

System Design Heuristics

 Gerald M. Weinberg

 This book is for sale at http://leanpub.com/systemdesignheuristics

 This version was published on 2018-06-21

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2018 Gerald M. Weinberg

 Table of Contents

 	
 Foreword

 	Why I Was Stuck

 	How to Buy System Design Heuristics

 	About the Author

 	
 Principles

 	What Is Design?

 	Misconception: Only Designers Design

 	Misconception: Design Is Higher Status

 	
 Designer Culture

 	Marking the Boundaries

 	The Great Wall of China syndrome

 	Meeting the Natives

 	Building Cultural Bridges

 	What Versus How

 	Who Matters?

 	When Does Design Happen?

 	Why Do We Need Design?

 	How Much?

 	
 Learning the Magic of Design

 	
 Luck and Magic in Design

 	Three wishes

 	Return to zero

 	
 Individual Heuristics

 	
 How Design Begins

 	What Must Not Change?

 	A Solution Looking for a Problem

 	Designing This Book

 	Why Are We Doing This?

 	
 Zero-level Solution

 	A Zero-Level Example

 	Random designs

 	
 The Rule of Three

 	A bet I lost

 	The Rule of Three

 	The Rule of Three in problem definition

 	The Rule of Three in software testing

 	The Rule of Three in designing

 	
 Loosening Up Your Thinking

 	Look for Analogies

 	Move to Extremes

 	Look Outside the Boundary

 	Look for Alibis Versus Explanations

 	The Emotional Component

 	The Incongruence Insight

 	Brown’s Brilliant Bequest

 	
 Designing with All Sides of the Brain

 	A Sequence of Models of Programming

 	The Cognitive Side

 	Process versus Product

 	The Emotional Side

 	An Improved Model of Programming

 	The Neglected Models

 	Moral Models

 	The Social Environment

 	
 Where Ideas Come From

 	Error

 	Theft

 	Theft Plus Error

 	Copulation

 	Design Wagers Checklist

 	Anthropomorphism

 	Rituals

 	
 KISS, or Keyp Itt Simpel Stoopid

 	Why Must Designers Simplify?

 	The Square Law of Computation

 	
 Consistency

 	People are different

 	Satisfying expectations

 	
 The Cybercrud Cudgel

 	A Word to designers

 	Undo

 	
 Double Design

 	Double design examples

 	What’s necessary to succeed in double-design

 	Putting Two Problems Together

 	
 Estimating

 	Jim’s Estimation Exercise

 	Bonus Meta-questions:

 	Some answers

 	
 Heuristics About Getting Information

 	Heuristics About Asking Questions

 	
 Difficult Questions

 	Some difficult questions

 	
 Visualizing

 	The Guinness Book of Records exercise

 	The perfect method of ranking

 	Not all visualizing is visual

 	Changing point of view

 	
 Bad Decision Making

 	Control by eyebrow

 	A lousy decision process

 	
 Designing to Intimidate

 	The History and Psychology of Intimidation

 	The IT Center as Intimidator

 	They’ll Be Back

 	Filling in forms

 	Insolent error messages

 	Big bad manuals

 	Rude treatment

 	Slow service

 	Jargon

 	What’s Our Business, Anyway?

 	Who does your design intimidate?

 	
 Who uses the system?

 	The anthropology exam

 	The first ATM robbery

 	The plumber on the stock exchange

 	Changing point of view

 	
 Tradeoffs

 	Tradeoffs change with time

 	Features become errors

 	
 Constraints

 	The First Law of Software Engineering

 	
 Performance By Design

 	The First Searching Axiom

 	The Second Searching Axiom

 	Divide and conquer

 	Binary search

 	The First Foundation of Effective Computing

 	The Second Foundation of Effective Computing

 	The Third Foundation of Effective Computing

 	
 In Praise of Efficiency

 	Is enough enough?

 	Worst-first optimization

 	The First Rule of Optimization

 	The Curse of Optimization

 	
 Now versus later

 	What do we know about the future?

 	Lifetimes

 	Robust Designs

 	What do we know about the past?

 	
 Size

 	Standard parts

 	
 Scale

 	Dispersion of work

 	Dispersion of demands

 	Large numbers of users

 	Hack Attract

 	Growth produces bigness

 	The Astronomical Test

 	How much output?

 	Failing to scale

 	Long-life systems

 	The JIGSAW analogy

 	
 Passing to the limit

 	Light loads

 	Designing the startup

 	
 Crowding effects

 	The Tragedy of the Commons

 	The Public Address Law

 	Deadlocks

 	
 Segmented systems

 	Problem avoidance through modularization

 	Fully integrated?

 	Poor modularization

 	Interface treaties

 	Management support for design

 	
 Evolution Heuristics

 	The Axiom of Experience

 	Fisher’s Fundamental Theorem of Natural Selection

 	
 Designs change their assumptions

 	A FORTRAN story

 	Implementation challenges assumptions

 	The Highway Law

 	
 Feedback

 	A Design So Bad It’s Good (for a Laugh)

 	Every designer’s ideas must be tested

 	
 Design reviews

 	Example: Out-of-date documents

 	How Important Are Design Reviews?

 	General rules about reviews

 	Which design level is the better choice for reviews?

 	What about reviewing logical vs. physical design?

 	Isn’t correct or incorrect a matter of opinion with designs?

 	Is it possible, then, to develop checklists for design reviews?

 	The BCS Preliminary Design Document Review Checklist

 	
 Heuristics for designer behavior

 	Humility

 	Congruence with tools

 	Be as direct as possible

 	Know why

 	Say why

 	Be wary of your tools

 	Stay congruent with what’s important

 	
 Politics

 	Who defines goodness?

 	Political vs. technical solutions

 	Know about people

 	Care about people

 	Designs or excuses?

 	Blaming the victim

 	A drastic design approach

 	A reasonable design approach

 	Use people as a valuable resource

 	Ford’s Fundamental Feedback Formula

 	Speculation

 	Average or extreme?

 	What constitutes design success?

 	Leading the people

 	Delegating tasks

 	
 Also By Gerald M. Weinberg

 	Non-fiction

 	Fiction

 Guide

 	
 Begin Reading

Foreword

You’d think that after publishing books for half a century, I’d know how to write a book. If that’s what you think, you’d be wrong.

Sure, I’ve even written a book on writing books (Weinberg on Writing, the Fieldstone Method), and I’ve applied those methods to dozens of successful books. But way back around 1960, I started collecting notes on the process of design, thinking I would shortly gather them into a book. Back then, I didn’t call these bits and pieces “fieldstones,” but that’s what they turned out to be: the pieces that, when assembled properly, would ultimately become my design book.

Ultimately? Assembled properly? Aye, there’s the rub!

Building walls from randomly found fieldstones requires patience. So does writing books by the Fieldstone Method. My Introduction to General Systems Thinking took fourteen years to write. But a writer only lives one lifetime, so there’s a limit to patience. I’m growing old, and I’m beginning to think that fifty years is as close to “ultimately” as I’m going to get.

So, I’ve begun to tackle the task of properly assembling my collection of design fieldstones. Unfortunately, it’s a much larger collection that I’d ever tackled before. My Mac tells me I have more than 36,000,000 digitized bytes of notes. My filing cabinets told me I had more than twenty-five pounds of paper notes, but I’ve managed to digitize some of them and discard others, so there’s only a bit more than ten pounds left to consider.

For the past couple of years, I’ve periodically perused these fieldstones and tried to assemble them “properly.” I just can’t seem to do it. I’m stuck.

Some writers would say I am suffering from “writer’s block,” but I believe “writer’s block” is a myth. I’ve published three other books in these frustrating years, so I can’t be “blocked” as a writer, but just over this specific design book. You can hear me talk more about the Writer’s Block myth on YouTube

, but the short version is that “blocking” is simply a lack of ideas about how to write. I finally decided to take my own advice and conjure up some new ideas about how to write this design book.

Why I Was Stuck

To properly assemble a fieldstone pile, I always need an “organizing principle.” For instance, my recent book, Do You Want to Be a (Better) Manager? is organized around the principle of better management. Or, for my book, Errors, the principle is actually the title. So, I had been thinking the organizing principle for a book on design ought to be Design.

Well, that seemed simple enough, but there was a problem. Everybody seemed to know what design is, but nobody seemed able to give a clear, consistent definition that covered all my notes. I finally came to the conclusion that’s because “design” is not one thing, but many, many different things.

In the past, I ran a forum (SHAPE: Software as a Human Activity Practiced Effectively) whose members were among the most skilled software professionals in the world. We held a number of threads on the subject, “What is Design?” The result was several hundred pages of brilliant thoughts about design, all of which were correct in some context. But many of them were contradictory.

Some said design was a bottom-up process, but others asserted it was top-down. Still others talked about some kind of sideways process, and there were several of these. Some argued for an intuitive process, but others laid out an algorithmic, step-by-step process. There were many other variations: designs as imagined (intentional designs), designs as implemented, and designs as evolved in the world. All in all, there were simply too many organizing principlesâ€”certainly too many to compress into a title, let alone organize an entire book.

After two years of fumbling, I finally came up with an idea that couldn’t have been implemented fifty years ago: the book will be composed of a variety of those consulting ideas that have been most helpful to my clients’ designers. I will make no attempt (or very little) to organize them, but release them incrementally in an ever-growing ebook titled Design Heuristics.

How to Buy System Design Heuristics

My plan for offering the book is actually an old one, using a new technology. More than a century ago Charles Dickens released many of his immortal novels one chapter at a time in the weekly newspaper. Today, using the internet, I will release System Design Heuristics a single element at a time to subscribing readers.

To subscribe to the book, including all future additions, a reader will make a one time payment. The price will be quite low when the collection is small, but will grow as the collection grows. That way, early subscribers will receive a bargain in compensation for the risk of an unknown future. Hopefully, however, even the small first collection will be worth the price. (If not, there will be a full money-back guarantee.)

Good designs tend to have unexpected benefits. When I first thought of this design, I didn’t realize that it would allow readers to contribute ideas that I might incorporate in each new release. Now I aware of that potential benefit, and look forward to it.

Before I upload the first increment of System Design Heuristics, I’ll wait a short while for feedback on this idea from my readers. If you’d like to tell me something about the plan, email me or write a comment on this blog.

Thanks for listening.

About the Author

If you’re about to read a book about design, you probably want to know about the author’s qualifications. Fair enough.

In the back of this book, or on Wikipedia or Leanpub.com or Amazon, you can see about me as an author on many subjects. You’ll probably be convinced I know how to write, but what about this subject? What have I designed?

Looking back, I can see that I was always interested in design, but I didn’t always know the concept. The first design effort I can recall was designing and embroidering a multi-color tablecloth as a gift for my mother. I can’t say it was a success, because to my knowledge, Bess never used it.

I may have done other designs before that time, but I don’t remember. My father came from a family in England that had long been in the clothing manufacturing business, and he taught me to sew. I recall being the only boy in my high school sewing class, and I must have designed and created several items there, but I remember only the tablecloth.

