ptg

math is pretty straightforward:

• μ sequence = ∑μtask

For any sequence of tasks the expected duration of that sequence is the 

simple sum of all the expected durations of the tasks in that sequence. So if 

Peter has three tasks to complete, and their estimates are 4.2/1.8, 3.5/2.2, 

and 6.5/1.3, then Peter will likely be done with all three in about 14 days: 

4.2 + 3.5 + 6.5. 

2

• σ sequence = 

σ

∑  task

The standard deviation of the sequence is the square root of the sum of the 

squares of the standard deviations of the tasks. So the standard deviation for 

all three of Peter’s tasks is about 3. 

(1.82 2. 

+  22 1. 

+  32)1/2 =

(3.24 2. 

+  48 1. 

+  69)1/2 =

9.771/2 = ∼ 3.13

143

CHAPTER 10  ESTIMATION

This tells Mike that Peter’s tasks will likely take 14 days, but could very well take 

17 days (1s) and could possibly even take 20 days (2s). It could even take 

longer, but that’s pretty unlikely. 

Look back at the table of estimates. Can you feel the pressure to get all three 

tasks done in five days? After all, the best-case estimates are 1, 1, and 3. Even the 

nominal estimates only add up to 10 days. How did we get all the way up to 14 

days, with a possibility of 17 or 20? The answer is that the uncertainty in those 

tasks compounds in a way that adds  realism to the plan. 

If you are a programmer of more than a few years’ experience, you’ve likely seen 

projects that were estimated optimistically, and that took three to five times 

longer than hoped. The simple PERT scheme just shown is one reasonable way 

to help prevent setting optimistic expectations. Software professionals are very 

careful to set reasonable expectations despite the pressure to  try to go fast. 

ptg

ESTIMATING TASKS

Mike and Peter were making a terrible mistake. Mike was asking Peter how long 

his tasks would take. Peter gave honest trivariate answers, but what about the 

opinions of his teammates? Might they have a different idea? 

The most important estimation resource you have are the people around you. 

They can see things that you don’t. They can help you estimate your tasks more 

accurately than you can estimate them on your own. 

WIDEBAND DELPHI

In the 1970s Barry Boehm introduced us to an estimation technique called 

“wideband delphi.”5 There have been many variations over the years. Some are 

formal, some are informal; but they all have one thing in common: consensus. 

The strategy is simple. A team of people assemble, discuss a task, estimate the 

task, and iterate the discussion and estimation until they reach agreement. 

5. [Boehm81]

144

ESTIMATING TASKS

The original approach outlined by Boehm involved several meetings and 

documents that involve too much ceremony and overhead for my tastes. I prefer 

simple low-overhead approaches such as the following. 

Flying Fingers

Everybody sits around a table. Tasks are discussed one at a time. For each task 

there is discussion about what the task involves, what might confound or 

complicate it, and how it might be implemented. Then the participants put 

their hands below the table and raise 0 to 5 fingers based on how long they 

think the task will take. The moderator counts 1-2-3, and all the participants 

show their hands at once. 

If everyone agrees, then they go on to the next task. Otherwise they continue 

the discussion to determine why they disagree. They repeat this until they agree. 

Agreement does not need to be absolute. As long as the estimates are close, it’s 

ptg

good enough. So, for example, a smattering of 3s and 4s is agreement. However 

if everyone holds up 4 fingers except for one person who holds up 1 finger, then 

they have something to talk about. 

The scale of the estimate is decided on at the beginning of the meeting. It might 

be the number of days for a task, or it might be some more interesting scale 

such as “fingers times three” or “fingers squared.” 

The simultaneity of displaying the fingers is important. We don’t want people 

changing their estimates based on what they see other people do. 

Planning Poker

In 2002 James Grenning wrote a delightful paper6 describing “Planning Poker.” 

This variation of wideband delphi has become so popular that several different 

companies have used the idea to make marketing giveaways in the form of 

planning poker card decks.7 There is even a web site named planningpoker.com 

that you can use to do planning poker on the Net with distributed teams. 

6.  [Grenning2002]

7. http://store.mountaingoatsoftware.com/products/planning-poker-cards

145

CHAPTER 10  ESTIMATION

The idea is very simple. For each member of the estimation team, deal a hand 

of cards with different numbers on them. The numbers 0 through 5 work fine, 

and make this system logically equivalent to  flying fingers. 

Pick a task and discuss it. At some point the moderator asks everyone to pick a 

card. The members of the team pull out a card that matches their estimate and 

hold it up with the back facing outward so that no one else can see the value of 

the card. Then the moderator tells everyone to show their cards. 

The rest is just like flying fingers. If there is agreement, then the estimate is 

accepted. Otherwise the cards are returned to the hand, and the players 

continue to discuss the task. 

Much “science” has been dedicated to choosing the correct card values for a 

hand. Some folks have gone so far as to use cards based on a Fibonacci series. 

Others have included cards for infinity and question mark. Personally, I think 

ptg

five cards labeled 0, 1, 3, 5, 10 are sufficient. 

Affinity Estimation

A particularly unique variation of wideband delphi was shown to me several 

years ago by Lowell Lindstrom. I’ve had quite a bit of good luck with this 

approach with various customers and teams. 

All the tasks are written onto cards, without any estimates showing. The 

estimation team stands around a table or a wall with the cards spread out 

randomly. The team members do not talk, they simply start sorting the cards 

relative to one another. Tasks that take longer are moved to the right. Smaller 

tasks move to the left. 

Any team member can move any card at any time, even if it has already been 

moved by another member. Any card moved more than h times is set aside for 

discussion. 

Eventually the silent sorting peters out and discussion can begin. Disagreements 

about the ordering of the cards are explored. There may be some quick design 

sessions or some quick hand-drawn wire frames to help gain consensus. 

146

CONCLUSION

The next step is to draw lines between the cards that represent bucket sizes. 

These buckets might be in days, weeks, or points. Five buckets in a Fibonacci 

sequence (1, 2, 3, 5, 8) is traditional. 

Trivariate Estimates

These wideband delphi techniques are good for choosing a single nominal 

estimate for a task. But as we stated earlier, most of the time we want three 

estimates so that we can create a probability distribution. The optimistic and 

pessimistic values for each task can be generated very quickly using any of the 

wideband delphi variants. For example, if you are using planning poker, you 

simply ask the team to hold up the cards for their pessimistic estimate and then 

take the highest. You do the same for the optimistic estimate and take the lowest. 

THE LAW OF LARGE NUMBERS

Estimates are fraught with error. That’s why they are called estimates. One way of 

ptg

managing error is to take advantage of the  Law of Large Numbers.  8 An implication 

of this law is that if you break up a large task into many smaller tasks and estimate 

them independently, the sum of the estimates of the small tasks will be more 

accurate than a single estimate of the larger task. The reason for this increase in 

accuracy is that the errors in the small tasks tend to integrate out. 

Frankly, this is optimistic. Errors in estimates tend toward underestimation and 

not overestimation, so the integration is hardly perfect. That being said, 

breaking large tasks into small ones and estimating the small ones independently 

is still a good technique. Some of the errors  do integrate out, and breaking the 

tasks up is a good way to understand those tasks better and uncover surprises. 

CONCLUSION

Professional software developers know how to provide the business with 

practical estimates that the business can use for planning purposes. They do not 

make promises that they can’t keep, and they don’t make commitments that 

they aren’t sure they can meet. 

8. http://en.wikipedia.org/wiki/Law_of_large_numbers

147

CHAPTER 10  ESTIMATION

When professionals make commitments, they provide  hard numbers, and then 

they make those numbers. However, in most cases professionals do not make 

such committments. Rather, they provide probabilistic estimates that describe 

the expected completion time and the likely variance. 

Professional developers work with the other members of their team to achieve 

consensus on the estimates that are given to management. 

The techniques described in this chapter are  examples of some of the different 

ways that professional developers create practical estimates. These are not the 

only such techniques and are not necessarily the best. They are simply 

techniques that I have found to work well for me. 

BIBLIOGRAPHY

ptg

[McConnell2006]: Steve McConnell,  Software Estimation: Demystifying the Black 

 Art, Redmond, WA: Microsoft Press, 2006. 

[Boehm81]: Barry W. Boehm,  Software Engineering Economics, Upper Saddle 

River, NJ: Prentice Hall, 1981. 

[Grenning2002]: James Grenning, “Planning Poker or How to Avoid Analysis 

Paralysis while Release Planning, ” April 2002, http://renaissancesoftware. 

net/papers/14-papers/44-planing-poker.html

148



11

PRESSURE

ptg

Imagine that you are having an out-of-body experience, observing yourself on 

an operating table while a surgeon performs open heart surgery on you. That 

surgeon is trying to save your life, but time is limited so he is operating under a 

deadline—a  literal deadline. 

149

CHAPTER 11  PRESSURE

How do you want that doctor to behave? Do you want him to appear calm and 

collected? Do you want him issuing clear and precise orders to his support staff? 

Do you want him following his training and adhering to his disciplines? 

Or do you want him sweating and swearing? Do you want him slamming and 

throwing instruments? Do you want him blaming management for unrealistic 

expectations and continuously complaining about the time? Do you want him 

behaving like a professional, or like a typical developer? 

The professional developer is calm and decisive under pressure. As the pressure 

grows he adheres to his training and disciplines, knowing that they are the best 

way to meet the deadlines and commitments that are pressing on him. 

In 1988 I was working at Clear Communications. This was a start-up that never 

quite got started. We burned through our first round of financing and then had 

to go for a second, and then a third. 

ptg

The initial product vision sounded good, but the product architecture could 

never seem to get grounded. At first the product was both software and 

hardware. Then it became software only. The software platform changed from 

PCs to Sparcstations. The customers changed from high end to low end. 

Eventually, even the original intent of the product drifted as the company tried 

to find something that would generate revenue. In the nearly four years I spent 

there, I don’t think the company saw a penny of income. 

Needless to say, we software developers were under significant pressure. There 

were quite a few very long nights, and even longer weekends spent in the office 

at the terminal. Functions were written in C that were  3,000 lines long. There 

were arguments with shouting and name calling. There was intrigue and 

subterfuge. There were fists punched through walls, pens thrown angrily at 

whiteboards, caricatures of annoying colleagues embossed into walls with the 

tips of pencils, and there was a never ending supply of anger and stress. 

Deadlines were driven by events. Features had to be made ready for trade shows 

or customer demos. Anything a customer asked for, regardless of how silly, we’d 

have ready for the next demo. Time was always too short. Work was always 

behind. Schedules were always overwhelming. 

150

AVOIDING PRESSURE

If you worked 80 hours in a week, you could be a hero. If you hacked some 

mess together for a customer demo, you could be a hero. If you did it enough, 

you could be promoted. If you didn’t, you could be fired. It was a start-up—it 

was all about the “sweat equity.” And in 1988, with nearly 20 years’ experience 

under my belt, I bought into it. 

I was the development manager telling the programmers who worked for me 

that they had to work more and faster. I was one of the 80-hour guys, writing 

3,000-line C functions at 2 am while my children slept at home without their 

father in the house. I was the one who threw the pens and shouted. I got people 

fired if they didn’t shape up. It was awful. I was awful. 

Then came the day when my wife forced me to take a good long look in the 

mirror. I didn’t like what I saw. She told me I just wasn’t very nice to be around. 

I had to agree. But I didn’t like it, so I stormed out of the house in anger and 

started walking without a destination. I walked for thirty minutes or so, 

ptg

seething as I strode; and then it started to rain. 

And something clicked inside my head. I started to laugh. I laughed at my folly. 

I laughed at my stress. I laughed at the man in the mirror, the poor schmuck 

who’d been making life miserable for himself and others in the name of—what? 

Everything changed that day. I stopped the crazy hours. I stopped the high-

stress lifestyle. I stopped throwing pens and writing 3,000-line C functions. 

I determined that I was going to enjoy my career   by doing it well, not by doing 

it stupidly. 

I left that job as professionally as I could, and I became a consultant. Since that 

day I’ve never called another person “boss.” 

AVO I D I N G PRESSURE

The best way to stay calm under pressure is to avoid the situations that  cause

pressure. That avoidance may not eliminate the pressure completely, but it 

can go a long way towards minimizing and shortening the high-pressure 

periods. 

151

CHAPTER 11  PRESSURE

COMMITMENTS

As we discovered in Chapter 10, it is important to avoid committing to 

deadlines that we aren’t sure we can meet. The business will always want these 

commitments because they want to eliminate risk. What we must do is make 

sure that the risk is quantified and presented to the business so that they can 

manage it appropriately. Accepting unrealistic commitments thwarts this goal 

and does a disservice to both the business and to ourselves. 

Sometimes commitments are made for us. Sometimes we find that our business 

has made promises to the customers without consulting us. When this happens 

we are honor bound to help the business find a way to meet those 

commitments. However, we are  not honor bound to  accept the commitments. 

The difference is important. Professionals will always help the business find a 

way to achieve its goals. But professionals do not necessarily accept commit-

ments made for them by the business. In the end, if we can find no way to meet 

ptg

the promises made by the business, then the people who made the promises 

must accept the responsibility. 

This is easy to say. But when your business is failing, and your paycheck is 

delayed because of missed commitments, it’s hard not to feel the pressure. But if 

you have behaved professionally, at least you can hold your head high as you 

hunt for a new job. 

STAY I N G CLEAN

The way to go fast, and to keep the deadlines at bay, is to stay clean. Professionals 

do not succumb to the temptation to create a mess in order to move quickly. 

Professionals realize that “quick and dirty” is an oxymoron. Dirty always means 

slow! 

We can avoid pressure by keeping our systems, our code, and our design as 

clean as possible. This does not mean that we spend endless hours polishing 

code. It simply means that we don’t tolerate messes. We know that messes will 

slow us down, causing us to miss dates and break commitments. So we do the 

best work we can and keep our output as clean as we can. 

152

HANDLING PRESSURE

CRISIS DISCIPLINE

You know what you believe by observing yourself in a crisis. If in a crisis you 

follow your disciplines, then you truly believe in those disciplines. On the other 

hand, if you change your behavior in a crisis, then you don’t truly believe in 

your normal behavior. 

If you follow the discipline of Test Driven Development in noncrisis times 

but abandon it during a crisis, then you don’t really trust that TDD is helpful. 

If you keep your code clean during normal times but make messes in a crisis, 

then you don’t really believe that messes slow you down. If you pair in a 

crisis but don’t normally pair, then you believe pairing is more efficient than 

non-pairing. 

Choose disciplines that you feel comfortable following in a crisis.  Then follow 

 them all the time. Following these disciplines is the best way to avoid getting 

into a crisis. 

ptg

Don’t change your behavior when the crunch comes. If your disciplines are the 

best way to work, then they should be followed even in the depths of a crisis. 

HANDLING PRESSURE

Forestalling, mitigating, and eliminating pressure is all well and good, but 

sometimes the pressure comes despite all your best intentions and preventions. 

Sometimes the project just takes longer than anyone thought it would. Sometimes 

the initial design is just wrong and must be reworked. Sometimes you lose a 

valued team member or customer. Sometimes you make a commitment that 

you just can’t keep. Then what? 

DON ’T PANIC

Manage your stress. Sleepless nights won’t help you get done any faster. Sitting 

and fretting won’t help either. And the worst thing you could do is to rush! 

Resist that temptation at all costs. Rushing will only drive you deeper into the 

hole. 

153

CHAPTER 11  PRESSURE

Instead, slow down. Think the problem through. Plot a course to the best 

possible outcome, and then drive towards that outcome at a reasonable and 

steady pace. 

COMMUNICATE

Let your team and your superiors know that you are in trouble. Tell them your 

best plans for getting out of trouble. Ask them for their input and guidance. 

Avoid creating surprises. Nothing makes people more angry and less rational 

than surprises. Surprises multiply the pressure by ten. 



RELY ON YOUR DISCIPLINES

When the going gets tough,  trust your disciplines. The reason you  have

disciplines is to give you guidance through times of high pressure. These are the 

times to pay special attention to all your disciplines. These are  not the times to 

ptg

question or abandon them. 

Instead of looking around in a panic for something, anything, that will help 

you get done faster, become more deliberate and dedicated to following  

your chosen disciplines. If you follow TDD, then write even more tests than 

usual. If you are a merciless refactorer, then refactor even more. If you keep 

your functions small, then keep them even smaller. The only way through 

the pressure cooker is to rely on what you already know works—your 

disciplines. 

GET HELP

Pair! When the heat is on, find an associate who is willing to pair program with 

you. You will get done faster, with fewer defects. Your pair partner will help  

you hold on to your disciplines and keep you from panicking. Your partner will 

spot things that you miss, will have helpful ideas, and will pick up the slack 

when you lose focus. 

154

CONCLUSION

By the same token, when you see someone else who’s under pressure, offer to 

pair with them. Help them out of the hole they are in. 

CONCLUSION

The trick to handling pressure is to avoid it when you can, and weather it when 

you can’t. You avoid it by managing commitments, following your disciplines, 

and keeping clean. You weather it by staying calm, communicating, following 

your disciplines, and getting help. 

ptg

155

 This page intentionally left blank 

ptg



CO 12

L L A BO R ATI O N

ptg

Most software is created by teams. Teams are most effective when the team 

members collaborate professionally. It is unprofessional to be a loner or a 

recluse on a team. 

In 1974 I was 22. My marriage to my wonderful wife, Ann Marie, was barely six 

months old. The birth of my first child, Angela, was still a year away. And I 

worked at a division of Teradyne known as Chicago Laser Systems. 

157

CHAPTER 12  COLLABORATION

Working next to me was my high school buddy, Tim Conrad. Tim and I had 

worked quite a few miracles in our time. We built computers together in his 

basement. We built Jacob’s ladders in mine. We taught each other how to 

program PDP-8s and how to wire up integrated circuits and transistors into 

functioning calculators. 

We were programmers working on a system that used lasers to trim electronic 

components like resistors and capacitors to extremely high accuracy. For 

example, we trimmed the crystal for the first digital watch, the Motorola Pulsar. 

The computer we programmed was the M365, Teradyne’s PDP-8 clone. We 

wrote in assembly language, and our source files were kept on magnetic tape 

cartridges. Although we could edit on a screen, the process was quite involved, 

so we used printed listings for most of our code reading and preliminary 

editing. 

ptg

We had no facility at all for searching the code base. There was no way to find 

out all the places where a given function was called or a given constant was 

used. As you might imagine, this was quite a hindrance. 

So one day Tim and I decided we would write a cross-reference generator. This 

program would read in our source tapes and print out a listing of every symbol, 

along with the file and line numbers where that symbol was used. 

The initial program was pretty simple to write. It simply read in the source tape, 

parsed the assembler syntax, created a symbol table, and added references to the 

entries. It worked great, but it was horribly slow. It took over an hour to process 

our Master Operating Program (the MOP). 

The reason it was so slow was that we were holding the growing symbol table in 

a single memory buffer. Whenever we found a new reference we inserted it into 

the buffer, moving the rest of the buffer down by a few bytes to make room. 

Tim and I were not experts on data structures and algorithms. We’d never heard 

of hash tables or binary searches. We had no clue how to make an algorithm 

fast. We just knew that what we were doing was too slow. 

158

PROGRAMMERS VERSUS PEOPLE

So we tried one thing after another. We tried putting the references in linked 

lists. We tried leaving gaps in the array and only growing the buffer when the 

gaps filled. We tried creating linked lists of gaps. We tried all kinds of crazy ideas. 

We stood at the whiteboard in our office and drew diagrams of our data 

structures and performed calculations to predict performance. We’d get to the 

office every day with another new idea. We collaborated like fiends. 

Some of the things we tried increased performance. Some slowed it down. It 

was maddening. This was when I first discovered how hard it is to optimize 

software, and how nonintuitive the process is. 

In the end we got the time down under 15 minutes, which was very close to 

how long it took simply to read the source tape. So we were satisfied. 

ptg

PROGR AMMERS VERSUS PEOPLE

We didn’t become programmers because we like working with people. As a rule 

we find interpersonal relationships messy and unpredictable. We like the clean 

and predictable behavior of the machines that we program. We are happiest 

when we are alone in a room for hours deeply focussing on some really 

interesting problem. 

OK, that’s a huge overgeneralization and there are loads of exceptions. There are 

plenty of programmers who are good at working with people and enjoy the 

challenge. But the group average still tends in the direction I stated. We, 

programmers, enjoy the mild sensory deprivation and cocoonlike immersion  

of  focus. 

PROGR AMMERS VERSUS EMPLOYERS

In the seventies and eighties, while working as a programmer at Teradyne, I 

learned to be  really good at debugging. I loved the challenge and would throw 

myself at problems with vigor and enthusiasm. No bug could hide long  

from me! 

159

CHAPTER 12  COLLABORATION

When I solved a bug it was like winning a victory, or slaying the Jabberwock! 

I would go to my boss, Ken Finder, Vorpal blade in hand, and passionately 

describe to him how  interesting the bug was. One day Ken finally erupted in 

frustration: “Bugs aren’t interesting. Bugs just need to be fixed!” 

I learned something that day. It’s good to be passionate about what we do. But 

it’s also good to keep your eye on the goals of the people who pay you. 

The first responsibility of the professional programmer is to meet the needs of 

his or her employer. That means collaborating with your managers, business 

analysts, testers, and other team members to  deeply understand the business 

goals. This doesn’t mean you have to become a business wonk. It  does mean that 

you need to understand why you are writing the code you are writing, and how 

the business that employs you will benefit from it. 

The worst thing a professional programmer can do is to blissfully bury himself 

in a tomb of technology while the business crashes and burns around him. Your 

ptg

 job is to keep the business afloat! 

So, professional programmers take the time to understand the business. They 

talk to users about the software they are using. They talk to sales and marketing 

people about the problems and issues they have. They talk to their managers to 

understand the short- and long-term goals of the team. 

In short, they pay attention to the ship they are sailing on. 

The only time I was fired from a programming job was in 1976. I was working 

for Outboard Marine Corp. at the time. I was helping to write a factory 

automation system that used IBM System/7s to monitor dozens of aluminum 

die-cast machines on the shop floor. 

Technically, this was a challenging and rewarding job. The architecture of the 

System/7 was fascinating, and the factory automation system itself was really 

interesting. 

We also had a good team. The team lead, John, was competent and motivated. 

My two programming teammates were pleasant and helpful. We had a lab 

160

PROGRAMMERS VERSUS PEOPLE

dedicated to our project, and we all worked in that lab. The business partner 

was engaged and in the lab with us. Our manager, Ralph, was competent, 

focused, and in charge. 

Everything should have been great. The problem was me. I was enthusiastic 

enough about the project, and about the technology, but at the grand old age of 

24 I simply could not bring myself to care about the business or about its 

internal political structure. 

My first mistake was on my first day. I showed up without wearing a tie. I had 

worn one on my interview, and I had seen that everyone else wore ties, but I 

failed to make the connection. So on my first day, Ralph came to me and plainly 

said, “We wear ties here.” 

I can’t tell you how much I resented that. It bothered me at a deep level. I wore 

the tie everyday, and I hated it. But why? I knew what I was getting into. I knew 

ptg

the conventions they had adopted. Why would I be so upset? Because I was a 

selfish, narcissistic little twerp. 

I simply could not get to work on time. And I thought it didn’t matter. After all, 

I was doing “a good job.” And it was true, I was doing a very good job at writing 

my programs. I was easily the best technical programmer on the team. I could 

write code faster and better than the others. I could diagnose and solve 

problems quicker. I  knew I was valuable. So times and dates didn’t matter much 

to me. 

The decision to fire me was made one day when I failed to show on time for a 

milestone. Apparently John had told us all that he wanted a demo of working 

features next Monday. I’m sure I knew about this, but dates and times simply 

weren’t important to me. 

We were in active development. The system was not in production. There was 

no reason to leave the system running when no one was in the lab. I must have 

been the last one to leave that Friday, and apparently I left the system in a 

nonfunctioning state. The fact that Monday was important had simply not 

stuck in my brain. 

161

CHAPTER 12  COLLABORATION

I came in an hour late that Monday and saw everyone gathered glumly around 

a nonfunctioning system. John asked me, “Why isn’t the system working  

today, Bob?” My answer: “I don’t know.” And I sat down to debug it. I was  

still clueless about the Monday demo, but I could tell by everyone else’s body 

language that something was wrong. Then John came over and whispered  

in my ear, “What if Stenberg had decided to visit?” Then he walked away in 

disgust. 

Stenberg was the VP in charge of automation. Nowadays we’d call him a CIO. 

The question held no meaning for me. “So what?” I thought. “The system isn’t 

in production, what’s the big deal?” 

I got my first warning letter later that day. It told me I had to change my 

attitude immediately or “quick termination will be the result.” I was 

horrified! 

ptg

I took some time to analyze my behavior and began to realize what I had been 

doing wrong. I talked with John and Ralph about it. I determined to turn 

myself and my job around. 

And I did! I stopped coming in late. I started paying attention to internal 

politics. I began to understand why John was worried about Stenberg. I began 

to see the bad situation I had put him in by not having that system running on 

Monday. 

But it was too little, too late. The die was cast. I got a second warning letter a 

month later for a trivial error that I made. I should have realized at that point 

that the letters were a formality and that the decision to terminate me had 

already been made. But I was determined to rescue the situation. So I worked 

even harder. 

The termination meeting came a few weeks later. 

I went home that day to my pregnant 22-year-old wife and had to tell her that 

I’d been fired. That’s not an experience I ever want to repeat. 

162

PROGRAMMERS VERSUS PEOPLE

PROGR AMMERS VERSUS PROGR AMMERS

Programmers often have difficulty working closely with other programmers. 

This leads to some really terrible problems. 

Owned Code

One of the worst symptoms of a dysfunctional team is when each programmer 

builds a wall around  his code and refuses to let other programmers touch it. 