I designed and created a number of wood, metal, and electrical devices in my father’s shop and my high school shop classes, but I thought of these as “building,” not designingâ€”though the designs were always original. Other students copied their projects from existing designs, but I always wanted my own ideas. That was true when I took up knitting clothing and hooking rugs, for which I won some Nebraska State Fair awards. I once tried to knit a sweater from the design on the cover of a knitting magazine, but halfway through I discovered flaws in the instructions. From that time on, all my designs were my own.

I’ve designed in many different areas. Here’s a list that comes to mind, but which may not be exhaustive:

 	When I began teaching, I designed my own courses, never able to be satisfied with existing course designs. Many subsequent courses were on subjects that had never been taught before, like the psychology of computer programming.

 	In college, I worked as a “computer.” This was before computing machines, and I designed and executed my own algorithms.

 	After college, I encountered my first computing machines and became a computer programmer, designing and building numerous programs for industry, governments, non-profits, religious groups, and just about anywhere:

 	I have designed several buildings and supervised their construction.

 	I’ve also designed a number of schools and conferences, including Consultants Camp, the Amplifying Your Effectiveness Conference, the IBM Systems Research Institute, and the School of Advanced Technology at SUNY.

Over many years, I designed software to

 	capture and analyze genealogy data for anthropological field research

 	administer and score tests for college students

 	perform the analysis of hydraulic networks

 	operate telephone exchanges

 	aid in testing software

 	control the operation of computers (operating systems)

 	track space vehicles for NASA

 	define materials requirements for several manufacturing industries

 	play on-line games

 	administer psychological tests

 	optimize oil refineries

 	simulate rocket designs

 	control projects

 	perform many other tasks too numerous to recall

Principles

The first part of this book will be devoted to principles: thoughts that apply to design in general.

The second part will provide a collection of heuristics: activities that designers use to help produce better designs and avoid serious design mistakes.

What Is Design?

“If we could only get what we want when we think we need it, life would present no problem, no mystery, and no meaning.” - quoted by Henry Miller, in Plexus, Volume II, p247

Was Miller right? We’ll never know, because we’ll never get what we want when we think we want it. We know that, but that knowledge doesn’t keep us from trying. And the way we try is by designing. We imagine a future we would like, then we try to think of ways to arrange our world so that desired future becomes more likely. Never certain, of course, and that’s why design is a wager.

In my career as a consultant, I have worked with the follow description of designing:

 Designing is proposing a wager on the future.

That is, “if we do things the way the design describes, we will probably achieve this result we want.”

It’s a wager because nobody can know the future. Nobody can guarantee the success of a design.

So, when designing, we try to understand what we really want as we try to predict the future. Both attempts are subject to error.

(pagebreak)

Misconception: Only Designers Design

There are many common misconceptions about design, crooked thinking that we will try to straighten out as we move along. Perhaps first among these misconceptions is the title, “Designer.” Designer is a title, not a job description. Why? Because everyone is a (small d) designer.

Everybody thinks ahead, imagining what they want and how they might arrange things to get it. Some people, of course, do this better than others. Some people do better than others in playing the ponies, or investing in the stock market, or in living their life. But we all design. Designing is human behavior, and thus must be studied as such.

Anyone can call themselves an designer, but that doesn’t mean they’re any good at the job. Even if they’re “certified” as an designer, they’re still making uncertain bets on the future. The same is true for any other title they use, such as, “architect.”

In building physical structures, masons became master masons. master masons became architects, and so, in computer systems, coders became developers, developers became designers, designers came to be called “architects.”

Around 1960, both Fred Brooks and I spent time teaching at the IBM Systems Research Institute in New York City. One day, Fred came to me with a question. “You teach about analogies between buildings and computer systems. Do you think I could use the term “architecture” for what we’re doing when designing computer systems?

Without thinking too carefully, I said, “Yes.” Thus was born the use of “architecture” for computer systems designers. I’ve often regretted my quick decision. Why?

(pagebreak)

Misconception: Design Is Higher Status

Here’s an anonymous quote about design in the computer field:

 ”… the designer is moving out of the computer room into the business world. He (sic) is trading his intensive technical know-how for new skills in problem-solving, planning, and controls, while continuously keeping his eye on corporate economics.”

This statement is merely ignorant bunk. A designer who does this is trading his birthright for a mess of pottage. If he trades his technical know-how (and “intensive” means perhaps eight months of coding) he is obsolescent in two years and obsolete in four.

Classically, those who work with their hands are “lower” status than those who “design.” Everyone wants to be an architect or “designer,” but there are still few dependable craftsman, like masons. It’s impossible to build a brilliant cathedral without masons. When architects call for radically new building procedures, they must be on site as the building is being built, even training (and learning from) the masons and other workers.

(pagebreak)

Designer Culture

Do you sometimes feel that the user interface is more like a Greco-Roman wrestling match in a dark alley than a…?

Do you sometimes wish that communications could be not only user friendly but also designer friendly or perhaps even manager friendly?

We began thinking about these questions after visiting a company that prides itself on caring about people. Whenever we tour offices, we try to become perfect observation machines; we thus obtain information that turns out to be very significant in later discussions with our clients.

This time, our sensory antennae were receiving colors and shapes. The walls were emblazoned with enormous solid-colored rectangles, like heraldic banners without the family crests. The colors came in bunches, varying as we shifted our gaze around the floor. The entire floor was divided into small cubicles with walls 65 inches high. We used Dani as our yardstick: she’s 62 inches tall and was wearing two-inch heels. When she remarked to our host that she wished she had worn her three-inch heels so she could enjoy the view as much as the rest of us, his face dropped and he told us the sad story of the cubicles.

Like so many good ideas that fail, the cubicles were supposed to accomplish contradictory goals simultaneously, affording privacy to their occupants while maintaining a sense of community. The privacy, however, was only visual. Your next-door neighbor could still be heard planning the department’s surprise party for your engagement. You just couldn’t see his face when someone asked him what he thought of your fiancé.

As to community, the cubicles probably did foster that—at least among the men of the department, most of whom were at least 66 inches tall and could easily see over the partitions without having to work on their calf raises at the local Nautilus club. Unfortunately, this left out the short men and most of the women, who, because they couldn’t even see each other, did not form a community of their own. Thus, our host continued, employees could interact only by stopping work, standing on boxes, and shouting across the floor, thereby disturbing everyone else. When they were not in visual contact, they could eavesdrop on each other through the partition walls. Not a very happy situation.

Worse still, the original intent had been to create functional communities (e.g., training, marketing, and personnel) by placing identifying colors on the walls. The colors were supposed to help you find your way through this thoroughly forgettable environment to your own miserable cubicle. You had to remember your color as well as your name in order to find your desk. The company that prides itself on caring about people had become a paranoid, sexist, conflict-ridden mass of color-coded snoopers with stiff necks.

Marking the Boundaries

The cubicle problem is relatively easy to solve: it’s simply a case of misplaced boundaries, and the boundaries are tangible and even movable. The hard problems are those in which the boundaries are just as real but somehow elusive. This is certainly true of that murky region called the user interface. People working on the same project do not necessarily see the project in the same way. Systems designers and users really belong to different communities even when they work for the same company. We’ll even go so far as to say that systems designers and users belong to different cultures.

Our evidence for this statement is often all too visible and audible. Like members of different cultures, users and designers dress differently, work in areas that look different, and perceive time as differently as do Hopi Indians and Europeans—when you hear a keyboard clicking away at 4 A.M., you have no doubt who’s at work.

If all these clues fail to reveal a difference, you need only listen to members of the two groups talk. Designers and users are at best bilingual, knowing both English and their own specialized language. At worst, they seem to forget English altogether and revert to computerese or bankerese. Anthropologists tell us how important these differences are. Language, dress, and sense of time are a few of the many ways a group maintains its identity and distinctiveness. Boundary markers like these give people a sense of who they are—and who they’re not.

The Swiss farmers who live in the Alpine village of Bruson reaffirm their sense of superiority over city folks by drinking only the local white wine, poured into a carafe directly from the barrel. Otherwise, they might be taken for the effete urban tourists who visit their village and drink carefully filtered, purified, and bottled red wine.

It would be much simpler if people knew they were making these distinctions. Unfortunately, however, boundary markers are usually unconscious symbols of group identity. What you drink, what you wear, and what you say all add up to a kind of zone of comfortable predictability.

Sometimes the identity symbols are quite deliberate (e.g., when a new culture is created), and then we have a wonderful opportunity to understand more about their power. Consider the story of the Family, a commune founded during the hippie era of the 1960s. Like all intentional communities, the Family had its own rules for living and rationale for existence, believing in full equality and self-actualization for all its members. Members practiced collective ownership of property, group marriage, and a communal form of gestalt therapy to resolve interpersonal conflicts. In many ways, the Family was like any of the dozen other hippie communes in Taos, New Mexico. How, then, could it retain its members and recruit new people? In other words, what would distinguish the Family as a unique and cohesive community?

Family members chose their boundary markers very cleverly. They decided to prohibit drug use, wear their hair short, and cultivate an ethic of hard work. They were interested in recruiting only people truly committed to their cause, not transients. Prospective members, who were usually from the hippie community, were shown the boundaries in no uncertain terms. If they were serious in their interest, they had to cross those boundaries and give up their former identities.

We see the same thing happening in corporate America. One company we know has offices in the Midwest and in Southern California. Being transferred from one of these to the other is traumatic because it means moving into a different culture. One of Jerry’s running buddies was promoted to the California office, but his commitment to the new job soon began to ebb. He couldn’t wait to get back to the tempests and tornadoes of the Midwest. “Oh, sure, the running’s great,” he told us, “but you can’t walk in California—you’ll get picked up by the cops for taking an evening stroll.”

Even more of a culture shock was the way people dressed for work. He tried desperately to fit into the local business culture, even going to the extent of loosening his tie (but only after 3 P.M.). But his coworkers, clad in their Hawaiian surfing shirts and sandals, knew right away that this “Easterner” wouldn’t last six months. Our running friend had “hit the wall”: the cultural boundary. In the end, he decided that he was unwilling to trade in his cultural identity.

The Great Wall of China syndrome

In commune or corporation, this boundary effect is a prime example of the Great Wall of China syndrome. That massive wall was designed to keep the Mongolian hordes from sweeping the country. The Chinese were nicely settled farmers who obviously didn’t appreciate wild horseman descending on their territory.

But think about it for a moment. Have you ever known a farmer who was completely contented with his or her lot? In Nebraska, all we ever heard were complaints—about the weather, about the price of grain, about property taxes, about the kids who want to leave farming. The life of a wild horseman might have seemed pretty appealing at times to the Chinese in the third century B.C. By building a great wall around their country, however, they were making a powerful statement about the dangers that lay waiting outside. So the wall, like less tangible boundary markers, really had two purposes: keeping insiders in and outsiders out.