I have been to places where the programmers wouldn’t even let other 

programmers  see their code. This is a recipe for disaster. 

I once consulted for a company that built high-end printers. These machines 

have many different components such as feeders, printers, stackers, staplers, 

cutters, and so on. The business valued each of these devices differently. Feeders 

were more important than stackers, and nothing was more important than the 

printer. 

ptg

Each programmer worked on  his device. One guy would write the code for the 

feeder, another guy would write the code for the stapler. Each of them kept their 

technology to themselves and prevented anyone else from touching their code. 

The political clout that these programmers wielded was directly related to how 

much the business valued the device. The programmer who worked on the 

printer was unassailable. 

This was a disaster for the technology. As a consultant I was able to see that there 

was massive duplication in the code and that the interfaces between the modules 

were completely skewed. But no amount of argument on my part could convince 

the programmers (or the business) to change their ways. After all, their salary 

reviews were tied to the importance of the devices they maintained. 

Collective Ownership

It is far better to break down all walls of code ownership and have the team own 

all the code. I prefer teams in which any team member can check out any 

module and make any changes they think are appropriate. I want the  team to 

own the code, not the individuals. 

163

CHAPTER 12  COLLABORATION

Professional developers do not prevent others from working in the code. They 

do not build walls of ownership around code. Rather, they work with each other 

on as much of the system as they can. They learn from each other by working 

with each other on other parts of the system. 

Pairing

Many programmers dislike the idea of pair-programming. I find this odd  

since most programmers  will pair in emergencies. Why? Because it is clearly 

the most efficient way to solve the problem. It just goes back to the old adage: 

Two heads are better than one. But if pairing is the most efficient way to solve 

a problem in an emergency, why isn’t it the most efficient way to solve a 

problem period? 

I’m not going to quote studies at you, although there are some that could be 

quoted. I’m not going to tell you any anecdotes, although there are many I could 

tell. I’m not even going to tell you how much you should pair. All I’m going to 

ptg

tell you is that  professionals pair. Why? Because for at least some problems it is 

the most efficient way to solve them. But that’s not the only reason. 

Professionals also pair because it is the best way to share knowledge with each 

other. Professionals don’t create knowledge silos. Rather, they learn the different 

parts of the system and business by pairing with each other. They recognize that 

although all team members have a position to play, all team members should 

also be able play another position in a pinch. 

Professionals pair because it is the best way to review code. No system should 

consist of code that hasn’t been reviewed by other programmers. There are 

many ways to conduct code reviews; most of them are horrifically inefficient. 

The most efficient and effective way to review code is to collaborate in writing it. 

CEREBELLUMS

I rode the train into Chicago one morning in 2000 during the height of the dot 

com boom. As I stepped off the train onto the platform I was assaulted by a 

huge billboard hanging above the exit doors. The sign was for a well-known 

164

CEREBELLUMS

software firm that was recruiting programmers. It read:  Come rub cerebellums 

 with the best. 

I was immediately struck by the rank stupidity of a sign like that. These poor 

clueless advertising people were trying to appeal to a highly technical, intelligent, 

and knowledgeable population of programmers. These are the kind of people who 

don’t suffer stupidity particularly well. The advertisers were trying to evoke the 

image of knowledge sharing with other highly intelligent people. Unfortunately 

they referred to a part of the brain, the cerebellum, that deals with fine muscle 

control, not intelligence. So the very people they were trying to attract were 

sneering at such a silly error. 

But something else intrigued me about that sign. It made me think of a group 

of people trying to rub cerebellums. Since the cerebellum is at the back of the 

brain, the best way to rub cerebellums is to face away from each other. I 

imagined a team of programmers in cubicles, sitting in corners with their backs 

ptg

to each other, staring at screens while wearing headphones.  That’s how you rub 

cerebellums. That’s also not a team. 

Professionals work  together. You can’t work together while you are sitting in 

corners wearing headphones. So I want you sitting around tables  facing each 

other. I want you to be able to smell each other’s fear. I want you to be able to 

overhear someone’s frustrated mutterings. I want serendipitous communication, 

both verbal and body language. I want you communicating as a unit. 

Perhaps you believe that you work better when you work alone. That may  

be true, but it doesn’t mean that the  team works better when you work alone. 

And, in fact, it’s highly unlikely that you  do work better when you work 

alone. 

There are times when working alone is the right thing to do. There are times 

when you simply need to think long and hard about a problem. There are times 

when the task is so trivial that it would be a waste to have another person 

working with you. But, in general, it is best to collaborate closely with others 

and to pair with them a large fraction of the time. 

165

CHAPTER 12  COLLABORATION

CONCLUSION

Perhaps we didn’t get into programming to work with people. Tough luck for 

us. Programming  is all about working with people. We need to work with our 

business, and we need to work with each other. 

I know, I know. Wouldn’t it be great if they just shut us into a room with six 

massive screens, a T3 pipe, a parallel array of superfast processors, unlimited 

ram and disk, and a never-ending supply of diet cola and spicy corn chips? Alas, 

it is not to be. If we really want to spend our days programming, we are going 

to have to learn to talk to—people.1

ptg

1.  A reference to the last word in the movie  Soylent Green. 

166



TEAMS 13

 AND PROJECTS

ptg

What if you have lots of little projects to get done? How should you allocate 

those projects to the programmers? What if you have one really huge project to 

get done? 

167

CHAPTER 13  TEAMS AND PROJECTS

DOES IT BLEND ? 

I have consulted for a number of banks and insurance companies over the years. 

One thing they seem to have in common is the odd way they partition projects. 

Often a project at a bank will be a relatively small job that requires one or two 

programmers for a few weeks. This project will often be staffed with a project 

manager, who is also managing other projects. It will be staffed with a business 

analyst, who is also providing requirements for other projects. It will be staffed 

with some programmers who are also working on other projects. A tester or 

two will be assigned, and they too will be working on other projects. 

See the pattern? The project is so small that no individual can be assigned to it 

on a full-time basis. Everybody is working on the project at 50, or even 25, 

percent. 

Now here’s a rule: There is no such thing as half a person. 

ptg

It makes no sense to tell a programer to devote half their time to project A and 

the rest of their time to project B, especially when the two projects have two 

different project managers, different business analysts, different programmers, 

and different testers. How in Hell’s kitchen can you call a monstrosity like that a 

team? That’s not a team, that’s something that came out of a Waring blender. 

THE GELLED TEAM

It take time for a team to form. The team members start to form relationships. 

They learn how to collaborate with each other. They learn each other’s quirks, 

strengths, and weaknesses. Eventually the team begins to  gel. 

There is something truly magical about a gelled team. They can work miracles. 

They anticipate each other, cover for each other, support each other, and 

demand the best from each other. They make things happen. 

A gelled team usually consists of about a dozen people. It could be as many as 

twenty or as few as three, but the best number is probably around twelve. The 

168

DOES IT BLEND ? 

team should be composed of programmers, testers, and analysts. And it should 

have a project manager. 

The ratio of programmers to testers and analysts can vary greatly, but 2:1 is a 

good number. So a nicely gelled team of twelve might have seven programmers, 

two testers, two analysts, and a project manager. 

The analysts develop the requirements and write automated acceptance tests for 

them. The testers also write automated acceptance tests. The difference between 

the two is perspective. Both are writing requirements. But analysts focus on 

business value; testers focus on correctness. Analysts write the happy path cases; 

testers worry about what might go wrong, and write the failure and boundary 

cases. 

The project manager tracks the progress of the team, and makes sure the team 

understands the schedules and priorities. 

ptg

One of the team members may play a part-time role of coach, or master, with 

responsibility for defending the team’s process and disciplines. They act as the 

team conscience when the team is tempted to go off-process because of 

schedule pressure. 

Fermentation

It takes time for a team like this to work out their differences, come to terms 

with each other, and really gel. It might take six months. It might even take a 

year. But once it happens, it’s magic. A gelled team will plan together, solve 

problems together, face issues together, and  get things done. 

Once this happens, it is ludicrous to break it apart just because a project  

comes to an end. It’s best to keep that team together and just keep feeding it 

projects. 

Which Came First, the Team or the Project? 

Banks and insurance companies tried to form teams around projects. This is a 

foolish approach. The teams simply cannot gel. The individuals are only on the 

169

CHAPTER 13  TEAMS AND PROJECTS

project for a short time, and only for a percentage of their time, and therefore 

never learn how to deal with each other. 

Professional development organizations allocate projects to existing gelled 

teams, they don’t form teams around projects. A gelled team can accept many 

projects simultaneously and will divvy up the work according to their own 

opinions, skills, and abilities. The gelled team will get the projects done. 

BUT HOW DO YOU MANAGE THAT ? 

Teams have velocities.1 The velocity of a team is simply the amount of work it 

can get done in a fixed period of time. Some teams measure their velocity in 

 points per week, where points are a unit of complexity. They break down the 

features of each project they are working on and estimate them in points. Then 

they measure how many points they get done per week. 

Velocity is a statistical measure. A team might get 38 points done one week, 42 

ptg

done the next, and 25 done the next. Over time this will average out. 

Management can set targets for each project given to a team. For example, if the 

average velocity of a team is 50 and they have three projects they are working 

on, then management can ask the team to split their effort into 15, 15, and 20. 

Aside from having a gelled team working on your projects, the advantage of this 

scheme is that in an emergency the business can say, “Project B is in crisis; put 

100% of your effort on that project for the next three weeks.” 

Reallocating priorities that quickly is virtually impossible with the teams that 

came out of the blender, but gelled teams that are working on two or three 

projects concurrently can turn on a dime. 

THE PROJECT OWNER DILEMMA

One of the objections to the approach I’m advocating is that the project owners 

lose some security and power. Project owners who have a team dedicated to 

1.  [RCM2003] pp. 20–22; [COHN2006] Look in the index for many excellent references to velocity. 

170

BIBLIOGRAPHY

their project can count on the effort of that team. They know that because 

forming and disbanding a team is an expensive operation, the business will not 

take the team away for short-term reasons. 

On the other hand, if projects are given to gelled teams, and if those teams take 

on several projects at the same time, then the business is free to change 

priorities on a whim. This can make the project owner insecure about the 

future. The resources that project owner is depending on might be suddenly 

removed from him. 

Frankly, I prefer the latter situation. The business should not have its hands tied 

by the artificial difficulty of forming and disbanding teams. If the business 

decides that one project is higher priority than another, it should be able to 

reallocate resources quickly. It is the project owner’s responsibility to make the 

case for his project. 

ptg

CONCLUSION

Teams are harder to build than projects. Therefore, it is better to form persistent 

teams that move together from one project to the next and can take on more 

than one project at a time. The goal in forming a team is to give that team 

enough time to gel, and then keep it together as an engine for getting many 

projects done. 

BIBLIOGRAPHY

[RCM2003]: Robert C. Martin,   Agile Software Development: Principles, Patterns, 

 and Practices,  Upper Saddle River, NJ: Prentice Hall, 2003. 

[COHN2006]: Mike Cohn,  Agile Estimating and Planning,  Upper Saddle River, 

NJ: Prentice Hall, 2006. 

171

 This page intentionally left blank 

ptg



M 14

E NTO R I N G , 

APPRENTICESHIP, AND

CRAFTSMANSHIP

ptg

I have been consistently disappointed by the quality of CS graduates. It’s not 

that the graduates aren’t bright or talented, it’s just that they haven’t been 

taught what programming is really all about. 

173

CHAPTER 14  MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

DEGREES OF FAILURE

I once interviewed a young woman who was working on her master’s degree in 

computer science for a major university. She was applying for a summer intern 

position. I asked her to write some code with me, and she said “I don’t really 

write code.” 

 Please read the previous paragraph again, and then skip over this one to the next. 

I asked her what programming courses she had taken in pursuit of her master’s 

degree. She said that she hadn’t taken any. 

 Maybe you’d like to start at the beginning of the chapter just to be sure you haven’t 

 fallen into some alternate universe or have just awakened from a bad dream. 

At this point you might well be asking yourself how a student in a CS master’s 

program can avoid a programming course. I wondered the same thing at the 

ptg

time. I’m still wondering today. 

Of course, that’s the most extreme of a series of disappointments I’ve had while 

interviewing graduates. Not all CS graduates are disappointing—far from it! 

However, I’ve noticed that those who aren’t have something in common: Nearly 

all of them  taught themselves to program before they entered university and 

continued to teach themselves despite university. 

Now don’t get me wrong. I think it is possible to get an excellent education at a 

university. It’s just that I also think it’s possible to wiggle yourself through the 

system and come out with a diploma, and not much else. 

And there’s another problem. Even the best CS degree programs do not typically 

prepare the young graduate for what they will find in industry. This is not an 

indictment of the degree programs so much as it is the reality of nearly all disciplines. 

What you learn in school and what you find on the job are often very different things. 

MENTORING

How do we learn how to program? Let me tell you my story about being mentored. 