Riddle: What do the Great Wall of China and a haircut have in common? Well, if the haircut is part of your initiation into the Family, they both draw a sharp line between insiders and outsiders. Once you’ve had your haircut, your hippie friends won’t have much to do with you. You’ve got to make it in your new community if you’re to have any friends at all. So begins the process of commitment to a new group.

Meeting the Natives

Joining the Family turns out to be much like joining the XYZ Company—except that the XYZ manager who hires you isn’t likely to tell you that you have to wear a suit and tie on the job—because everyone knows that. But no one really knows what a culture’s rules are until they’re broken. If you have any doubts about the truth of this statement, try standing toe-to-toe with one of your coworkers next time you’re having a conversation. Then move one inch closer. You’ll both find out pretty quickly about American cultural rules concerning personal space.

Being a member of a culture, then, means following the rules without ever having been told what they are. Contrary to what some popular books have said recently, culture isn’t just myths and rituals and bizarre beliefs. It’s everything that people in a given community know but don’t know they know. It’s a set of unspoken, unconscious, implicit assumptions about the world that all members of the group share. It produces the safety, predictability, comfort, and acceptance into the group that come from shared beliefs and values. Culture is easy, habitual, automatic—and very tough to question or change.

Now we have a real problem. Systems designers and their customers belong to different cultures. Within each culture, its basic assumptions are never articulated. It’s as if the insiders said: “If you have to ask about the rules, then you’re not one of us—so of course we won’t tell you.”

How, under these circumstances, can designers and customers possibly work together productively?

The best way we know to resolve this problem is to make each group aware of its culture and then try to find some common ground between them. Because group identity is at stake, we like to bring these fundamental beliefs out into the light of day. We conduct a sort of cultural diagnosis with each group to make members aware of the boundary markers they use to establish and maintain their identity.

Building Cultural Bridges

“Who are you?” is the first question we ask the group. And, incidentally, “users” is a term people never apply to themselves; it is given them by people on the other—that is, technical—side. Groups we’ve known who buy and use computer systems have called themselves bankers, scientists, or marketing people, reflecting the business they’re in or the work they do. Systems designers, on the other hand, often see themselves as professionals, managers, or engineers.

We once worked with a company in which the contrast between engineers and scientists was at the heart of troubled relations between designers and their customers. In keeping with their professional training, the groups approached problems in very different ways. The scientist-customers, who designed integrated circuits, functioned in a solitary and very abstract world. The engineer-designers, on the other hand, were driven by a pragmatic desire to make things work—never mind elegance or theory. Once both groups had expressed who they were, we could begin to move toward mutual understanding and better working relations.

The next question we ask each group is, “What are you like?” The scientists we’ve just mentioned described themselves as visionaries; the engineers saw themselves as practical, down-to-earth problem solvers. In other cultural diagnoses we’ve made, users described themselves as people-oriented, while the designers with whom they worked saw themselves as technical hotshots. Sometimes designers see themselves as heroes working under extreme duress. In even less favorable circumstances, they may think of themselves as creative individualists treated like interchangeable drudges by their customers.

“Where do you come from?” is our third question. It yields marvelous stories about the presumed origins of the group and the culture heroes who started it. In one company, a group of systems designers saw themselves as the fourth generation in a distinguished lineage founded by a brilliant and charismatic systems designer. The culture hero in this case had built such a powerful system that it quashed all his not-invented-here opponents. The origin myth goes on to tell about the most vocal of these opponents, who wound up being transferred to a distant outpost in the Middle East. Clearly, the descendants of this systems designer spurred themselves to greater and greater feats of brilliance and originality, creating more and more strain in their relations with their customers.

Finally, we ask groups, “What is the world like?” They may see it as competitive or cooperative, familial or impersonal, shrinking or expanding. One company we worked with was in deep trouble with a customer. The company was designing a large system and falling increasingly behind schedule. A major source of conflict turned out to be the company’s self-image as a family living in a climate of trust. Its customers, on the other hand, saw themselves as independent risk takers fighting to excel in a competitive world. Communication between the two groups began to improve as they became aware of their cultural differences—and their mutual interdependence.

Ask any anthropologist who has worked in deepest, darkest corporate America: people at cross-purposes are probably struggling to cross cultural boundaries. Members of each group are trying to move past their own cultural mind-set and preconceptions, all the while seeming to defend them. At the same time, they are seeking admission into the other group’s belief system and perceptions of reality.

Our years of experience with organizations around the world have convinced us that people who work together prefer to do so in harmony. This does not require you to give up your own sacred beliefs. But it certainly helps to know what those are and how they might be getting in the way. It also helps to realize that your own sacred beliefs may appear to be foolish superstitions to another person. Uncovering cultural assumptions is one way to get systems designers and their customers out of that dark alley and into a festive mood for a wonderful picnic in the park.

(pagebreak)

What Versus How

The designer says what to do. The craft person does it. But, in computing, programming is saying what to do and the machine does it. Therefore, when the designer has really said what to do, the job is done. but WHAT is not the same as HOW.

Unfortunately, the designers often do not know what they want to doâ€”though they may think they know. Usually, they cannot find out what they really want to do until it has been programmedâ€”and often not even then, because it is a system they’re building, not just a program.

(pagebreak)

Who Matters?

So, if designers are creating something new, they must watch as the building proceeds prepared to touch up the work. If designers want to be successful, they must see what builders really do.

In short, since the designers first job is finding out what to do, their first part of their first job must be to discover who they’re designing for. They must know who are the people affected by the designed system, but they must also know who will build the system, for the builders must understand what the design says.

In other words, design is fundamentally a communication business. Just as a doctor-patient relationship can strongly affect doctor performance, so there are designer-customer and a designer-builder relationships that ought to be trained into every would-be designer, but often are not. Programmers, like patients, will simply ignore a designer’s instructions if the two lack good rapport. Similarly, users who are not understood or who don’t understand will not use the designed systemâ€”or may even sabotage it. And customers who lack rapport with the designer will, ultimately, not pay for the designed system.

An example of a communication skill is knowing the difference among “yes,” “no,” “don’t care,” and “don’t know.” We train this skill in class by an exercise. (This exercise is described in some detail in Volume 4 of my Experiential Learning, under “Programming Project.”)

Another communication skill is recognizing that nobody really knows what they want the system to do (and not do), but leading them to something they will want. The only ones who know what they want are the salespeople, and that’s not usually what their prospects want.

In systems design, the “who” is usually a collection of many affected people. Putting together a design that will satisfy allâ€”without ignoring some by design or defaultâ€”will generally be impossible. This is a basic rule of system design, so designers must learn how to live with it. That means that the designer must not only know who matters, but how much each one matters.

(pagebreak)

When Does Design Happen?

A common fallacy is that design is the first thing done in a project.

A second fallacy is that once the initial design has been done, that’s the end of it.

Problem definition is first. What exists and what would we like to exist?

Just as in biological systems, we have to distinguish among

 	conception (what people usually think of as design)

 	birth (implementation, but something that takes place not in an instant)

 	maturity (which is probably just a prelude to death and rebirth)

Design work is different in each of these phases, requiring different heuristics for each.

Why Do We Need Design?

Once, when consulting with a large software firm, I suggested the incorporate design reviews into their development process. “We don’t need design reviews,” they said. “Our designs are part of the code.”

“At least we could do a requirements review,” I offered, thinking about the fact-finding that constitutes the first part of design.

“Oh, we don’t do that R-stuff, either. It’s a waste of time. We know what is needed.”

I didn’t have much faith in that statement, for after all, I had been called in to help them deal with numerous customer complaints about their products. Rather than fight them, I suggested we start with a code review. That way, we could separate fact from opinion.

In the code review, we discovered that, lacking explicit design, a substantial portion of their developed code was never even used by the application. That costly lesson taught them one of the reasons for design:

When building large things, sometimes division of work is necessary. Without design to guide the interactions among the builders, we’re more likely to have communication mismatches. In addition, as in this case, we can waste enormous hunks of work.

My clients were surprised by the results of this code review. One manager told me, “I don’t understand. We’ve always done things that way, and it was never a problem before.”

His statement pointed out another reason we design both things and processes:

 Things don’t have to be done the way they’re being done now. If we want to change the way things are being done, we’d best have design to guide us.

My client was interested in designing a new way to do things, but he argued, “But we’ve grown big on our way of doing things. Our way is a successful way.”

I offered him a slight correction: “Your way was a successful way. But there’s one fundamental law of the universe that you’re not taking into account.”

“What’s that?” he asked.

 “Growth produces bigness.”

He nodded his agreement. “Yes, that seems obvious. So …?”

“Well, as things get bigger (or smaller), they get different. Fundamentally, problems grow bigger, but our minds stay the same size. We need new designs better suited to tackling bigger problems with the same small minds.”

Incidentally, though growth produces bigness, shrinkage doesn’t necessarily produce smallness. In fact, reducing the size of a system my create new problems, which may call for new designs.

With all the changes in size and other characteristics, there are lots of problems, so we need lots of designersâ€”but not necessarily Big-D Designers. If you’re designing a computer system that’s not trying to control the whole Universe, however, you may be able to do adequately well by following some time-tested heuristics. That’s one goal in this book

How Much?

It’s easy to put too much faith in Designers. They can really make a project fail, but they, alone, cannot make a project succeed. One of the common ways they fail is an over-inflated vision of what they’re designing.

This situation is well characterized by the following story:

 A minister was walking by a construction project and saw two men laying bricks. “What are you doing?” he asked the first.

 “I’m laying bricks,” he answered gruffly.

 “And you?’’ he asked the other.

 “I’m building a cathedral,” came the happy reply.

 The minister was agreeably impressed with this man’s idealism and sense of participation in God’s Grand Plan. He composed a sermon on the subject, and returned the next day to speak to the inspired bricklayer. Only the first man was at work.

 “Where’s your friend?” asked the minister.

 “He got fired.”

**“How terrible. Why?”

 “He thought we were building a cathedral, but we’re building a garage.”

So, beware! If you hire a big-D Designer, to design a garage, be sure they don’t offer you a cathedral.

(pagebreak)

Learning the Magic of Design

Concerning the power to keep design work moving, the term “magical” is most appropriate. Design is a magical field, Even in-ancient fields such as architecture, nobody understands what makes designers tick. Anyone who claims to know more about design of information systems than architects know about design of buildings is either a liar or a fool.

Nevertheless, we have observed environments in which designers seem to grow and prosper. We don’t know if those environments create the designers, attract them, or simply give them the space they need to develop themselves. What’s important is that somehow the environment works.

The kind of environment we’ve observed has the following important elements:

 	an openness that allows people to see many designs done by others, and to have their own designs on display for criticism

 	a chance to stick with a job long enough to see the consequences of early design decisions, but not so long as to become narrow and overspecialized

 	lots of contact with the real world in which designs must functionâ€”the clients who must use them, the programmers and other crafts people who must build them, and the variety of people who must support them

 	resources and psychological support for a modest amount of experimentation, both in personal development and system development

When any of these aspects is closed off, designers either leave or fail to develop. It is the job of management to create and maintain this environment, if they want an oasis rather than a desert.