174

MENTORING

DIGI - COMP I, MY FIRST COMPUTER 

In 1964 my mother gave me a little plastic computer for my twelfth birthday. It 

was called a Digi-Comp I.1 It had three plastic flip-flops and six plastic  and-

gates. You could connect the outputs of the flip-flops to the inputs of the  and-

gates. You could also connect the output of the  and-gates to the inputs of the 

flip-flops. In short, this allowed you to create a three-bit finite state machine. 

The kit came with a manual that gave you several programs to run. You 

programmed the machine by pushing little tubes (short segments of soda straws) 

onto little pegs protruding from the flip flops. The manual told you exactly where 

to put each tube, but not what the tubes  did. I found this very frustrating! 

I stared at the machine for hours and determined how it worked at the lowest 

level; but I could not, for the life of me, figure out how to make it do what  

I wanted it to do. The last page in the manual told me to send in a dollar and 

they would send back a manual telling me how to program the machine.2

ptg

I sent in my dollar and waited with the impatience of a twelve year old. The day 

the manual arrived I devoured it. It was a simple treatise on boolean algebra 

covering basic factoring of boolean equations, associative and distributive laws, 

and DeMorgan’s theorem. The manual showed how to express a problem in 

terms of a sequence of boolean equations. It also described how to reduce those 

equations to fit into 6  and-gates. 

I conceived of my first program. I still remember the name: Mr. Patternson’s 

Computerized Gate .  I wrote the equations, reduced them, and mapped them to 

the tubes and pegs of the machine.  And it worked! 

Writing those three words just now sent chills down my spine. The same chills 

that coursed down that twelve year old nearly half a century ago. I was hooked. 

My life would never be the same. 

Do you remember the moment your first program worked? Did it change your 

life or set you on a course you could not turn away from? 

1.  There are many web sites that offer simulators of this stimulating little computer. 

2.  I still have this manual. It holds a place of honor on one of my bookshelves. 

175

CHAPTER 14  MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

I did not figure it all out for myself. I was  mentored. Some very kind and very 

adept people (to whom I owe a huge debt of gratitude) took the time to write a 

treatise on boolean algebra that was accessible to a twelve year old. They 

connected the mathematical theory to the pragmatics of the little plastic 

computer and empowered me to make that computer do what I wanted it to do. 

I just pulled down my copy of that fateful manual. I keep it in a zip-lock bag. 

Nevertheless, the years have taken their toll by yellowing the pages and making 

them brittle. Still, the power of the words shines out of them. The elegance of 

their description of boolean algebra consumed three sparse pages. Their step-

by-step walk-through of the equations for each of the original programs is still 

compelling. It was a work of mastery. It was a work that changed at least one 

young man’s life. Yet I doubt I’ll never know the names of the authors. 

THE ECP-18 IN HIGH SCHOOL

At the age of fifteen, as a freshman in high school, I liked hanging out in the 

ptg

math department. (Go figure!) One day they wheeled in a machine the size of a 

table saw. It was an educational computer made for high schools, called the 

ECP-18. Our school was getting a two-week demo. 

I stood in the background as the teachers and technicians talked. This machine 

had a 15-bit word ( what’s a word? ) and a 1024-word drum memory. (I knew 

what drum memory was by then, but only in concept.)

When they powered it up, it made a whining sound reminiscent of a jet aircraft 

taking off. I guessed that was the drum spinning up. Once up to speed, it was 

relatively quiet. 

The machine was  lovely. It was essentially an office desk with a marvelous 

control panel protruding from the top like the bridge of a battleship. The 

control panel was adorned with rows of lights that were also push-buttons. 

Sitting at that desk was like sitting in Captain Kirk’s chair. 

As I watched the technicians push those buttons, I noted that they lit up when 

pushed, and that you could push them again to turn them off. I also noted that there 

were other buttons they were pushing; buttons with names like  deposit and  run. 

176

MENTORING

The buttons in each row were grouped into five clusters of three. My Digi-

Comp was also three bits, so I could read an octal digit when expressed in 

binary. It was not a big leap to realize that these were just five octal digits. 

As the technicians pushed the buttons I could hear them mutter to themselves. 

They would push 1, 5, 2, 0, 4, in the  memory buffer row while saying to 

themselves, “store in 204.” They would push 1, 0, 2, 1, 3 and mutter, “load 213 

into the  accumulator.” There was a row of buttons named  accumulator! 

Ten minutes of that and it was pretty clear to my fifteen-year-old mind that the 

15 meant  store and the 10 meant  load, that the accumulator was what was being stored or loaded, and that the other numbers were the numbers of one of the 

1024 words on the drum. (So  that’s what a word is!)

Bit by bit (no pun intended) my eager mind latched on to more and more 

instruction codes and concepts. By the time the technicians left, I knew the 

ptg

basics of how that machine worked. 

That afternoon, during a study hall, I crept into the math lab and started 

fiddling with the computer. I had learned long ago that it is better to ask 

forgiveness than permission! I toggled in a little program that would multiply 

the accumulator by two and add one. I toggled a 5 into the accumulator, ran the 

program, and saw 13  in the accumulator! It had worked! 

8

I toggled in several other simple programs like that and they all worked as 

planned. I was master of the universe! 

Days later I realized how stupid, and lucky, I had been. I found an instruction 

sheet laying around in the math lab. It showed all the different instructions and 

op-codes, including many I had not learned by watching the technicians. I was 

gratified that I had interpreted those that I knew correctly and thrilled by the 

others. However, one of the new instructions was HLT. It just so happened that 

the  halt instruction was a word of all zeros. And it just so happened that I had 

put a word of all zeros at the end of each of my programs so that I could load it 

into the accumulator to clear it. The concept of a halt simply had not occurred 

to me. I just figured the program would stop when it was done! 

177

CHAPTER 14  MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

I remember at one point sitting in the math lab watching one of the teachers 

struggle to get a program working. He was trying to type two numbers in 

decimal on the attached teletype, and then print out the sum. Anyone who has 

tried to write a program like this in machine language on a mini-computer 

knows that it is far from trivial. You have to read in the characters, convert them 

to digits, then to binary, add them, convert back to decimal and encode back 

into characters. And, believe me, it’s a  lot worse when you are entering the 

program in binary through the front panel! 

I watched as he put a halt into his program and then ran it until it stopped. 

(Oh! That’s a good idea!) This primitive breakpoint allowed him to examine the 

contents of the registers to see what his program had done. I remember him 

muttering, “Wow, that was fast!” Boy, do I have news for him! 

I had no idea what his algorithm was. That kind of programming was still magic 

to me. And he never spoke to me while I watched over his shoulder. Indeed, 

ptg

 nobody talked to me about this computer. I think they considered me a nuisance 

to be ignored, fluttering around the math lab like a moth. Suffice it to say that 

neither the student nor the teachers had developed a high degree of social skill. 

In the end he got his program working. It was amazing to watch. He’d slowly 

type in the two numbers because, despite his earlier protestation, that computer 

was  not fast (think of reading consecutive words from a spinning drum in 

1967). When he hit return after the second number, the computer blinked 

ferociously for a bit and then started to print the result. It took about one 

second per digit. It printed all but the last digit, blinked even more ferociously 

for five seconds, and then printed the final digit and halted. 

Why that pause before the last digit? I never found out. But it made me realize that 

the approach to a problem can have a profound effect on the user. Even though the 

program produced the correct answer, there was  still something wrong with it. 

This was mentoring. Certainly it was not the kind of mentoring I could have 

hoped for. It would have been nice if one of those teachers had taken me under 

his wing and worked with me. But it didn’t matter, because I was  observing

them and learning at a furious pace. 

178

MENTORING

UNCONVENTIONAL MENTORING

I told you those two stories because they describe two very different kinds of 

mentoring, neither of which are the kind that the word usually implies. In the 

first case I learned from the authors of a very well-written manual. In the 

second case I learned by observing people who were actively trying to ignore 

me. In both cases the knowledge gained was profound and foundational. 

Of course, I had other kinds of mentors too. There was the kindly neighbor 

who worked at Teletype who brought me home a box of 30 telephone relays to 

play with. Let me tell you, give a lad some relays and a electric train transformer 

and he can conquer the world! 

There was the kindly neighbor who was a ham operator who showed me how to 

use a multimeter (which I promptly broke). There was the office supply store 

owner who allowed me to come in and “play” with his very expensive 

programmable calculator. There was the Digital Equipment Corporation sales 

ptg

office that allowed me to come in and “play” with their PDP-8 and PDP-10. 

Then there was big Jim Carlin, a BAL programmer who saved me from being 

fired from my first programming job by helping me debug a Cobol program 

that was way beyond my depth. He taught me how to read core dumps, and 

how to format my code with appropriate blank lines, rows of stars, and 

comments. He gave me my first push towards craftsmanship. I’m sorry I could 

not return the favor when the boss’s displeasure fell on him a year later. 

But, frankly, that’s about it. There just weren’t that many senior programmers in 

the early seventies. Everywhere else I worked, I  was senior. There was nobody to 

help me figure out what true professional programming was. There was no role 

model who taught me how to behave or what to value. Those things I had to 

learn for myself, and it was by no means easy. 

HARD KNOCKS

As I told you before, I did, in fact, get fired from that factory automation job in 

1976. Although I was technically very competent, I had not learned to pay 

attention to the business or the business goals. Dates and deadlines meant 

179

CHAPTER 14  MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

nothing to me. I forgot about a big Monday morning demo, left the system broken 

on Friday, and showed up late on Monday with everyone staring angrily at me. 

My boss sent me a letter warning me that I had to make changes immediately or 

be fired. This was a significant wake-up call for me. I reevaluated my life and 

career and started to make some significant changes in my behavior—some of 

which you have been reading about in this book. But it was too little, too late. 

The momentum was all in the wrong direction and small things that wouldn’t 

have mattered before became significant. So, though I gave it a hardy try, they 

eventually escorted me out of the building. 

Needless to say, it’s not fun to bring that kind of news home to a pregnant wife 

and a two-year old daughter. But I picked myself up and took some powerful 

life lessons to my next job—which I held for fifteen years and which formed the 

true foundation of my current career. 

ptg

In the end, I survived and prospered. But there has to be a better way. It would have 

been far better for me if I’d had a true mentor, someone to teach me the in’s and 

out’s. Someone I could have observed while I helped him with small tasks, and who 

would review and guide my early work. Someone to act as a role model and teach 

me appropriate values and reflexes. A sensei. A master. A mentor. 

APPRENTICESHIP

What do doctors do? Do you think hospitals hire medical graduates and throw 

them into operating rooms to do heart surgery on their first day on the job? Of 

course not. 

The medical profession has developed a discipline of intense mentoring 

ensconced in ritual and lubricated with tradition. The medical profession 

oversees the universities and makes sure the graduates have the best education. 

That education involves roughly  equal amounts of classroom study and clinical 

activity in hospitals working with professionals. 

Upon graduation, and before they can be licensed, the newly minted doctors are 

required to spend a year in supervised practice and training called internship. 

180

APPRENTICESHIP

This is intense on-the-job training. The intern is surrounded by role models 

and teachers. 

Once internship has been completed each of the medical specialties requires 

three to five more years of further supervised practice and training known as 

residency. The resident gains confidence by taking on ever greater responsibilities 

while still being surrounded by, and supervised by, senior doctors. 

Many specialties require yet another one to three years of fellowship in which 

the student continues specialized training and supervised practice. 

And  then they are eligible to take their exams and become board certified. 

This description of the medical profession was somewhat idealized, and 

probably wildly inaccurate. But the fact remains that when the stakes are high, 

we do not send graduates into a room, throw meat in occasionally, and expect 

ptg

good things to come out. So why do we do this in software? 

It’s true that there are relatively few deaths caused by software bugs. But there 

 are significant monetary losses. Companies lose huge amounts of money due to 

the inadequate training of their software developers. 

Somehow the software development industry has gotten the idea that program-

mers are programmers, and that once you graduate you can code. Indeed, it is not 

at all uncommon for companies to hire kids right out of school, form them into 

“teams,” and ask them to build the most critical systems. It’s insane! 

Painters don’t do this. Plumbers don’t. Electricians don’t. Hell, I don’t even 

think short-order cooks behave this way! It seems to me that companies who 

hire CS graduates ought to invest more in their training than McDonalds 

invests in their servers. 

Let’s not kid ourselves that this doesn’t matter. There’s a lot at stake. Our 

civilization runs on software. It is software that moves and manipulates the 

information that pervades our daily life. Software controls our automobile 

engines, transmissions, and brakes. It maintains our bank balances, sends us our 

181

CHAPTER 14  MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

bills, and accepts our payments. Software washes our clothes and tells us the 

time. It puts pictures on the TV, sends our text messages, makes our phone calls, 

and entertains us when we are bored. It’s everywhere. 

Given that we entrust software developers with all aspects of our lives, from the 

minutia to the momentous, I suggest that a reasonable period of training and 

supervised practice is not inappropriate. 

SOFTWARE APPRENTICESHIP

So how  should the software profession induct young graduates into the ranks of 

professionalism? What steps should they follow? What challenges should they 

meet? What goals should they achieve? Let’s work it backwards. 