Luck and Magic in Design

I have used the metaphor of “the magic of design,” hoping to show that design seems like magic, but doesn’t really involve magic. I need to be careful with this metaphor. I was talking about design with a new client. To illustrate good design, I cited the example of a similar client’s system. The new client waved it off, saying, “but they were just lucky.”

It was hard to disagree with my new client because designers are often lucky. A typical design involves a number of assumptions, or guesses, about the future, and sometimes they prove to be lucky guesses. Even so, it’s probably not a good idea to depend on luck, or, even worse, on magic.

Design can be reduced to two parts:

 	Problem definition–>desired ends

 	Problem solution–>effective means

Three wishes

Folklore is filled with stories of magic and luck, and many of those stories are “three wishes” stories. These three-wish stories all come to bad ends, and are of two general types. In one type—like “The Monkey’s Paw,” by W. W. Jacobs—the wishers don’t really know what they want. They get what they ask for, but wind up with something awful. This happens when designers don’t do a good job of part A, defining what is wanted.

In the other type of three wishes story, the wishers may know what they want but are so careless in their wishing, they end up with something they never intended. Here’s an example from our book, Are Your Lights On?:

The Fisherman finds a bottle entangled in his net. When the bottle is opened, a Genie escapes and tells the Fisherman that in return for freeing the Genie, the Fisherman and his Wife can have three wishes granted. The couple is, quite understandably, rather excited by the prospect. They sit up late that night discussing their dreams. In their exhilaration, they neglect their supper, so at about three in the morning the wife sighs and mutters, “I’m awfully hungry. I sure wish I had a sausage.”
POOF! On the table is a delectable sausage, but the Fisherman is not pleased. “Look what you’ve done, you foolish woman! You couldn’t keep your wits about you, so now we have only two wishes left. I wish that stupid sausage were hanging from the end of your nose.”
POOF!

Return to zero

The third wish, of course, is just to return to things as they were before ever seeing the Genie. Something similar often happens when a design doesn’t work out as hoped. Everyone wants to return to where they were before starting this design folly. Which, incidentally, leads to a design heuristic:

Plan so that you can return to your initial state if the design doesn’t work out.

In design work, magic or luck is sometimes invoked as a means of getting what is desired, but it doesn’t help in cases where we don’t know what we really want, when we have paradoxical desires, or when we simply don’t know how to create what we wish for.

“Magic never fails” is actually a definition of magic, not design, because real designs do sometimes fail and thus cannot be magic. But, yes, designs also succeed sometimes, which doesn’t make them magic either. It may mean the designers are skilled, or it may mean they’re lucky.

In other words, we can’t deduce much from a design’s success. We can’t even deduce whether a design will continue to be successful.

We can, however, make a statistical guess about designers whose designs succeed more often than not. They may be pretty good at what they do, within the environment in which they work. Put them in a different environment, though, and all bets are off. Designing an evening gown is simply not the same as designing a computer game or a city.

Individual Heuristics

“If a poet is anybody, he is somebody to whom things made matter very littleâ€”somebody who is obsessed by Making.” - e. e. cummings

There is no “standard” or “best” design process. Each designer has a unique, individual processâ€”one that changes with time.

Design is more like poetry than science, creation more than analysis. Each designer owns a series of heuristic practices. This book offers a selection of heuristics I have personally used, or have watched others use with favorable results.

A heuristic is a rule or method that helps you solve problems. A less formal definition might be a “rule of thumb.”

Designers use many rules of thumb to work through the complexity that we call design. In this section of the book, we’ll catalog many heuristics we’ve found in decades of designing and consulting with designers.

Watching others design things can lead to learning, but can also lead to learning wrong things. It’s especially dangerous when we assume we can know what’s going on inside a designer’s brain from watching what they do with their rules of thumb. Much of the power of heuristics is not know-how, but know-when.

How Design Begins

Design would logically begin with a problem to solve, but it’s not always this way. It’s also not with a very clear picture of what the problem is. Or, the problem may be so complex that you can’t really describe it in detail. For example, suppose you were designing a new city to be built in a jungle. You may have some rough idea of what the jungle is like, but that’s all it could beâ€”a rough idea. And how many problems does a city have to solve? Transportation, housing, water, sewage, food, safety, … on and on.

What Must Not Change?

When I’m called upon to assist in some design work, I actually start without a problem definition. That will come later. At the very first, I ask my client,

 Whatever we ultimately do, what are the things you don’t want changed?

If we don’t start that way, it’s all too easy to lose track of the unchangeable. For instance, I was asked to help design a “modernized accounts payable system” for a manufacturing company. I was alerted by the term “modernized,” which could have meant just about anything. They might have been talking about the paint job on their computers, or the decorations in the accounts payable offices. But rather than focus on clarifying that term, I asked them, “When we are finished creating this new system, what do you want to be sure has not changed?”

I don’t know what I expected them to say, but they surprised me. They said, “We don’t want anybody to lose their jobs, and we don’t want anyone to feel terrible about what they’ve been doing to support the old system.” Obviously these goals could not be satisfied simply by software design. We had to consider the entire organization, and we did meet those goals while providing a suite of new software applications to support accounts payable.

A Solution Looking for a Problem

Quite often, design begins with a solution looking for a problem. We invent a laser, then look for what it could be used for. The classic case is in pharmaceuticals. A “side-effect” means the design of a drug doesn’t work for the initial problem, but can be useful in itself. For example, oral minoxidil was a drug designed to reduce high blood pressure. It had an undesired side effect of promoting hair growth. Instead of discarding the drug as a failed blood pressure drug, it was developed into a treatment for male-pattern baldness.

Indeed, in the 1950s, my job at IBM was searching for problems that could use our new invention, the computer. And, nowadays, numerous software companies are first designing tools and then advertising those tools as pre-made design solutions for … what? Well, for whatever your problem happens to be.

I’ve come to call this approach not problem-solving, but “solution-probleming.”

Designing This Book

As another example, let’s look at how the design of this book began.

I had been collecting snippets (fieldstones) on the subject of design for many years, so many that I had forgotten about most of them. I was rearranging my office when I discovered that I had over a thousand pages of these snippets. Using my own Fieldstone Method, it was past time to organize this pile of notes into something from which other people could benefit.

I’ve done this fieldstone organizing task many times before, resulting in a number of useful and popular books. This time, though, there were just too many fieldstones, and new ones were popping up every week. I simply couldn’t get my mind around the task.

Maybe, I thought, a conventional book was not the design I needed. My thoughts about books had been changing in response to the invention of e-books, so I thought that I might be able to take advantage of e-book technology. I was also influenced by experience with software development, which we had been doing incrementally for decades.

The e-book technology allowed me to post a book for sale before it’s “finished.” Then, as new material came available, I could add it to the ebook and notify everyone that the new version was available. With the right publisher, I could notify all purchasers of the new material, and they could update their books with no additional cost.

After figuring out this design, I belatedly realized that this was more or less the design that many software vendors useâ€”ship an early version that met sufficient requirements to make it worthwhile, then update it incrementally as appropriate. And, indeed, I had been using this method unintentionally on several earlier books, to correct errors and occasionally add new material. This time, however, I would start the project by intentionally shipping an incomplete version to be developed incrementally.

And, so it happens at times that design begins by unconsciously adapting a design already used in another context.

Why Are We Doing This?

However it starts, design ideally proceeds with a specific problem to be solvedâ€”a problem being a difference between things as perceived and things as desired (see, Are Your Lights On? How to know what the problem really is).

For example, I once was asked to fix a parts-requirements application for a car company. The application made lots of mistakes, so the assembly line often lacked the parts needed to build the cars ordered. Or, they had surplus parts that had to be trashed. Both mistakes were costing the company an amount of money that they perceived was way too high.

When I first undertook to fix the application, I presumed it was simply a software test-and-fix job, but as I dug into the details, I realized that the design of the application was error-prone. Every slight change in one of the models required a code change, that, in turn, required recompiling and retesting the code.

I explained that patching a few errors would not solve the problem because new errors would continue to be introduced as models were modified. I then produced an entirely different design for the app, with a different algorithm with a separately maintained database and a different user interface. The new design was easy to implement. The training to use the application was minimal. The shortages and overages disappeared.

On the other hand, design may start where there is nothing wrong, but someone sees an opportunity. An opportunity is more like a problem where things are not bad, but we have a vision that things could be better.

When I studied physics in college, I was told in no uncertain terms that coherent light was impossible to produce. Then, years later, some smart people at Bell Labs and Hughes invented the laser, and all bets were off. A worldwide race began to see what opportunities this new idea offered.Thousands of laser-based designs were produced, some of which actually workedâ€”and worked their way invisibly into our daily life.

And, of course, sometimes it starts with simple curiosity. “I wonder what would happen if I do this.” As a general rule, though, it’s good to start any design process by developing a clear statement:

 Why are we doing this?

Then, as the design proceeds, keep checking against the answer.

In fact, make the answer part of the design documents, so the answer can be checked all through the projectâ€”and, indeed, can be used as the final test of the project and its design:

 Did you satisfy the reasons we did this?

In order to be able to do this test at the end, or even part way through the project, you will also have to be specific and answer all these questions in testable form:

 How will we know when we have done it?

 Who is it for? Who is against? Have they all been satisfied?

 What was the value (earnings or savings)? Any losses?

 What risks were prevented?

 How is the system positioned for the future?

Zero-level Solution

I like to start design with a zero-level solution. It reduces the pressure that can destroy creative thinking. We don’t want to reduce it too much, but often at the start the pressure’s too great to come up with something. If you’ve never designed a system like this before–and possibly even if you have–getting started may seem quite formidable. Over the years, I’ve found that the concept of zero-level design gets me over these start-up willies, so I’m offering it as a first step heuristic.

A zero-level design is the simplest design that will satisfy the principal system goals.

The idea behind the zero-level design is to relieve, as quickly as possible, the anxiety of designing a system. Once you have a zero-level design in hand, you know you can do at least a minimal job as a designer, so you can relax and feel free to be creative about coming up with something better. You know that if you fail to come up with a better system, you still won’t fail entirely, because you do have an adequate design in hand.

Frequently, a zero-level solution is simply a small change to an existing system. For instance, you might improve customer satisfaction by replacing some old hardware with something faster, or more reliable. That doesn’t mean you have to present this idea to your customers, but just that you have it in your back pocket as a fall-back solution if your other ideas don’t work out.

A Zero-Level Example

I often use zero-level solutions when asked to design a class, which is, of course, a system. For instance, as part of a process improvement program, I was asked to teach how observation could be helpful to designers and managers. I hadn’t done such an exercise before, but I needed to say whether I would do it or not. Here’s a zero-level design I cooked up ten seconds after I was given this goal. It was a design I never actually used, but it allowed me to accept the assignment on the spot:

(1) Divide the class into two groups. (In a large class, use an even number of groups.

(2) Designate the groups as A and B. We don’t tell the groups, but A will be performing a simple process without the help of observers, while B will be performing the same process with observers. A is the control group.