Masters

These are programmers who have taken the lead on more than one significant 

ptg

software project. Typically they will have 10+ years of experience and will have 

worked on several different kinds of systems, languages, and operating systems. 

They know how to lead and coordinate multiple teams, are proficient designers 

and architects, and can code circles around everyone else without breaking a 

sweat. They have been offered management positions, but have either turned 

them down, have fled back after accepting them, or have integrated them with 

their primarily technical role. They maintain that technical role by reading, 

studying, practicing, doing, and  teaching. It is to a master that the company will 

assign technical responsibility for a project. Think, “Scotty.” 

Journeymen

These are programmers who are trained, competent, and energetic. During this 

period of their career they will learn to work well in a team and to become team 

leaders. They are knowledgeable about current technology but typically lack 

experience with many diverse systems. They tend to know one language, one 

system, one platform; but they are learning more. Experience levels vary widely 

among their ranks, but the average is about five years. On the far side of  

that average we have burgeoning masters; on the near side we have recent 

apprentices. 

182

APPRENTICESHIP

Journeymen are supervised by masters, or other more senior journeymen. 

Young journeymen are seldom allowed autonomy. Their work is closely 

supervised. Their code is scrutinized. As they gain in experience, autonomy 

grows. Supervision becomes less direct and more nuanced. Eventually it 

transitions into peer review. 

Apprentices/Interns

Graduates start their careers as apprentices. Apprentices have no autonomy. 

They are very closely supervised by journeymen. At first they take no tasks at 

all, they simply provide assistance to the journeymen. This should be a time of 

very intense pair-programming. This is when disciplines are learned and 

reinforced. This is when the foundation of values is created. 

Journeymen are the teachers. They make sure that the apprentices know design 

principles, design patterns, disciplines, and rituals. Journeymen teach TDD, 

refactoring, estimation, and so forth. They assign reading, exercises, and 

ptg

practices to the apprentices; they review their progress. 

Apprenticeship ought to last a year. By that time, if the journeymen are willing 

to accept the apprentice into their ranks, they will make a recommendation to 

the masters. The masters should examine the apprentice both by interview and 

by reviewing their accomplishments. If the masters agree, then the apprentice 

becomes a journeyman. 

THE REALITY

Again, all of this is idealized and hypothetical. However, if you change the 

names and squint at the words you’ll realize that it’s not all that different from 

the way we  expect things to work now. Graduates are supervised by young team-

leads, who are supervised by project-leads, and so on. The problem is that, in 

most cases, this supervision  is not technical!  In most companies there is no 

technical supervision at all. Programmers get raises and eventual promotions 

because, well, that’s just what you do with programmers. 

The difference between what we do today and my idealized program of appren-

ticeship is the focus on technical teaching, training, supervision, and review. 

183

CHAPTER 14  MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

The  difference is the very notion that professional values and technical acumen 

must be taught, nurtured, nourished, coddled, and encultured. What’s missing 

from our current sterile approach is the responsibility of the elders to teach the 

young. 

CRAFTSMANSHIP

So now we are in a position to define this word:  craftsmanship. Just what is it? 

To understand, let’s look at the word  craftsman. This word brings to mind skill 

and quality. It evokes experience and competence. A craftsman is someone who 

works quickly, but without rushing, who provides reasonable estimates and 

meets commitments. A craftsman knows when to say no, but tries hard to say 

yes. A craftsman is a professional. 

Craftsmanship is the  mindset held by craftsmen. Craftsmanship is a meme that 

contains values, disciplines, techniques, attitudes, and answers. 

ptg

But how do cratftsmen adopt this meme? How do they attain this mindset? 

The craftsmanship meme is handed from one person to another. It is taught by 

elders to the young. It is exchanged between peers. It is observed and relearned, as 

elders observe the young. Craftsmanship is a contagion, a kind of mental virus. 

You catch it by observing others and allowing the meme to take hold. 

CONVINCING PEOPLE

You can’t convince people to be craftsmen. You can’t convince them to accept 

the craftsmanship meme. Arguments are ineffective. Data is inconsequential. 

Case studies mean nothing. The acceptance of a meme is not so much a rational 

decision as an emotional one. This is a very  human thing. 

So how do you get people to adopt the craftsmanship meme? Remember that a 

meme is contagious, but only if it can be observed. So you make the meme 

 observable. You act as a role model. You become a craftsman first, and let your 

craftsmanship show. Then just let the meme do the rest of the work. 

184

CONCLUSION

CONCLUSION

School can teach the theory of computer programming. But school does not, 

and cannot teach the discipline, practice, and skill of being a craftsman. Those 

things are acquired through years of personal tutelage and mentoring. It is time 

for those of us in the software industry to face the fact that guiding the next 

batch of software developers to maturity will fall to us, not to the universities. 

It’s time for us to adopt a program of apprenticeship, internship, and long-term 

guidance. 

ptg

185

 This page intentionally left blank 

ptg

TA

O O L I N G

ptg

In 1978, I was working at Teradyne on the telephone test system that I described 

earlier. The system was about 80KSLOC of M365 assembler. We kept the source 

code on tapes. 

The tapes were similar to those 8-track stereo tape cartridges that were so 

popular back in the ’70s. The tape was an endless loop, and the tape drive could 

only move in one direction. The cartridges came in 10', 25', 50', and 100' lengths. 

The longer the tape, the longer it took to “rewind” since the tape drive had to 

simply move it forward until it found the “load point.” A 100' tape took five 

minutes to go to load point, so we chose the lengths of our tapes judiciously.1

1. These tapes could only be moved in one direction. So when there was a read error, there was no way for the tape drive to back up and read again. You had to stop what you were doing, send the tape back to the load point, and then start again. This happened two or three times per day. Write errors were also very common, and the drive had no way to detect them. So we always wrote the tapes in pairs and then checked the pairs when we were done. If one of the tapes was bad we immediately made a copy. If both were bad, which was very infrequent, we started the whole operation over. That was what life was like in the ’70s. 

187

APPENDIX A  TOOLING

Logically, the tapes were subdivided into files. You could have as many files on a 

tape as would fit. To find a file you loaded the tape and then skipped forward 

one file at a time until you found the one you wanted. We kept a listing of the 

source code directory on the wall so that we would know how many files to skip 

before we got to the one we wanted. 

There was a master 100' copy of the source code tape on a shelf in the lab. It was 

labeled Master. When we wanted to edit a file we loaded the Master source 

tape into one drive and a 10' blank into another. We’d skip through the Master

until we got to the file we needed. Then we’d copy that file onto the scratch tape. 

Then we’d “rewind” both tapes and put the Master back on the shelf. 

There was a special directory listing of the Master on a bulletin board in the lab. 

Once we had made the copies of the files we needed to edit, we’d put a colored 

pin on the board next to the name of that file. That’s how we checked files out! 

ptg

We edited the tapes on a screen. Our text editor, ED-402, was actually very 

good. It was very similar to vi. We would read a “page” from tape, edit the 

contents, and then write that page out and read the next one. A page was 

typically 50 lines of code. You could not look ahead on the tape to see the pages 

that were coming, and you could not look back on the tape to see the pages you 

had edited. So we used listings. 

Indeed, we would mark up our listings with all the changes we wanted to make, 

and  then we’d edit the files according to our markups.  Nobody wrote or 

modified code at the terminal! That was suicide. 

Once the changes were made to all the files we needed to edit, we’d merge those 

files with the master to create a working tape. This is the tape we’d use to run 

our compiles and tests. 

Once we were done testing and were sure our changes worked, we’d look at the 

board. If there were no new pins on the board we’d simply relabel our working 

tape as Master and pull our pins off the board. If there  were new pins on the 

board we’d remove our pins and hand our working tape to the person whose 

pins were still on the board. They’d have to do the merge. 

188

SOURCE CODE CONTROL

There were three of us, and each of us had our own color of pin, so it was easy 

for us to know who had which files checked out. And since we all worked in the 

same lab and talked to each other all the time, we held the status of the board in 

our heads. So usually the board was redundant, and we often didn’t use it. 

TOOLS

Today software developers have a wide array of tools to choose from. Most 

aren’t worth getting involved with, but there are a few that every software 

developer must be conversant with. This chapter describes my current personal 

toolkit. I have not done a complete survey of all the other tools out there, so 

this should not be considered a comprehensive review. This is just what I use. 

SOURCE CODE CONTROL

ptg

When it comes to source code control, the open source tools are usually your 

best option. Why? Because they are written by developers, for developers. The 

open source tools are what developers write for themselves when they need 

something that works. 

There are quite a few expensive, commercial, “enterprise” version control 

systems available. I find that these are not sold to developers so much as they 

are sold to managers, executives, and “tool groups.” Their list of features is 

impressive and compelling. Unfortunately, they often don’t have the features 

that developers actually need. The chief among those is  speed. 

A N   “ E NTE R PR I S E ”  S O U RC E  CO NTRO L  SYSTE M

It may be that your company has invested a small fortune in an “enterprise” 

source code control system. If so, my condolences. It’s probably politically 

inappropriate for you to go around telling everyone, “Uncle Bob says not to use 

it.” However, there is an easy solution. 

You can check your source code into the “enterprise” system at the end of each 

iteration (once every two weeks or so) and use one of the open source systems 

189

APPENDIX A  TOOLING

in the midst of each iteration. This keeps everyone happy, doesn’t violate any 

corporate rules, and keeps your productivity high. 

PESSIMISTIC VERSUS OPTIMISTIC LOCKING

Pessimistic locking seemed like a good idea in the ’80s. After all, the simplest 

way to manage concurrent update problems is to serialize them. So if  I’m

editing a file,  you’d  better not. Indeed, the system of colored pins that I used in 

the late ’70s was a form of pessimistic locking. If there was a pin in a file, you 

didn’t edit that file. 

Of course, pessimistic locking has its problems. If I lock a file and then go on 

vacation, everybody else who wants to edit that file is stuck. Indeed, even if I 

keep the file locked for a day or two, I can delay others who need to make 

changes. 

ptg

Our tools have gotten much better at merging source files that have been edited 

concurrently. It’s actually quite amazing when you think about it. The tools look 

at the two different files and at the ancestor of those two files, and then they 

apply multiple strategies to figure out how to integrate the concurrent changes. 

And they do a pretty good job. 

So the era of pessimistic locking is over. We do not need to lock files when we 

check them out anymore. Indeed, we don’t bother to check out individual files 

at all. We just check out the whole system and edit any files we need to. 

When we are ready to check in our changes, we perform an “update” operation. 

This tells us whether anybody else checked in code ahead of us, automatically 

merges most of the changes, finds conflicts, and helps us do the remaining 

merges. Then we commit the merged code. 

I’ll have a lot to say about the role that automated tests and continuous 

integration play with regard to this process later on in this chapter. For the 

moment let’s just say that we  never check in code that doesn’t pass all the tests. 

 Never  ever. 

190

SOURCE CODE CONTROL

CVS / SVN

The old standby source control system is CVS. It was good for its day but has 

grown a bit long in the tooth for today’s projects. Although it is very good at 

dealing with individual files and directories, it’s not very good at renaming files 

or deleting directories. And the attic . . . . Well, the less said about that, the better. 

Subversion, on the other hand, works very nicely. It allows you to check out the 

whole system in a single operation. You can easily update, merge, and commit. 

As long as you don’t get into branching, SVN systems are pretty simple to 

manage. 

Branching

Until 2008 I avoided all but the simplest forms of branching. If a developer 

created a branch, that branch had to be brought back into the main line before 

the end of the iteration. Indeed, I was so austere about branching that it was 

ptg

very rarely done in the projects I was involved with. 

If you are using SVN, then I still think that’s a good policy. However, there are 

some new tools that change the game completely. They are the  distributed

source control systems. git is my favorite of the distributed source control 

systems. Let me tell you about it. 

git

I started using git in late 2008, and it has since changed everything about the 

way I use source code control. Understanding why this tool is such a game 

changer is beyond the scope of this book. But comparing Figure A-1 to Figure 

A-2 ought to be worth quite a few of the words that I’m not going to include 

here. 

Figure A-1 shows a few weeks’ worth of development on the FitNesse project 

while it was controlled by SVN. You can see the effect of my austere 

no-branching rule. We simply did not branch. Instead, we did very frequent 

updates, merges, and commits to the main line. 

191



APPENDIX A  TOOLING

ptg

Figure A-1  FITNESSE under subversion

Figure A-2 picture shows a few weeks’ worth of development on the same 

project using git. As you can see, we are branching and merging all over the 

place. This was not because I relaxed my no-branching policy; rather, it simply 

192



SOURCE CODE CONTROL

ptg

Figure A-2  FITNESSE under git

became the obvious and most convenient way to work. Individual developers 

can make very short-lived branches and then merge them with each other on  

a whim. 

193

APPENDIX A  TOOLING

Notice also that you can’t see a true main line. That’s because  there isn’t one. 

When you use git there’s no such thing as a central repository, or a main line. 

Every developer keeps his or her own copy of the  entire history of the project on 

their local machine. They check in and out of that local copy, and then merge it 

with others as needed. 