(3) Privately tell each B group to chose one of their members to observe their process.

(4) Give each group (A and B) a deck of shuffled playing cards. (For large groups, use multiple decks.)

(5) Tell them their goal is to sort the cards into a specified order as fast as possible, but with 5 second penalties for each card out of order.

(6) Time each group as they sort the cards. When they are all finished, have each group check another group’s deck for cards out of order. Apply penalties and post the net times.

(7) Now have each group meet and discuss how they can improve. The B group, of course, has a designated observer who can provide information as seen from the outside.

(8) Shuffle the cards and have each group sort again. Measure and post the times as before.

(9) Finally, using their experiences, invent principles of how observation can help or hinder process improvement.
###Benefits of Zero-leveling

Now, this is a design for a very simple exercise, but it would get people talking about process improvement. It took only ten minutes to create, and with this in your back pocket, you can relax and begin thinking of better things.

For example, I might make adjustments to tune this exercise–give the observers a checklist to guide their observations. Or, I could practice on sample groups to decide the best group size and number of decks. If necessary, I could modify the design to use for a large class so I would have groups of different sizes. And, if I don’t like using playing cards, I can substitute any other group task for the card sorting.

But even more important, I could put this zero-level design aside and come up with something completely different. Or, I could subject my zero-level design to the Rule of Three and other design heuristics. That’s the big advantage to a quick, zero-level design. At the very least, it kept me from slipping back into reading slides full of bullet-points to a sleeping classroom. That’s a minus-design that too many teachers fall into because they don’t have a clue about other ways to design an exercise.

Random designs

Wherever possible, a designer should check against randomness to see if your design is actually better than random. If it’s not, then you can use randomness in your zero-level solution.

Some years ago, I illustrated this concept with the example of arranging books in a lending library. The random solution I proposed was a two-story library, with the books kept in a pile on the ground floor and books returned by dropping them in a hole in the floor above. This sound rather random, until you consider that books are not borrowed at random. Certain books are popular, and so are borrowed with higher frequency. If that’s so, then those high-frequency books will tend to be near the top of the pile on the ground floor, and thus easier to find.

I wasn’t seriously proposing that any library actually do this. The Rule of Three would quickly raise at least the question of damage to the books. A few years after, though, I read that the assortment on the shelves at the Amazon Manhattan warehouse is intentionally random to ensure there isn’t a traffic jam of workers in any one location. “The random sorting actually creates more efficiencies,” spokeswoman Kelly Cheeseman said.

Indeed, it is randomness that makes the Ethernet possible, so it’s not an entirely crazy idea. But even if you’re worried about being labeled as crazy, you can point out that your random-based design is merely a zero-level solution, meant to relieve pressure and start the discussion of other possible designs.

And, if it turns out to be a useful benchmark for other designs to beat, so much the better.

The Rule of Three

There’s nothing as dangerous as an idea—especially if it’s the only one you have.

While it may be true that nobody knows the future, when you’re about to place a bet (a design) on the future, you’re probably going to try to know as much as you can. Because you want to win your bet—have your design succeed—you become susceptible to excessive optimism. If you want to be a successful designer, you’ll need more than optimism. You’ll need some tools to counter this optimism. That’s why the designer’s number one tool is The Rule of Three.

A bet I lost

(adapted from The Secrets of Consulting)

Many years ago, I thought I had grown wise enough to be a college professor. I treasured that illusion for a few weeks—that is, until I came in contact with the students. From then on, it was all downhill. I did struggle for a long time, even presuming to teach a course in systems thinking—as if I had anything to teach. It was the systems thinking class that delivered the coup de grace to my professorial tenure.

Judy had lingered after class to tell me she was transferring to Oberlin College. Judy’s quick, teasing wit marked her as someone exceptional, so I was disappointed to be losing her as a disciple.

“It’s not so much the school,” she comforted me. “My sister goes to Oberlin, and we’re very close.”

“Is she an older sister or a younger sister?”

“Neither.”

“Neither?”

“We were born on the same day.”

“Aha,” I triumphed. As codiscoverer of Weinbergs’ Law of Twins, I was now on familiar ground. “You’re twins!”

“No, we’re not twins.”

“Born on the same day, but you’re not twins? Are you stepsisters?”

“No, we have the same parents.”

“Then you’re adopted!”

“No, we have the same biological parents.”

“Hmmnh. Born to the same parents, on the same day, and not twins? I’ll have to think about that. What am I missing?”

“Think about it. Let’s see you apply some of the principles you’ve been teaching us.”

I’ll spare you the agonies I endured rather than say the dreaded words, “I don’t know. Tell me.” By the time the next class rolled around, my eyes were almost as baggy as my trousers.

Apparently Judy had seen the symptoms before. As a pre-med, she couldn’t stand the sight of human suffering, so she came up and spoke without forcing me to admit defeat.

“Triplets,” she said, and my ego bubble burst. My mind raced through a thousand reasons why the riddle wasn’t fair. It would just never do to be bested by this little snippet of a girl. She might lose all respect for higher education. She might behave badly at Oberlin. What would they think of us, sending them such an impertinent student?

“Don’t you think that’s a little farfetched?” It was the best I could concoct, but I needed time to rationalize.

“How can it be farfetched, Jerry, when I actually am one of triplets?” I should have listened to those other professors. They warned me that letting students use my first name would soon lead to other liberties. And even worse, there were other students watching. Perhaps I could play their sympathies to my advantage.

“Naturally it doesn’t seem farfetched to you, but how many of the people here have ever met a triplet before?” I held my breath. No, I had guessed right. None of them knew triplets. “See, it is rather farfetched, at least in that sense of the word.”

That should have taught her not to get into semantic arguments with professors, but youth is not wise enough to admit defeat. “I can’t accept that reasoning,” she continued. “It could be that you’ve never before met any sisters who weren’t twins even though they were born on the same day. But it could also be that you’ve conveniently forgotten, just to prove your point.”

“I certainly wouldn’t forget sisters like that, if I’d ever known any.”

“I think you would. In fact, I think I can prove that you would. How about a little wager? Would you be willing to put five dollars on it?”

Now I know that no honorable professor would take money from a poor student. But Judy needed a lesson she would remember once she got to Oberlin, otherwise she’d get in a lot of trouble with professors who weren’t as broad-minded as I am. “Okay, you’re on. And these are our witnesses when the bet is finally settled.”

“Oh, that won’t take long. We can settle it right now.”

“Right now? How can you possibly prove I’ve met sisters born on the same day to the same parents who weren’t twins?”

“Because you’ve got two such sisters living in your own house!”

“What? In my own house? Don’t be ridi—. Arrrgh!” (How could I forget my Sweetheart and Rose, two of Lily’s German Shepherd septuplet puppies?)

That was the sound of the air escaping from my over-inflated windbag. At that moment, I decided that laughing at myself was a great deal more fun than being a professor. Besides, I couldn’t help myself.

The Rule of Three

I suppose I’m not the only one who optimistically wants to be smart and successful Sometimes my desire is so great I set myself up to lose design bets and look foolish. Wanting to be right all the time makes it especially difficult to notice what’s missing in my own thought processes. After losing that embarrassing bet to Judy, however, I decided that I’d have to enlarge my repertoire of “What’s missing?” skills, especially with techniques that could be applied to my own thinking.

From my work with software designers, I already had discovered one such “What’s missing?” tool that I could have applied to solve Judy’s riddle, but I didn’t recognize it out of context. As a check on the software design process, we teach The Rule of Three:

 If you can’t think of three things that might go wrong with your thoughts,
then there’s something wrong with your thinking.

The Rule of Three can be used to check any thinking process. It invariably turns up something that everybody missed, and if you’re a bettor, it will save you lots of money on “sure things.”

The Rule of Three in problem definition

 If you can’t think of at least three things that might be wrong with your understanding of the problem, you don’t understand the problem.

Some years ago, before cell phones, I had a brief consulting gig with an engineering company that saw the potential for portable wireless phones. Unfortunately for them, the potential they saw was for “executive” phones, costing about $5,000—and, of course, black. They designed such a phone, but entirely missed the thought that by far the largest initial market for cell phones was teenage girls—girls wouldn’t pay $5,000 and didn’t want black phones. Instead, they wanted pink or purple phones, costing at most a few hundred.

The Rule of Three in software testing

 If you can’t think of at least three things that might be wrong with your code, you’re not finished testing.

One of the first programs I ever wrote produced a price list for a company that made custom washers. I tested, of course, and though I had a clean program. However, among the thousands of washers listed, exactly three were wrongly priced. They had large sizes, but I had tested for large sizes. They had small holes, but I had tested for small holes. What I had failed to test were large sizes with small holes, and they were the ones that used the most expensive material, causing an overflow in my calculation. They were also the three cases that most interested my customer, who saw the errors immediately. I was never able to convince him that a small correction would make the list perfect.

The Rule of Three in designing

 If you can’t think of at least different ways to design something ,
you’re not finished with your design work.

Moreover,

 If you can’t think of at least three ways your design could fail, you haven’t finished your design work.

I was designing a presentation to a group of important clients. The presentation had some rather technical elements, so I was worried about how some of the clients might not follow my arguments. I designed a few slides with great care to be clear and non-technical, but about halfway through the presentation, I became aware that the highest-ranking client looked totally puzzled.

I stopped with a slide on the screen and asked this puzzled client if all was clear to him. He replied that he couldn’t understand the slide at all, so I worked with him, trying to discover what he didn’t understand. After about ten fruitless and frustrating minutes, he asked, “Are some of those lines different colors?”

Duh.

He was color blind.

I’d never considered that possibility, but about 8 percent of males, and 0.6 percent of females, are red-green color blind in some way or another. With about 20 men in the room, chances were rather good that one or two of them were color blind. Although I thought I was designing the presentation for these men, I didn’t really know my audience.

Loosening Up Your Thinking

(adapted from The Secrets of Consulting)

The first time you apply The Rule of Three, though, you’ll probably find people complaining, “But I can’t think of anything else.” For times like these, every designer should have a repertoire of idea-generating techniques, such as brainstorming, brainwriting, and games. Here are some of the ones we use.

Look for Analogies

Think of some system that is somehow like the one you’re examining, then use it as a source of ideas. Biology, psychology, engineering, sports, family life, health—they’re all candidates. It’s not necessary for the systems to be identical; you’re looking for ideas, not answers

In one organization, we were studying their technical training program when someone suggested the analogy of animal training. This analogy made us realize that we’d been concentrating on the content of training, rather than the implicit system of reward and punishment. This led to a small survey of recent trainees, which showed that many of them regarded the video training as a form of punishment, because they had to sit alone in a poorly ventilated, dirty stockroom when they viewed the videos. The situation was easily corrected, resulting in a startling increase in the number of requests for training.

Move to Extremes

Another way to explore the unexplored is to take some attribute of the system and imagine what would happen if you moved it to some extreme value. What if costs doubled? What if we could get these parts for nothing? What if we could manufacture these items in zero gravity? What if all government regulations were suddenly removed? You don’t expect these things to happen, but playing with them in your mind distorts the current system and lets you see things that were previously concealed by reasonableness.

For instance, in studying morale and turnover problems, we imagined what would happen to the organization if there were no turnover whatsoever. This led us to realize one of the previously unnoticed benefits of turnover: the influx of new ideas when new people were hired. As programs were implemented to reduce turnover, other programs were added to supplement the flow of new ideas to the organization.

Look Outside the Boundary

We all know that things tend to fall between cracks and that cracks occur at boundaries, where one system joins another. A computer system may have powerful diagnostic programs for finding trouble in each component, but when there is a problem with cables, for example, none of the special diagnostic programs seems to be able to find it. The boundary between one part of a system and another is a good place to look for missing things—those things that each part assumes are taken care of by the other part.

To look for these between-the-cracks items, first list all the edges of a system and all boundaries within the system, and then list all the activities that ought to transpire at those edges. People will object, saying “That’s not part of the problem,” but that’s just a clue that you’re on the right track. Using these lists as laundry lists often reveals overlooked items, like the customers who are left on hold because of a flaw in the procedures for switching incoming calls.

Look for Alibis Versus Explanations

Sam Spade, Miss Marple, and Charlie Chan all knew that any suspect with too elaborate an alibi must be guilty of something. Look for explanations and see if they are alibis for something that is missing. For example, on the tub of a hotel, we find a warning:

 FOR YOUR SAFETY! PLEASE NOTE BATHTUB ELEVATION.

Because this sign wasn’t there on the previous visit, we suspect that it was added after someone fell getting out of the tub. The tub is mounted so its bottom is several inches above the floor level, which makes getting out very dangerous. The sign is there for safety, but even more it is there to protect the hotel from legal consequences the next time someone falls. In other words, it is there to protect the hotel from the consequences of forgetting to design it right in the first place.

When working with organizations, I often study their written standards and procedures in exactly the same way I study hotel signs. Buried in one procedures manual was a curious rule that prohibited the use of certain code combinations for identifying products. Tracing the history of this rule, I discovered that the programmers had used these codes for special internal records, a terrible programming practice that got them into trouble when someone accidentally assigned one of these internal codes.

Many written rules are instituted as quick fixes for problems that happened once in the past. The incident may be forgotten, but the rule lingers on as a clue to an event that may happen again. Prohibiting certain product codes did not solve the problem of this poor programming practice being used in other programs. When we searched the entire program library, we found a dozen other places that were vulnerable to the same kind of accident.

The Emotional Component

I’m still a bit surprised at how well “ridiculous” games reveal things we miss by more rational methods. I shouldn’t be. Consultants rarely get called when the client’s rational methods have been working well, so something different is always needed. One approach is to use a different rational method, but it may be more promising to be a bit irrational. This is hard to do, however, because when problems get difficult, everyone wants to be “rational.”

The Incongruence Insight

Have you ever had a client stomp a foot, turn beet-red, and scream “BE RATIONAL!”? That kind of non-rational demand for rationality does tend to discourage me from making fresh suggestions, but it also reminds me that I may have been overlooking the emotional component of the problem.

A great turning point in my consulting life came when Nancy Brown, one of the world’s great consultants, was observing me working with a client. I had just made a fantastic rational analysis of the client’s problem, but it somehow felt all wrong. At a break, when I asked Nancy what I was missing, she said quietly, “Sometimes when I’m not getting anywhere with the words, I listen to the music.” I wasn’t exactly sure what she meant, but I resolved to try it after the break.

The client told me that his relationship with his co-workers was a great problem, but his voice and posture had been so relaxed that when I compared the words and the “music,” I saw that his words made no sense. On the other hand, when my questions touched on his relationship with his boss, he started to fidget and his voice acquired a strained tone. Using this music as a clue, I quickly moved into an area I’d missed entirely, having been misled by his words which said, in effect, “Don’t waste your time looking there.” This led to a new definition of the problem as well as several new solution ideas.

What is missing in these cases is congruence between the words being used and the emotions being expressed. Over the years since that lesson, I’ve learned that the ability to sense incongruence is the consultant’s most powerful “What’s missing?” tool. I call this The Incongruence Insight:

 When words and music don’t go together, they point to a missing element.

The most effective method of finding that element is simply to comment on the incongruity and allow the client to respond. All I said to this client was, “I notice that your hands tremble while you talk about your wonderful relationship with your boss.” I didn’t try to interpret this incongruence, but merely brought it to his conscious attention. He looked startled for a moment, glanced down at his hands as if to confirm what I said, and then opened up to me about how he feared his boss so much that he was afraid to talk to anyone about it, lest there be repercussions.

Brown’s Brilliant Bequest

Nancy also explained to me that listening to the music didn’t apply just to the client. She pointed out that the reason I had asked her for help in the first place was that I had “felt” something was wrong with my analysis. Those feelings are part of the music, too—probably the most important part. The music you hear from the client is only the external sound of an internal emotional state that you cannot, of course, know directly.

But you can know your own emotional state directly, and your own emotional state tends to be quite sensitive to the client’s music. When you feel something strong going on inside yourself, capture it and start listening to the client’s music for clues about its origin. Or, comment about it to the client. Many times, I’ve found myself becoming angry about some incident a client is describing despite the fact that the client is speaking in a passionless manner. When I mention that something about the story seems to be making me angry, the clients often drop their emotional cover and tell me how angry the incident made them.

This method is so effective at seeing what’s missing that I’ve given it a name. In honor of Nancy Brown’s generous gift, I call it Brown’s Brilliant Bequest:

 Words are often useful, but it always pays to listen to the music (especially your own internal music).

Which brings us full circle, back to knowing yourself, which is where all good design work originates. Being able to see what’s missing in ourselves is the only possible way to keep us from looking more ridiculous than we really are.

Designing with All Sides of the Brain

On the subject of loosening your design thinking, I suppose I should use my own brain as a case history. I got involved with computers at age 11 because everyone told me I was intelligent. I wasn’t sure what this meant, but I was intelligent enough to believe that if I was really intelligent, I should be able to figure out how to stop being miserable and start being happy. This line of reasoning got me interested in the study of thinking.

In those days the popular press called computers “giant brains” and “thinking machines,” so I believed I could learn about how my own brain worked by studying computers. After 70+ years in contact with computers, I have indeed revised my thinking on the subject of how I think—how I design solutions to problems. In particular, I have revised my models of how I think about computers and designing computer systems.

A Sequence of Models of Programming

Most of my work with computers has been involved with the design and development of software, starting as a programmer. Before I ever wrote a program, I believed that programming was a form of mathematical reasoning. This is the concept of programming still held today by the majority of non-programmers.

After blundering, self-taught, through my first few programs, my notion of programming had changed. Now, programming was an art form involving a few mathematical notions, much intuition, and a great deal of luck. This is the concept of programming held today by the majority of programmers.

Then I had the good fortune to work with Bernie Dimsdale, who had worked with John von Neumann. Bernie taught me that programming was a craft, in which luck and intuition were reduced through the use of mathematical tools as a means of increasing precision. This is the concept of programming held today by the majority of systems programmers.

As my programming work began to be more precise, however, I noticed that my customers still didn’t seem entirely satisfied. About that time, I learned that von Neumann had also said,

 “There’s no sense being precise about something when you don’t even know what you’re talking about.”

I began to see programming as a craft in which precision was a foolish affectation unless you had the communication skills to determine what your customer really wanted. This is the concept of programming held today by the majority of systems designers.

This insight led me to increased success with my customers, so I was invited to work on larger programs. I then learned that programming was not actually a craft, but a social skill made use of a craft, On large projects, no amount of excellent craft work or systems analysis could compensate for muddled management. Programming, by then, was the ability to manage the development of complex systems. This is the concept of programming held today by the majority of software managers.

This view stabilized for a few years, for I became an instructor in programming and project management at the IBM Systems Research Institute in New York. Even when I took three years at the University of Michigan to obtain a doctorate in Communication Sciences, I was more interested in refining my model than replacing it. I remember sharing machine time on a PDP-1 with Ted Codd, who was also in the same program. I ridiculed his idea of subjecting programming languages to formal definitions. It wasn’t that I thought it couldn’t be done, but only my current model of programming said it would be a sterile exercise.

I soon returned to SRI in New York to resume teaching about programming as project management. When SRI in Geneva opened, I decided to bring my great wisdom to Europe. Shortly thereafter, I visited the IBM. Vienna Laboratories for a couple of weeks to work on the formal definition of PL/I, Ted Codd’s idea that I had scoffed at a few years earlier. This experience was to undermine my model of programming in two earthshaking ways.

The Cognitive Side

We were trying to apply the Vienna Definition Method to obtain a formal definition of PL/I, and the deeper we went, the worse it got. In the process, I learned a bit about PL/I, a bit more about formal definition methods, and a whole universe about mental models. In my doctoral work, I had demonstrated that natural human mental models were not necessarily logical. That’s why I scoffed at Ted’s idea of formal definition methods. Working with Bernie Dimsdale, however, I had learned that a formal method could be used to train the mind to work logically. I had gone to Vienna to see just how formal I could learn to be.

For a few weeks, I enjoyed Viennese hospitality while abusing my brain. I learned that it was essentially impossible for me to think with sufficiently formality to guarantee a precise definition of something as complex as PL/I. I also observed that most other people had the same difficulty. Even those who somehow managed to keep it all in their heads would, I saw, be swamped by a slightly more complex language.

That experience taught me several things. First, I learned that the human mind has a structure, and problems that didn’t fit that structure were simply not going to solved by human minds working alone. My studies in this direction led eventually to An Introduction to General Systems Thinking and On the Design of Stable Systems (now retitled more appropriately as General Systems Design Principles).

Second, I learned that a group of human minds, properly coordinated, could easily surpass the single mind in tasks requiring high precision even in pure logical reasoning. This led my research into group problem solving methods, represented, for example, by The Review Handbook.

I also learned that even a group mind, had its limits and that in any case a poorly designed or motivated task might not justify the effort to form the group. This led to my research in problem definition, as reflected in both Are Your Lights On and Rethinking Systems Analysis and Design.

Finally, I learned that the problem was not to train human minds to write programs, but to develop programming tools that fit the relatively static limitations of the human, mind. Up to that time, I had been spending half of my time teaching programming, but as a result of my experience in Vienna, I left that work to others and turned my attention elsewhere.

Process versus Product

The difficulties we had in formal definition convinced me that PL/I was not one of the programming tools that fit the limits of the human mind. I remember my reaction when I saw that the GOTO statement required more formal definition work than any other statement. My first thought was that the problem was with the definition method, but suddenly I realized that the fault was not with the definition, but the thing defined. Soon thereafter, I realized that the it’s not the definition that’s important, but the defining. In the same way, it wasn’t the program that was important, but the programming.