It’s true that I keep a special golden repository into which I push all the releases 

and interim builds. But to call this repository the main line would be missing 

the point. It’s really just a convenient snapshot of the whole history that every 

developer maintains locally. 

If you don’t understand this, that’s OK. git is something of a mind bender at 

first. You have to get used to how it works. But I’ll tell you this: git, and tools 

like it, are what the future of source code control looks like. 

ptg

IDE / EDITOR

As developers, we spend most of our time reading and editing code. The tools 

we use for this purpose have changed greatly over the decades. Some are 

immensely powerful, and some are little changed since the ’70s. 

V I

You’d think that the days of using vi as the primary development editor 

would be long over. There are tools nowadays that far outclass vi, and other 

simple text editors like it. But the truth is that vi has enjoyed a significant 

resurgence in popularity due to its simplicity, ease of use, speed, and 

flexibility. Vi might not be as powerful as Emacs, or eclipse, but it’s still a fast 

and powerful editor. 

Having said that, I’m not a power vi user any more. There was a day when I was 

known as a vi “god,” but those days are long gone. I use vi from time to time if I 

need to do a quick edit of a text file. I have even used it recently to make a quick 

change to a Java source file in a remote environment. But the amount of true 

coding I have done in vi in the last 10 years is vanishingly small. 

194

IDE/EDITOR

EMACS

Emacs is still one of the most powerful editors out there, and will probably 

remain so for decades to come. The internal lisp model guarantees that. As a 

general-purpose editing tool, nothing else even comes close. On the other hand, 

I think that Emacs cannot really compete with the specific-purpose IDEs that 

now dominate. Editing code is  not a general-purpose editing job. 

In the ’90s I was an Emacs bigot. I wouldn’t consider using anything else. The 

point-and-click editors of the day were laughable toys that no developer could 

take seriously. But in the early ’00s I was introduced to IntelliJ, my current IDE 

of choice, and I’ve never looked back. 

ECLIPSE / INTELLI J

I’m an IntelliJ user. I love it. I use it to write Java, Ruby, Clojure, Scala, 

Javascript, and many others. This tool was written by programmers who 

ptg

understand what programmers need when writing code. Over the years, they 

have seldom disappointed me and almost always pleased me. 

Eclipse is similar in power and scope to IntelliJ. The two are simply leaps and 

bounds above Emacs when it comes to editing Java. There are other IDEs in this 

category, but I won’t mention them here because I have no direct experience 

with them. 

The features that set these IDEs above tools like Emacs are the extremely 

powerful ways in which they help you manipulate code. In IntelliJ, for example, 

you can extract a superclass from a class with a single command. You can 

rename variables, extract methods, and convert inheritance into composition, 

among many other great features. 

With these tools, code editing is no longer about lines and characters as much 

as it is about complex manipulations. Rather than thinking about the next few 

characters and lines you need to type, you think about the next few trans-

formations you need to make. In short, the programming model is remarkably 

different and highly productive. 

195

APPENDIX A  TOOLING

Of course, this power comes at a cost. The learning curve is high, and project 

set-up time is not insignificant. These tools are  not lightweight. They take a lot 

of computing resources to run. 

TEXTMAT E

TextMate is powerful and lightweight. It can’t do the wonderful manipulations 

that IntelliJ and Eclipse can do. It doesn’t have the powerful lisp engine and 

library of Emacs. It doesn’t have the speed and fluidity of vi. On the other hand, 

the learning curve is small, and its operation is intuitive. 

I use TextMate from time to time, especially for the occasional C++. I would 

use Emacs for a large C++ project, but I’m too rusty to bother with Emacs for 

the short little C++ tasks I have. 

ISSUE TRACKING

ptg

At the moment I’m using Pivotal Tracker. It’s an elegant and simple system to 

use. It fits nicely with the Agile/iterative approach. It allows all the stakeholders 

and developers to communicate quickly. I’m very pleased with it. 

For very small projects, I’ve sometimes used Lighthouse. It’s very quick and easy 

to set up and use. But it doesn’t come close to the power of Tracker. 

I’ve also simply used a wiki. Wikis are fine for internal projects. They allow you 

to set up any scheme you like. You aren’t forced into a certain process or a rigid 

structure. They are very easy to understand and use. 

Sometimes the best issue-tracking system of all is a set of cards and a bulletin 

board. The bulletin board is divided into columns such as “To Do,” “In Progress,” 

and “Done.” The developers simply move the cards from one column to the next 

when appropriate. Indeed, this may be the most common issue-tracking system 

used by agile teams today. 

The recommendation I make to clients is to start with a manual system like the 

bulletin board before you purchase a tracking tool. Once you’ve mastered the 

196

CONTINUOUS BUILD

manual system, you will have the knowledge you need to select the appropriate 

tool. And indeed, the appropriate choice may simply be to continue using the 

manual system. 

BUG COUNTS

Teams of developers certainly need a list of issues to work on. Those issues include 

new tasks and features as well as bugs. For any reasonably sized team (5 to 12 

developers) the size of that list should be in the dozens to hundreds.  Not thousands. 

If you have thousands of bugs, something is wrong. If you have thousands of 

features and/or tasks, something is wrong. In general, the list of issues should be 

relatively small, and therefore manageable with a lightweight tool like a wiki, 

Lighthouse, or Tracker. 

There are some commercial tools out there that seem to be pretty good. I’ve 

ptg

seen clients use them but haven’t had the opportunity to work with them 

directly. I am not opposed to tools like this, as long as the number of issues 

remains small and manageable. When issue-tracking tools are forced to track 

thousands of issues, then the word “tracking” loses meaning. They become 

“issue dumps” (and often smell like a dump too). 

CONTINUOUS BUILD

Lately I’ve been using Jenkins as my Continuous Build engine. It’s lightweight, 

simple, and has almost no learning curve. You download it, run it, do some 

quick and simple configurations, and you are up and running. Very nice. 

My philosophy about continuous build is simple: Hook it up to your source 

code control system. Whenever anybody checks in code, it should automatically 

build and then report status to the team. 

The team must simply keep the build working at all times. If the build fails, it 

should be a “stop the presses” event and the team should meet to quickly resolve 

the issue. Under no circumstances should the failure be allowed to persist for a 

day or more. 

197

APPENDIX A  TOOLING

For the FitNesse project I have every developer run the continuous-build script 

before they commit. The build takes less than 5 minutes, so this is not onerous. 

If there are problems, the developers resolve them before the commit. So the 

automatic build seldom has any problems. The most common source of automatic 

build failures turns out to be environment-related issues since my automatic 

build environment is quite different from the developer’s development 

environments. 

UNIT TESTING TOOLS

Each language has it’s own particular unit testing tool. My favorites are JUnit

for Java, rspec for Ruby, NUnit for .Net, Midje for Clojure, and CppUTest for C 

and C++. 

Whatever unit testing tool you choose, there are a few basic features they all 

should support. 

ptg

1. It should be quick and easy to run the tests. Whether this is done through 

IDE plugins or simple command line tools is irrelevant, as long as developers 

can run those tests on a whim. The gesture to run the tests should be trivial. 

For example, I run my CppUTest tests by typing command-M in TextMate. 

I have this command set up to run my makefile which automatically runs the 

tests and prints a one-line report if all tests pass. JUnit and rspec are both 

supported by IntelliJ, so all I have to do is push a button. For NUnit, I use 

the Resharper plugin to give me the test button. 

2. The tool should give you a clear visual pass/fail indication. It doesn’t matter if 

this is a graphical green bar or a console message that says “All Tests Pass.” The 

point is that you must be able to tell that all tests passed quickly and unam-

biguously. If you have to read a multiline report, or worse, compare the  

output of two files to tell whether the tests passed, then you have failed this 

point. 

3. The tool should give you a clear visual indication of progress. It doesn’t matter 

whether this is a graphical meter or a string of dots as long as you can tell that 

progress is still being made and that the tests have not stalled or aborted. 

198

COMPONENT TESTING TOOLS

4. The tool should discourage individual test cases from communicating with 

each other. JUnit does this by creating a new instance of the test class for each 

test method, thereby preventing the tests from using instance variables to 

communicate with each other. Other tools will run the test methods in random 

order so that you can’t depend on one test preceding another. Whatever the 

mechanism, the tool should help you keep your tests independent from each 

other. Dependent tests are a deep trap that you don’t want to fall into. 

5. The tool should make it very easy to write tests. JUnit does this by supplying a 

convenient API for making assertions. It also uses reflection and Java attributes 

to distinguish test functions from normal functions. This allows a good IDE to 

automatically identify all your tests, eliminating the hassle of wiring up suites 

and creating error-prone lists of tests. 

COMPONENT TESTING TOOLS

These tools are for testing components at the API level. Their role is to make 

ptg

sure that the behavior of a component is specified in a language that the 

business and QA people can understand. Indeed, the ideal case is when business 

analysts and QA can  write that specification using the tool. 

THE DEFINITION OF  DONE

More than any other tool, component testing tools are the means by which we 

specify what  done means. When business analysts and QA collaborate to create a 

specification that defines the behavior of a component, and when that 

specification can be executed as a suite of tests that pass or fail, then  done takes 

on a very unambiguous meaning: “All Tests Pass.” 

FITNESSE

My favorite component testing tool is FitNesse. I wrote a large part of it, and 

I am the primary committer. So it’s my baby. 

FitNesse is a wiki-based system that allows business analysts and QA specialists 

to write tests in a very simple tabular format. These tables are similar to Parnas 

199

APPENDIX A  TOOLING

tables both in form and intent. The tests can be quickly assembled into suites, 

and the suites can be run at a whim. 

FitNesse is written in Java but can test systems in any language because it 

communicates with an underlying test system that can be written in any 

language. Supported languages include Java, C#/.NET, C, C++, Python, Ruby, 

PHP, Delphi, and others. 

There are two test systems that underlie FitNesse: Fit and Slim. Fit was written 

by Ward Cunningham and was the original inspiration for FitNesse and it’s ilk. 

Slim is a much simpler and more portable test system that is favored by 

FitNesse users today. 

OTHER TOOLS

I know of several other tools that could classify as component testing tools. 

ptg

• RobotFX is a tool developed by Nokia engineers. It uses a similar tabular 

format to FitNesse, but is not wiki based. The tool simply runs on flat files 

prepared with Excel or similar. The tool is written in Python but can test 

systems in any language using appropriate bridges. 

• Green Pepper is a commercial tool that has a number of similarities with 

FitNesse. It is based on the popular confluence wiki. 

• Cucumber is a plain text tool driven by a Ruby engine, but capable of  

testing many different platforms. The language of Cucumber is the popular 

Given/When/Then style. 

• JBehave is similar to Cucumber and is the logical parent of Cucumber. It is 

written in Java. 

INTEGR ATION TESTING TOOLS

Component testing tools can also be used for many integration tests, but are 

less than appropriate for tests that are driven through the UI. 

In general, we don’t want to drive very many tests through the UI because UIs are 

notoriously volatile. That volatility makes tests that go through the UI very fragile. 

200

UML/MDA

Having said that, there are some tests that  must go through the UI—most 

importantly, tests  of the UI. Also, a few end-to-end tests should go through the 

whole assembled system, including the UI. 

The tools that I like best for UI testing are Selenium and Watir. 

UML / MDA

In the early ’90s I was very hopeful that the CASE tool industry would cause a 

radical change in the way software developers worked. As I looked ahead from 

those heady days, I thought that by now everyone would be coding in diagrams 

at a higher level of abstraction and that textual code would be a thing of the past. 

Boy was I wrong. Not only hasn’t this dream been fulfilled, but every attempt to 

move in that direction has met with abject failure. Not that there aren’t tools and 

systems out there that demonstrate the potential; it’s just that those tools simply 

ptg

don’t truly realize the dream, and hardly anybody seems to want to use them. 

The dream was that software developers could leave behind the details of 

textual code and author systems in a higher-level language of diagrams. Indeed, 

so the dream goes, we might not need programmers at all. Architects could 

create whole systems from UML diagrams. Engines, vast and cool and 

unsympathetic to the plight of mere programmers, would transform those 

diagrams into executable code. Such was the grand dream of Model Driven 

Architecture (MDA). 

Unfortunately, this grand dream has one tiny little flaw. MDA assumes that the 

problem is code. But code is  not the problem. It has never been the problem. 

The problem is  detail. 

THE DETAILS

Programmers are detail managers. That’s what we do. We specify the behavior 

of systems in the minutest detail. We happen to use textual languages for this 

(code) because textual languages are remarkably convenient (consider English, 

for example). 

201

APPENDIX A  TOOLING

What kinds of details do we manage? 

Do you know the difference between the two characters \n and \r? The first, \n, 

is a line feed. The second, \r, is a carriage return. What’s a carriage? 

In the ’60s and early ’70s one of the more common output devices for computers 

was a teletype. The model ASR332 was the most common. 

This device consisted of a print head that could print ten characters per second. 