More particularly, it’s not the model, but the modeling. After all these years, I don’t know, or especially care, what eventually happened to the formal definition of PL/I. The important part of the process to me, the part that remains after decades, is that it changed the way I looked at programs. Instead of viewing the program as the object of study, I came to see it as a single point in an evolutionary process.

This new model opened up many new directions. Rather than try to prove programs correct, I was led to prove the process of program development was correct. Rather than look at errors in programs, I was led to look at the errors that appeared the process of programming but disappeared before the program was finished. And rather than seeing this “finished” program as the endpoint of development, I was led to recognize the importance what we call “maintenance” but more aptly call “continuing development.”

Most of all, this experience led me to stop concentrating on programs and start concentrating on the behavior of programmers and designers—the people who carry out the process. This led eventually to The Psychology of Computer Programming. Rather than building on models of programs, I started out building models of programmers and designers. For that task, there was a long history on which to draw, very little of which was known to computer scientists.

The Emotional Side

All this brain-stirring insight into cognitive models and programming was taking place, as I said, in the context of traditional Viennese hospitality. Years later, I was to become more aware of the effects of physical conditions on programming activity, but at the time I took most of the environment for granted. I retain only one explicit memory of the surroundings. Upon arrival at the lab on the first day, I was led into a conference room upon one wall of which was a photomural of an imposing painting.

This was my first meeting with Heinz Zemanek, and I wanted him to have a good impression of me. He immediately put me on the spot by indicating the painting and asking “Do you recognize this painting?”

I was relieved to be able to answer that it was one of Breughel’s renderings of “The’Tower of Babel,” but that didn’t get me off the hook. He pointed to a imposing figure in a robe and crown and asked, “And who is this gentleman looking over the scene?” My biblical knowledge was too meager to venture a guess, so I gave up.

“He’s the project, manager,” I was told, and everybody had a good laugh. But my interrogation still wasn’t finished. “One more question. What is he saying?”

By this time, I realized it was a grand joke, and I didn’t need to impress anybody, so I asked for the answer.

Zemanek laughed. “We can’t give up now! We’ve got so much invested in it already!”

Even though I’d been teaching project management for years, the answer stripped the scales from my eyes. Although I had thought of programming as the ability to manage the development of complex systems, up to that moment I had never explicitly recognized the emotional side of the picture. Now, even during the weeks of formal definition, I was aware there was far more going on than cognitive work.

An Improved Model of Programming

Shortly after that visit to Vienna, the so-called “structured programming” movement seized the attention of programming researchers. Most people saw this as having to do with program structures, such as GOTO statements. Some saw it in a wider context, as a statement about how to keep the process of programming under mental control of human beings with rather limited cognitive capacities. But my model eventually went two steps further.

When we tried to apply new programming processes to real projects, we discovered that we were lacking tools to support the change. The most obvious shortcoming was the lack of physical control of the code in its various forms. It was then that I realized that under every programming effort there was a layer of physical control that we usually took for granted, but without which any project was sure to fail. We always knew that the hardware had to be in good physical condition, but now we became aware that the code, too, had to be under strict physical control.

Even more, the people themselves had to be maintained in good physical condition. My experience of large projects working long hours under high pressure made me realize that mind and body could not be separated for long without serious damage to both—and to the programs. Programming tools were not simply mental abstractions, but had to be realized in a physical form that real human bodies could master.

But even with the proper physical environment and proper mental tools, too many projects were failing. The Tower of Babel provided an excellent model. It wouldn’t have mattered if the project manager had the best design and structural engineering tools in the world. Such tools would have showed him that the project’s design doomed him to failure, but would he have ignored their warnings and continued anyway because he personally had too much invested in it already?

Conversely, even if it were possible in an engineering sense to build a tower all the way to heaven, the project was torn apart when the workers started speaking different languages. But note that it wasn’t the different languages that did them in—we’ve had many successful multi-cultural projects. Instead, it was their emotional reaction to the different languages-brought the project to ruin. Riding above both physical and mental control is the need for emotional control if a software project is to succeed.

The Neglected Models

Just as my own personal models of programming have evolved, so have the paradigms of the entire field of computer science. Most researchers, however, are stuck at the level of cognitive models, and most of those of a very narrow rationalistic kind. How typical that we computer scientists lavish all this attention on artificial intelligence, the perfect embodiment of the model that ignores the existence of both the physical and emotional dimensions of humanity. And even ignores most of what modern psychologists recognize-as.”intelligence.”

If we are to become true scientists, we must reeducate ourselves by devoting our attention to these neglected models. I often recommend, in this regard, Turner’s survey, Maps of the Mind. It’s an introduction to 60 different models of the mind, and any artificial intelligence designer ought to begin by working through the original material in at least 50 of them.

Another humbling experience is to read Gardner’s The Theory of Multiple Intelligences, which ought to cure any designer of a unidimensional concept of intelligence, artificial or otherwise.

Of special interest to programming are those models of the “subconscious” or “unconscious” mind. A few researchers are beginning to notice that much of the best programming work is done while the programmer is in a state of mind that closely resembles the trance states long described in the psychological literature on hypnosis. I found it particularly revealing to compare reports by outstanding programmers with the reports by Milton Erickson on Aldous Huxley’s working methods, as well as the phenomena reported by other subjects working under hypnosis (Erickson, 1980).

Not all the research news is discouraging. One of the most gratifying signs of our field maturing is the increased attention and research funding devoted, at last, to “human factors” which includes the physical side of our business. Some of this work is even exploring questions about the side of our brain that uses pictures—which is a promising sign.

Unfortunately, most of this human factors work concerns pictures with little boxes with sharp edges. We still know essentially nothing about why such a diagram or even a 1,000-page book of such diagrams makes no impression on us, yet our mental life can be transformed by one glance at a Breughel painting. Two days touring Vienna museums did more for my understanding of how I design programs than two semesters studying automata theory.

On a trip to Tokyo, I spent a day touring museums with three computer science students from the Technical University. They were astonished to learn how much painters know about design, but like the rest of us, they needed a bit of guidance to see what was before their eyes. Such a guide is Gombrich’s classic Art and Illusion which I’ve used successfully as a textbook for a systems development course.

Another promising area of study is the relationship of musical composition to programming. Although I recall discussing the subject—naturally—in Vienna, I’m not aware that it has been vigorously pursued by programming researchers. I have, however, noticed the high rate of success of music students who take up programming careers. In fact, I’ve devoted much of my time since that first visit to Vienna to studying the people who select themselves into the programming business.

Outside of Vienna, most programmers have little or no interest in or knowledge of the cultural, physical and emotional sides of life. Or if they are interested, they keep those subjects in separate mental compartments, which don’t communicate with their programming compartments. I suppose university training must take some credit for this isolation. And, since we’re so isolated from the life of the other 99% of the people in the world, it’s not hard to understand why the systems we are designing don’t always meet with their wholehearted approval.

Moral Models

Which brings me to yet another set of models. Even after we master our bodies, our emotions, and our fully dimensioned intelligence, something remains unconsidered. If something isn’t worth doing, is it worth doing right? I remember a discussion I had early in my career with a computer programmer whom I regarded as a “religious fanatic.” I recall that as part of his argument he quoted from the New Testament about how the devil tried to tempt Jesus with great powers, like turning stones into bread or protect himself from harm, or governing the world.

This reference to the temptation of Christ dumbfounded me. For one thing, I couldn’t understand why Jesus couldn’t accept the devil’s offer, but use these powers for good. If he could turn stones into bread, why not feed the world’s poor? If he could be protected from all injury, why not heal the sick? And if he could have all the kingdoms of the world, why not take them and cure all social injustice? By similar reasoning, of course, I knew that I—and others—could take the almost infinite power offered by computers and use it to feed the hungry, heal the sick, and free the oppressed. What could possibly be wrong with that? Perhaps power from the devil could be misused, but the computer gives us morally neutral power. Doesn’t it?

I had an even deeper reason for being dumbfounded. I could not see why a passage—in a religious book, a fairy tale, or a fable—could have any relevance to the logical world of computing. Even if a holy man had to turn down the temptations of the devil, what did that have to do with the secular, scientific world of computer programming? I was actually embarrassed for my friend, that he could be so stupid and superstitious as to quote such a passage.

But over the years, I changed. In Vienna and other special places, I learned that it was permitted to use fables, myths and even religious subjects as a means of insight into computing problems. And once I broadened my cultural horizons, I began to see a number of computer applications of dubious moral worth. Computers programmed to steal small amounts of interest from unsuspecting bank customers. Electronic support of systems of segregation and other forms of political oppression. Automatic controls for poison gas experiments. Artificial intelligence to spot “unfriendly” natives so they could be gunned down by automatic guns mounted on helicopters.

The most distressing thing about all of these applications was that the programmers working on them didn’t seem to have any moral qualms. I decided to undertake a survey of the moral consciousness of people in the computer business. I made up 30 situations in which a programmer might be faced with a moral choice, such as whether to program a computer to shortchange welfare recipients if the agency boss told them to. On a lecture tour for the ACM, I administered this survey to more than 300 programmers and their managers, hoping to publish the results. I never did publish the results, though, because there were no results.

In every situation, no more than 20% of my audience could see a moral issue—as long as their boss told them what to do. I thought of what Jefferson had said:

 Man was destined for society His morality, therefore, was to be formed to this object. He was endowed with a sense of right and wrong, merely relative to this. This sense is as much a part of his nature as the sense of hearing, seeing, feeling; it is the true foundation of morality… The ,moral sense, or conscience, is as much a part of man as his arm or leg … It may be strengthened by exercise, as may any particular limb of the body … State a moral case to a plowman and a professor. The former will decide it as well and often better than the latter because he has not been led astray by artificial rules.

By confining our attention to the narrowest range of abstract models, are we leading ourselves astray by artificial rules? Are we turning out a generation of computer scientists who cannot decide a moral case involving computers as well as a plowman? Are we turning out students whose moral sense has atrophied through lack of exercise? How could it be any different?

The Social Environment

Jefferson implies that a moral sense grows out of social interaction, but the average computer programmer is socially inept and I solated out of preference. How many times have you encountered a programmer who will rebuild a thousand lines of code rather than endure the social interaction necessary to use someone else’s program for the same function? The most advanced and powerful programming tool you could develop would be something that gives a programmer the skills and courage to share work with colleagues. With the Agile movement, we have a Manifesto that such sharing is essential, but few people in our industry are working on such tools.

We are instead, spending most of our effort developing “advanced” programming tools—even though recent studies have indicated there is sadly little use of tools and software engineering practices developed decades ago. Since some organizations do use these tools effectively (perhaps about 20%) should we be modeling the social environment that determines changes in programming practice?

Do we understand that social environment? Why, for instance, don’t managers insist that tools and practices are used? Many managers have told me they’re afraid that programmers will refuse to do what they say But programmers have told me they would steal from welfare recipients if their managers told them to. So where do managers get the idea that programmers won’t use a configuration control system or participate in code reviews?