The print head was composed of a little cylinder with the characters embossed 

upon it. The cylinder would rotate and elevate so that the correct character was 

facing the paper, and then a little hammer would smack the cylinder against the 

paper. There was an ink ribbon between the cylinder and the paper, and the ink 

transferred to the paper in the shape of the character. 

The print head rode on a carriage. With every character the carriage would move 

ptg

one space to the right, taking the print head with it. When the carriage got to the 

end of the 72-character line, you had to explicitly return the carriage by sending 

the carriage return characters (\r = 0 ´ 0D), otherwise the print head would 

continue to print characters in the 72nd column, turning it into a nasty black 

rectangle. 

Of course, that wasn’t sufficient. Returning the carriage did not raise the paper 

to the next line. If you returned the carriage and did not send a line-feed 

character (\n = 0 ´ 0A), then the new line would print on top of the old line. 

Therefore, for an ASR33 teletype the end-of-line sequence was “\r\n”. Actually, 

you had to be careful about that since the carriage might take more than 100ms 

to return. If you sent “\n\r” then the next character just might get printed as the 

carriage returned, thereby creating a smudged character in the middle of the 

line. To be safe, we often padded the end-of-line sequence with one or two 

rubout3 characters (0 ´ FF). 

2. http://en.wikipedia.org/wiki/ASR-33_Teletype

3. Rubout characters were very useful for editing paper tapes. By convention, rubout characters were ignored. 

Their code, 0 ´ FF, meant that every hole on that row of the tape was punched. This meant that any character could be converted to a rubout by overpunching it. Therefore, if you made a mistake while typing your  program you could backspace the punch and hit  rubout, then continue typing. 

202

UML/MDA

In the ’70s, as teletypes began to fade from use, operating systems like UNIX 

shortened the end-of-line sequence to simply ‘\n’. However, other operating 

systems, like DOS, continued to use the ‘\r\n’ convention. 

When was the last time you had to deal with text files that use the “wrong” 

convention? I face this problem at least once a year. Two identical source files 

don’t compare, and don’t generate identical checksums, because they use 

different line ends. Text editors fail to word-wrap properly, or double space the 

text because the line ends are “wrong.” Programs that don’t expect blank lines 

crash because they interpret ‘\r\n’ as two lines. Some programs recognize ‘\r\n’ 

but don’t recognize ‘\n\r’. And so on. 

 That’s  what I mean by  detail. Try coding the horrible logic for sorting out line ends in UML! 

NO HOPE , NO CHANGE

ptg

The hope of the MDA movement was that a great deal of detail could be 

eliminated by using diagrams instead of code. That hope has so far proven to be 

forlorn. It turns out that there just isn’t that much extra detail embedded in 

code that can be eliminated by pictures. What’s more, pictures contain their 

own accidental details. Pictures have their own grammar and syntax and rules 

and constraints. So, in the end, the difference in detail is a wash. 

The hope of MDA was that diagrams would prove to be at a higher level of 

abstraction than code, just as Java is at a higher level than assembler. But again, 

that hope has so far proven to be misplaced. The difference in the level of 

abstraction is tiny at best. 

And, finally, let’s say that one day someone does invent a truly useful 

diagrammatic language. It won’t be architects drawing those diagrams, it will be 

programmers. The diagrams will simply become the new code, and 

programmers will be needed to  draw that code because, in the end, it’s all about 

detail, and it is programmers who manage that detail. 

203

APPENDIX A  TOOLING

CONCLUSION

Software tools have gotten wildly more powerful and plentiful since I started 

programming. My current toolkit is a simple subset of that menagerie. I use git

for source code control, Tracker for issue management, Jenkins for Continuous 

Build, IntelliJ as my IDE, XUnit for testing, and FitNesse for component 

testing. 

My machine is a Macbook Pro, 2.8Ghz Intel Core i7, with a 17-inch matte 

screen, 8GB ram, 512GB SSD, with two extra screens. 

ptg

204

INDEX

A

Automated acceptance testing,  97–99

ptg

Acceptance tests

Automated quality assurance,  8

automated, 97–99

Avoidance, 125

communication and, 97

continuous integration and, 

B

104–105

Blind alleys, 125–126

definition of, 94

Bossavit, Laurent, 83

developer’s role in, 100–101

 Bowling Game,  83

extra work and, 99

Branching, 191

GUIs and, 103–105

Bug counts, 197

negotiation and, 101–102

Business goals, 154

passive aggression and, 101–102

timing of, 99–100

C

unit tests and, 102–103

Caffeine, 122

writers of,  99–100

Certainty, 74

Adversarial roles, 20–23

Code

Affinity estimation, 140–141

control, 189–194

Ambiguity, in requirements,  92–94

owned, 157

Apologies, 6

3 AM,  53–54

Apprentices, 183

worry, 54–55

Apprenticeship, 180–184

 Coding Dojo,  83–87

Arguments, in meetings, 120–121

Collaboration, 14,  151–160

Arrogance, 16

Collective ownership, 157–158

205

INDEX

Commitment(s), 41–46

Demo meetings,  120

control and,  44

Design, test-driven development and, 

discipline and,  47–50

76–77

estimation and, 132

Design patterns, 12

expectations and, 45

Design principles,  12

identifying,  43–44

Details, 201–203

implied, 134–135

Development.  see test driven 

importance of,  132

development (TDD)

lack of,  42–43

Disagreements, in meetings, 120–121

pressure and,  146

Discipline

Communication

commitment and,  47–50

acceptance tests and,  97

crisis,  147

pressure and,  148

Disengagement,  64

of requirements,  89–94

Documentation, 76

Component tests

Domain, knowledge of,  15

in testing strategy, 110–111

“Done,” defining,  67,  94–97

tools for, 199–200

“Do no harm” approach,  5–10

Conflict, in meetings, 120–121

to function, 5–8

ptg

Continuous build, 197–198

to structure, 8–10

Continuous integration, 104–105

Driving,  64

Continuous learning, 13

E

Control, commitment and, 44

Eclipse,  195–196

Courage, 75–76

Emacs,  195

Craftsmanship,  184

Employer(s)

Creative input, 59–60,  123

identification with,  15

Crisis discipline, 147

programmers  vs.,  153–156

Cucumber,  200

Estimation

Customer, identification with,  15

affinity,  140–141

CVS,  191

anxiety,  92

Cycle time, in test-driven 

commitment and,  132

development,  72

definition of, 132–133

D

law of large numbers and,  141

Deadlines

nominal,  136

false delivery and, 67

optimistic, 135–136

hoping and,  65

PERT and, 135–138

overtime and, 66

pessimistic, 136

rushing and, 65–66

probability and, 133

Debugging, 60–63

of tasks, 138–141

Defect injection rate,  75

trivariate,  141

206

INDEX

Expectations, commitment and, 45

Input, creative, 59–60, 123

Experience, broadening, 87

Integration, continuous, 104–105

Integration tests

F

in testing strategy, 111–112

Failure, degrees of, 174

tools for, 200–201

False delivery, 67

IntelliJ, 195–196

FitNesse, 199–200

Interns, 183

Flexibility, 9

Interruptions, 57–58

Flow zone, 56–58

Issue tracking, 196–197

Flying fingers, 139

Iteration planning meetings, 119

Focus, 121–123

Iteration retrospective meetings, 120

Function, in “do no harm” 

approach, 5–8

J

JBehave, 200

G

Journeymen, 182–183

Gaillot, Emmanuel, 83

Gelled team, 162–164

K

Git, 191–194

Kata, 84–85

ptg

Goals, 20–23,  118

Knowledge

Graphical user interfaces (GUIs), 

of domain, 15

103–105

minimal, 12

Green Pepper, 200

work ethic and, 11–13

Grenning, James, 139

GUIs, 103–105

L

Lateness, 65–67

H

Law of large numbers,  141

Hard knocks, 179–180

Learning, work ethic and, 13

Help, 67–70

“Let’s,” 42

giving, 68

Lindstrom, Lowell, 140

mentoring and, 69–70

Locking, 190

pressure and, 148–149

receiving, 68–69

M

“Hope,” 42

Manual exploratory tests, in testing 

Hoping, deadlines and, 65

strategy, 112–113

Humility, 16

Masters, 182

MDA, 201–203

I

Meetings

IDE/editor, 194

agenda in, 118

Identification, with employer/

arguments and disagreements in, 

customer, 15

120–121

Implied commitments, 134–135

declining, 117

207

INDEX

Meetings ( continued)

PERT (Program Evaluation and 

demo, 120

Review Technique), 135–138

goals in, 118

Pessimistic estimate, 136

iteration planning, 119

Pessimistic locking, 190

iteration retrospective, 120

Physical activity, 123

leaving, 118

Planning Poker, 139–140

stand-up, 119

Practice

time management and, 116–121

background on, 80–83

Mentoring, 14–15,  69–70,  174–180

ethics, 87

Merciless refactoring, 9

experience and, 87

Messes, 126–127,  146

turnaround time and, 82–83

Methods, 12

work ethic and, 13–14

Model Driven Architecture (MDA), 

Precision, premature, in 

201–203

requirements, 91–92

Muscle focus, 123

Preparedness, 52–55

Music, 57

Pressure

avoiding, 145–147

N

cleanliness and, 146

ptg

“Need,” 42

commitments and, 146

Negotiation, acceptance tests and, 

communication and, 148

101–102

handling, 147–149

Nominal estimate, 136

help and, 148–149

Nonprofessional, 2

messes and,  146

O

panic and, 147–148

Open source,  87

Priority inversion, 125

Optimistic estimate, 135–136

Probability, 133

Optimistic locking, 190

Professionalism, 2

Outcomes, best-possible, 20–23

Programmers

Overtime, 66

employers  vs.,  153–156

Owned code, 157

people  vs.,  153–158

Ownership, collective, 157–158

programmers  vs.,  157

Proposal, project, 31–32

P

Pacing, 63–64

Q

Pairing, 58, 148–149, 158

Quality assurance (QA)

Panic, 147–148

automated, 8

Passion, 154

as bug catchers, 6

Passive aggression, 28–30, 101–102

as characterizers, 108–109

People, programmers  vs.,  153–158

ideal of, as finding no problems, 

Personal issues, 54–55

108–109

208

INDEX

problems found by, 6–7

T

as specifiers, 108

Task estimation, 138–141

as team member, 108

Teams and teamwork, 24–30

gelled, 162–164

R

management of, 164

Randori, 86–87

passive aggression and, 28–30

Reading, as creative input, 59

preserving, 163

Recharging, 122–123

project-initiated, 163–164

Reputation, 5

project owner dilemma with, 

Requirements

164–165

communication of, 89–94

trying and, 26–28

estimation anxiety and, 92

velocity of, 164

late ambiguity in, 92–94

Test driven development (TDD)

premature precision in, 91–92

benefits of, 74–77

uncertainty and, 91–92

certainty and, 74

Responsibility, 2–5

courage and, 75–76

apologies and, 6

cycle time in, 72

“do no harm” approach and, 5–10

debut of, 71–72

ptg

function and, 5–8

defect injection rate and, 75

structure and, 8–10

definition of, 7–8

work ethic and, 10–16

design and, 76–77

RobotFX, 200

documentation and,  76

Roles, adversarial, 20–23

interruptions and, 58

Rushing, 34–35, 65–66

three laws of, 73–74

what it is not, 77–78

S

Testing

Santana, Carlos, 83

acceptance

“Should,” 42

automated, 97–99

Shower,  64

communication and, 97

Simplicity,  34

continuous integration and, 

Sleep,  122

104–105

Source code control, 189–194

definition of, 94

Stakes,  23–24

developer’s role in, 100–101

Stand-up meetings,  119

extra work and, 99

Structure

GUIs and, 103–105

in “do no harm” approach, 8–10

negotiation and, 101–102

flexibility and, 9

passive aggression and, 101–102

importance of, 8

timing of, 99–100

SVN, 191–194

unit tests and, 102–103

System tests, in testing strategy, 112

writers of, 99–100

209

INDEX

Testing ( continued)

Trivariate estimates, 141

automation pyramid, 109–113

Turnaround time, practice  

component

and, 82–83

in testing strategy, 110–111

tools for, 199–200

U

importance of, 7–8

UML, 201

integration

Uncertainty, requirements and, 91–92

in testing strategy, 111–112

Unconventional mentoring, 179. 

 see also mentoring

tools for, 200–201

Unit tests

manual exploratory, 112–113

acceptance tests and, 102–103

structure and, 9

in testing strategy, 110

system, 112

tools for, 198–199

unit

acceptance tests and, 102–103

V

in testing strategy, 110

Vi, 194

tools for, 198–199

TextMate, 196

W

Thomas, Dave, 84

ptg

Walking away,  64

3 AM code, 53–54

Wasa, 85–86

Time, debugging, 63

Wideband delphi, 138–141

Time management

“Wish,”  42

avoidance and, 125

Work ethic,  10–16

blind alleys and, 125–126

collaboration and, 14

examples of, 116

continuous learning and, 13

focus and, 121–123

knowledge and, 11–13

meetings and, 116–121

mentoring and,  14–15

messes and, 126–127

practice and, 13–14

priority inversion and, 125

Worry code, 54–55

recharging and, 122–123

Writer’s block, 58–60

“tomatoes” technique for, 124

Tiredness, 53–54

Y

“Tomatoes” time management 

“Yes” 

technique, 124

cost of, 30–34

Tools, 189

learning how to say, 46–50

210

 This page intentionally left blank 

ptg






Document Outline


	Contents

	Foreword

	Preface

	Acknowledgments

	About the Author

	On the Cover

	Pre-Requisite Introduction

	Chapter 1 Professionalism

	Be Careful What You Ask For

	Taking Responsibility

	First, Do No Harm

	Work Ethic

	Bibliography





	Chapter 2 Saying No

	Adversarial Roles

	High Stakes

	Being a “Team Player” 

	The Cost of Saying Yes

	Code Impossible





	Chapter 3 Saying Yes

	A Language of Commitment

	Learning How to Say “Yes” 

	Conclusion





	Chapter 4 Coding

	Preparedness

	The Flow Zone

	Writer’s Block

	Debugging

	Pacing Yourself

	Being Late

	Help

	Bibliography





	Chapter 5 Test Driven Development

	The Jury Is In

	The Three Laws of TDD

	What TDD Is Not

	Bibliography





	Chapter 6 Practicing

	Some Background on Practicing

	The Coding Dojo

	Broadening Your Experience

	Conclusion

	Bibliography





	Chapter 7 Acceptance Testing

	Communicating Requirements

	Acceptance Tests

	Conclusion





	Chapter 8 Testing Strategies

	QA Should Find Nothing

	The Test Automation Pyramid

	Conclusion

	Bibliography





	Chapter 9 Time Management

	Meetings

	Focus-Manna

	Time Boxing and Tomatoes

	Avoidance

	Blind Alleys

	Marshes, Bogs, Swamps, and Other Messes

	Conclusion





	Chapter 10 Estimation

	What Is an Estimate? 

	PERT

	Estimating Tasks

	The Law of Large Numbers

	Conclusion

	Bibliography





	Chapter 11 Pressure

	Avoiding Pressure

	Handling Pressure

	Conclusion





	Chapter 12 Collaboration

	Programmers versus People

	Cerebellums

	Conclusion





	Chapter 13 Teams and Projects

	Does It Blend? 

	Conclusion

	Bibliography





	Chapter 14 Mentoring, Apprenticeship, and Craftsmanship

	Degrees of Failure

	Mentoring

	Apprenticeship

	Craftsmanship

	Conclusion





	Appendix A: Tooling

	Tools

	Source Code Control

	IDE/Editor

	Issue Tracking

	Continuous Build

	Unit Testing Tools

	Component Testing Tools

	Integration Testing Tools

	UML/MDA

	Conclusion





	Index

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	Q

	R

	S

	T

	U

	V

	W

	Y










index-150_7.jpg





index-150_6.png





index-150_9.png





index-150_8.jpg





index-168_1.jpg
Trr's somering We”
ReALLY NeeD. So, No.





index-154_1.jpg





index-190_1.jpg





index-182_1.jpg





cover1.jpeg
Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Robert C. Martin

. Forequy Jlalmes‘o. Coplien






index-150_4.jpg





index-150_3.png





index-150_5.jpg





nav.xhtml

  
    		Contents


    		Foreword


    		Preface


    		Acknowledgments


    		About the Author


    		On the Cover


    		Pre-Requisite Introduction


    		
      Chapter 1 Professionalism
      
        		Be Careful What You Ask For


        		Taking Responsibility


        		First, Do No Harm


        		Work Ethic


        		Bibliography


      


    


    		Be Careful What You Ask For


    		Taking Responsibility


    		First, Do No Harm


    		Work Ethic


    		Bibliography


    		
      Chapter 2 Saying No
      
        		Adversarial Roles


        		High Stakes


        		Being a “Team Player”


        		The Cost of Saying Yes


        		Code Impossible


      


    


    		Adversarial Roles


    		High Stakes


    		Being a “Team Player”


    		The Cost of Saying Yes


    		Code Impossible


    		
      Chapter 3 Saying Yes
      
        		A Language of Commitment


        		Learning How to Say “Yes”


        		Conclusion


      


    


    		A Language of Commitment


    		Learning How to Say “Yes”


    		Conclusion


    		
      Chapter 4 Coding
      
        		Preparedness


        		The Flow Zone


        		Writer’s Block


        		Debugging


        		Pacing Yourself


        		Being Late


        		Help


        		Bibliography


      


    


    		Preparedness


    		The Flow Zone


    		Writer’s Block


    		Debugging


    		Pacing Yourself


    		Being Late


    		Help


    		Bibliography


    		
      Chapter 5 Test Driven Development
      
        		The Jury Is In


        		The Three Laws of TDD


        		What TDD Is Not


        		Bibliography


      


    


    		The Jury Is In


    		The Three Laws of TDD


    		What TDD Is Not


    		Bibliography


    		
      Chapter 6 Practicing
      
        		Some Background on Practicing


        		The Coding Dojo


        		Broadening Your Experience


        		Conclusion


        		Bibliography


      


    


    		Some Background on Practicing


    		The Coding Dojo


    		Broadening Your Experience


    		Conclusion


    		Bibliography


    		
      Chapter 7 Acceptance Testing
      
        		Communicating Requirements


        		Acceptance Tests


        		Conclusion


      


    


    		Communicating Requirements


    		Acceptance Tests


    		Conclusion


    		
      Chapter 8 Testing Strategies
      
        		QA Should Find Nothing


        		The Test Automation Pyramid


        		Conclusion


        		Bibliography


      


    


    		QA Should Find Nothing


    		The Test Automation Pyramid


    		Conclusion


    		Bibliography


    		
      Chapter 9 Time Management
      
        		Meetings


        		Focus-Manna


        		Time Boxing and Tomatoes


        		Avoidance


        		Blind Alleys


        		Marshes, Bogs, Swamps, and Other Messes


        		Conclusion


      


    


    		Meetings


    		Focus-Manna


    		Time Boxing and Tomatoes


    		Avoidance


    		Blind Alleys


    		Marshes, Bogs, Swamps, and Other Messes


    		Conclusion


    		
      Chapter 10 Estimation
      
        		What Is an Estimate?


        		PERT


        		Estimating Tasks


        		The Law of Large Numbers


        		Conclusion


        		Bibliography


      


    


    		What Is an Estimate?


    		PERT


    		Estimating Tasks


    		The Law of Large Numbers


    		Conclusion


    		Bibliography


    		
      Chapter 11 Pressure
      
        		Avoiding Pressure


        		Handling Pressure


        		Conclusion


      


    


    		Avoiding Pressure


    		Handling Pressure


    		Conclusion


    		
      Chapter 12 Collaboration
      
        		Programmers versus People


        		Cerebellums


        		Conclusion


      


    


    		Programmers versus People


    		Cerebellums


    		Conclusion


    		
      Chapter 13 Teams and Projects
      
        		Does It Blend?


        		Conclusion


        		Bibliography


      


    


    		Does It Blend?


    		Conclusion


    		Bibliography


    		
      Chapter 14 Mentoring, Apprenticeship, and Craftsmanship
      
        		Degrees of Failure


        		Mentoring


        		Apprenticeship


        		Craftsmanship


        		Conclusion


      


    


    		Degrees of Failure


    		Mentoring


    		Apprenticeship


    		Craftsmanship


    		Conclusion


    		
      Appendix A: Tooling
      
        		Tools


        		Source Code Control


        		IDE/Editor


        		Issue Tracking


        		Continuous Build


        		Unit Testing Tools


        		Component Testing Tools


        		Integration Testing Tools


        		UML/MDA


        		Conclusion


      


    


    		Tools


    		Source Code Control


    		IDE/Editor


    		Issue Tracking


    		Continuous Build


    		Unit Testing Tools


    		Component Testing Tools


    		Integration Testing Tools


    		UML/MDA


    		Conclusion


    		
      Index
      
        		A


        		B


        		C


        		D


        		E


        		F


        		G


        		H


        		I


        		J


        		K


        		L


        		M


        		N


        		O


        		P


        		Q


        		R


        		S


        		T


        		U


        		V


        		W


        		Y


      


    


    		A


    		B


    		C


    		D


    		E


    		F


    		G


    		H


    		I


    		J


    		K


    		L


    		M


    		N


    		O


    		P


    		Q


    		R


    		S


    		T


    		U


    		V


    		W


    		Y


  







index-150_19.png





index-150_20.jpg





index-150_2.jpg





index-150_22.png





index-150_21.png





index-150_24.png





index-150_23.png





index-150_16.jpg





index-150_15.jpg





index-150_18.png





index-150_17.png





index-78_1.jpg





index-5_1.jpg
s
The Clean Coder

S s

Clean Code Agile Estimating

and Planning

WORKING
EFFECTIVELY

WITH
LEGACY CODE

Nichael C. Feathers





index-150_10.jpg





index-150_1.jpg





index-150_12.png





index-150_11.jpg





index-150_14.jpg





index-150_13.png





index-56_1.jpg





kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

    var bc = document.getElementById('book-columns').style;
    bc.width = (window.innerWidth * 2) + 'px !important';
    bc.height = window.innerHeight  + 'px !important';
    bc.marginTop = '0px !important';
    bc.webkitColumnWidth = window.innerWidth + 'px !important';
    bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+  window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */


function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}




index-206_1.jpg





index-225_1.jpg
0000000000000 000000000000000000O00e

More bug fixes

Docs now say that Java 1.5 is required.

Bug fix

Many usability and behaviorial improvements.

Clean up

Added PAGE_NAME and PAGE_PATH to pre-defined variables.
Added ** to Ipath widget.

link to the fixture gallery

fixture gallery release 2.0 (2008-06-09) copied into the trunk wiki af
Firefox compatability for invisible collapsible sections; removed .ce
Updated documentation suite for all changes since last release.
Enhancement to handle nulls in saved and recalled symbols. Adde
Added a "Prune" Properties attribute to exclude a page and its chil
Fixed type-o

Added check for existing child page on rename.

Added "Rename" link to Symbolic Links property section; renamed
Adjusted page properties on recently added pages such that they ¢
Enhanced Symbolic Links to allow all relative and absolute path for
Cleaned up renamPageReponder a bit more.

Cleaned Up PathParser names a bit. Pop -> RemoveNameFromE
Cleaned up RenamePageResponder a bit. Fixed TestContentsHel,
updated usage message

Fixed a bug wherein variables defined in a parent's preformatted bl
Added explicit responder "getPage" to render a page in case query
Tweaks to TOC help text.

New property: Help text; TOCWidget has rollover balloon with new
Redundant to the JUnit tests and elemental acceptance tests.
Removed the last of the [acd] tags.

Icontents -f option enhancement to show suite filters in TOC list; fix
TOC enhancements for properties (-p and PROPERTY_TOC and F
1) Render the tags on non-WikiWord links;

Added http:// prefix to google.com for firewall transparency.

Isolate query action from additional query arguments. For example
Accommodate query strings like "?suite&suiteFilter=X"; prior logic \
Cleaned up AliasLinkWidget a bit.





index-20_1.jpg





index-30_1.jpg





index-226_1.jpg
Implemented fixture chaining with instances
Refactored, so that MethodExecutionResult keeps
Fixture Chaining with instances stored in Slim varia
Merge remote branch 'upstream/master'
housekeeping

fixed bug which included TearDown in SuiteSetUp ¢
housekeeping

Merge branch 'master' of https://github.com/Markus
Merge branch 'master' of github.com:MarkusGaertr
Merge branch 'master' of http://github.com/unclel
fixed a bug which Johannes Link mentioned fc
Merge branch ‘'master' of http:/github.comit
Merge branch ‘master' of http:/github.cor
Merge branch ‘'master' of http:/github.cor
removed error warning about duplicated i
housekeeping

6795427: Line breaks pass through in un
Tracker: 5261157. Don't count fixture in |
20101101] housekeeping

make methods in MethodExecutor protecte:
fix order of precompiled scenario libraries
add beginTable and endTable calls to Decisior
Precompile Scenarios at and above the suite lev
optimized imports

merge

Show test and suite run times in Ul

Remove static BaseFormatter.testTime
housekeeping

Merge branch 'master' of http://github.com/clare/fitr
Added Help widget so the "help text" that appears i
Remote_debug should now work for more language
Merge branch 'master' of http://github.com/Markus(
added missing properties files

Adapted Payroll example test as shown by Gojko o
housekeeping






index-34_1.jpg





index-32_1.jpg





index-4_1.jpg





index-40_1.jpg





index-200_1.jpg





index-1_1.jpg
¥

Robert C. Martin Series

The Clean Coder

A Code of Conduct for Proféssiqnal Programmers

Foreword by Matthew Heusser, Software Process Naturalist Robert C. Martin





index-110_1.jpg





index-128_1.jpg





index-118_1.jpg





index-146_1.jpg





index-137_1.jpg





index-149_2.jpg





index-149_1.jpg





index-149_3.jpg