The social ineptitude of the average programmer is exceeded only by the managerial ineptitude of the average programming manager. Typical programmers see their managers as impediments to quality programming. Their dream of getting rid of managers is matched by the managers’ dream of getting rid of programmers—the dream that finances most of our research on programming tools. If this is the environment into which- our research is going, how can we possibly believe it will be used for good? Quite frankly, the prospect frightens me.

I’m also a bit frightened to raise such issues at all in front of a professional group. Many times I have been accused of not understanding the role of abstract thinkers, whose work would be disrupted if they allowed themselves to be distracted by “real-world” problems of any kind, not to speak of moral issues. I’ve even been accused of being crazy, or even worse, that I was raising such issues because I was not capable of high levels of abstract thought.

When seeking the courage to raise these issues, I recalled Jung’s story about his encounter with some Native Americans who assisted the sun to rise every morning.They believed that if they should fail to do so, the sun would soon cease to rise, and all life would end. We sophisticated intellectuals may think they are crazy, but they believe we are crazy. Why? “Because,” said their chief, “the White Man thinks with his mind.”

And his people? The chief’s only reply was to put his hand over his heart.

Is it really so crazy to suggest that we would do better design work if we learn to think with all of our faculties?

Where Ideas Come From

Here’s an adaptation of what I wrote in my book, Understanding the Professional Programmer:

 Why Don’t I Run Out of Ideas?

I’m often asked, “Where do you get enough ideas for all those books and a blog?” My usual answer is, “From readers like you.” That’s a major part of the truth. This essay, for instance, was triggered by a reader who sent in that very question.
Where do ideas originate?

Fundamentally, there are only three sources of ideas:

 	Error

 	Theft

 	Copulation

Error

The only truly new ideas come from mistakes. I get many from typographical errors. Once I typed “chance” for “change” and triggered a whole chapter in a book I was writing. Another time, I caught a client writing “turkey system” on the board instead of “turnkey system.” This mistake gave me the opening I needed for a lecture on the perils of “off the-shelf” systems (sometimes contrasted with “off-the-wall” systems).

Theft

But creative errors are rare. Or, rather, we rarely take creative advantage of our errors, probably because it’s so much easier to steal new ideas. I have thousands of readers, all working on good ideas for me. Once in a while, one of them reads a passage and says, “Well, that’s not bad, but my own thought on the subject is a million times better. I think I’ll write that dull author and tell him what he really should be thinking.” Not all these letters contain ideas as good as their authors think they are, but many do. So I have a steady supply of new material.

As a consultant, I get many of the same benefits, though I have to set aside my typing to get them. Each client I visit is eager to tell me all the new ideas being put into practice—in exchange for a similar set of ideas from me. After I’ve seen just a few clients, I’ve got more sensational ideas than I could use in a year of visiting other clients. Moreover, I don’t feel the least bit guilty about “stealing” their ideas because I always give them their money’s worth in return.

Naturally, I’m not talking about ideas my clients consider proprietary. I honor all my nondisclosure agreements with perfect obedience. I never reveal anything about which there might be the slightest doubt concerning my client’s wishes. The ideas I steal are usually “trivial” ideas the client takes for granted or doesn’t even classify as “ideas” at all. They may be trivial in one shop, but when transplanted to the correct environment, they bloom into major breakthroughs.

Theft Plus Error

Another factor in my favor is my ability to misunderstand something about the stolen idea, thus introducing an “error.” As often as not, the error turns out to be the most creative and valuable part. Indeed, sometimes I feed the transformed idea right back to the originator, who now finds it worth a fortune.

I recall one group of managers who told me they were planning to use their large computer to compile programs for some PCs they recently purchased. I thought they said they were using the PCs to compile programs for the big machine—at least to enter the programs and perform some operator assistance and error checking. When I mentioned this mistaken idea to another group in the same company, they went wild with enthusiasm and decided they too should have a PC for each programmer’s personal use. Inasmuch as they were exceptionally poor typists, this approach freed them from the bottleneck the large machine was imposing on their development work.

But we eventually did even better. I learned that the PCs were used to train data-entry clerks on simulated terminals. I naively asked why they didn’t use the same software to train some of their programmers to be better typists.

Their response was much screaming and yelling and tearing of hair, but I soon put an end to that because I don’t have much hair to spare. Eventually, I tricked them into using the idea, with the result that some of their programmers got skilled enough at typing to make efficient use of the on-line facilities of the large machine.(How I tricked them is one of those trade secrets I’m not going to reveal just now.)

Copulation

In the end, then, both stealing and blundering were excellent sources of ideas, but the greatest number of really good ideas has come from copulation—the coupling of two separate ideas to form a new and better idea than either one. You may like eggs, and you may like sugar—and you’ll just love a good meringue.

Note: There’s more to this essay, and you can find the complete essay and more in my book, Understanding the Professional Programmer (http://www.amazon.com/dp/B0056C0HKK).

And, in my book, Weinberg on Writing, The Fieldstone Method (https://leanpub.com/weinbergonwriting), you can learn how not to lose the ideas once you have them.

Design Wagers Checklist

We know that design can be thought of as a wager, a bet, on the future. Here is a checklist of some of the guesses on which designers base the bets they make when designing a system:

Hardware
--	will get faster
--	will stay compatible, or not
--	platform [will, will not] change

Costs
--	of capital [will, will not] change [in the following way]
--	of labor [will, will not] change [in the following way]
--	of materials [will, will not] change [in the following way]

Performance
--	can be optimized
--	will not be important (or will)

Usage
--	will be predictable
--	will be predictable, and follow this-and-such pattern
--	will grow
--	will not grow
--	will grow at this-and-such rate
--	pattern will not change
--	will change in the following way…

Builders
--	will understand the design
--	will be capable of implementing the design

Maintainers
--	will understand the design
--	will be capable of implementing changes without corrupting the design
--	will be smarter than me
--	will not be as smart as me

Interface
--	will be improved by someone
--	will not change
--	training will or will not be developed

Users
--	will or won’t be trained
--	will have a certain level of intelligence
--	will or will not be professionals
-- 	may try to beat the system in some way
	- 	will make errors

I, the Designer
--	[do, don’t] understand [users, business]

Use this checklist as you start designing to attempt to make a better guess about the future.

Also use it to document your assumptions, so your customers and users know what the success of your design depends on.

Anthropomorphism

A great dichotomy in approaches to design is between things and people. Many information systems can be usefully conceptualized as a machine in the center of the universe, in interaction with people out on the periphery. Yet the same systems can sometimes be seen as people at the center with various machines—or ports into machines—on the periphery. Which do we prefer?

As human beings, our preference for the people-centered view is strong—so strong that we often anthropomorphize our machines. That is, when we think of the machine as the center we find ourselves saying,

 “If I were the CPU, as soon as I sensed the signal from another terminal I would…”

This is a harmless—even useful—pastime, as long as we don’ t make the mistake of assuming the computer will behave in the typical adaptive manner of human beings.

Anthropomorphized design, because of the adaptability of people, is a useful device in early design stages—when we don’ t want to be bothered with the kind, of detail the machines actually require to carry out such a task as “Find out whether the user is authorized to access the files she is asking for.”Such an instruction would generally suffice for a human clerk, but naturally won’t do for a computer. By imagining that the computer is human, we brush aside details that will only interfere with the job of synthesizing a collection of variant designs.

In the end, of course, we shall have to ensure that “Find out whether…” can actually be performed by the appropriate system, and performed within appropriate operating and cost constraints. We can easily go wrong by overworking this human analogy, in two ways:

 	We fail to appreciate the true difficulty of a machine doing what seems a simple human task.

 	We fail to consider having the machine do a task it could do very well, because we imagine how difficult it would be for a person to do.

In actual fact, designers mostly appear to be anthropomorphizing when they do this exercise. In reality, they have developed a set of shorthand phrases which sound like they are talking about human beings but which actually embody heaps of intuition about the capabilities and limitations of machines.The effectiveness of these intuitions about machines—couched in terms of people—is what really determines the success of such anthropomorphizing.

On the other hand, there are real people involved in every system, and many designers tend to see them in too mechanical a light. Many of us fell in love with computers because they lacked the complexities of people. The row upon row of acned teen-age boys we see embracing BASIC for interminable periods are ever so much happier there than in the back seat of a car with a similarly acned teenage girl. BASIC may not immediately do what you want but it is ultimately predictable. Not so for teenage girls—at least to teenage boys.

And so, before we realize that real computer systems are ultimately less predictable than teenagers of either sex, we commit ourselves to a career away from the frightening people and among the friendly machines. As we grow from teenager to adult—and from hacker to coder to programmer to designer—we will suffer the pains of returning to human society. If we don’t, and far too many don’t, the systems we design will be rigid and unfriendly—and unsuccessful.

Designers who are unsuccessful have a tendency to become consultants or teachers to other designers. Those who fail because of an insufficiently developed model of the human side of systems often fail similarly, to understand the human side of the design process itself. They try to automate design or, failing that, to make rituals out of what are no more than general principles, hints, heuristics, and suggestions.

Rituals

Not that rituals are useless. On the contrary. Everything that people find so attractive must be deeply rooted in the human psyche. Rituals—perhaps in the form of checklists or standard forms, or written procedures, or all three given a proud name and sold in a package—can be a great help. Computers, unlike people, must be instructed to every last detail, so in the end, someone must remember to end every procedure and close every parenthesis. Without rituals, we would be most unlikely to avoid the kind of spectacular oversight that gives system design such a bad name.

Yes, rituals are a big help and become a positive necessity as we try to produce larger and larger systems. Still, people involved in rituals have a tendency to forget they are rituals and begin believing they are some kind of truth. Time and again we have watched useful design approaches ossify into Manichean rituals—if you don’t use the right shape for this box, you’re not a system designer!

As an author, I have particular responsibility not to impose rituals on my readers, but there really is no hope of preventing those of such a mind from congealing casual suggestions into right dogma. Indeed, a number of firms today make a nice profit selling one ritual or another to be used in system development. These firms are successful because, as Malinowski observed in his studies of the Trobriand Islanders, people resort to magic when there is risk and uncertainty which they cannot control “scientifically.” Lord knows there’s more risk and uncertainty in the system development business than in growing yams, so systems witch-doctors are working overtime.

Netting it out, positive good would be done by adopting a ritual approach to replace complete willy-nilly design. But we need not choose between chaos and coercion. The middle ground is vast, if we dare to occupy it. There we find no hard rules, but yet responsibility for our actions as designers. Too many designers, lacking the courage of their responsibilities, ritualize an approach so that failures can be blamed on bad karma, rather than on sloppy thinking. (“We slipped up in performing the ritual exactly, so we failed.”) Though this way leads to personal safety, it almost guarantees failure of the design effort.

Without the courage to fail, there can be no design!

KISS, or Keyp Itt Simpel Stoopid

Whenever I read technical journals, I finish with a distinct inferiority feeling. It’s discouraging enough not to be able to understand an article, it’s downright pitiful. In recent years, it’s gotten worse than that. Now I can’t even understand many of the titles, such as,

 “Universal planning horizons for generalized convex production scheduling.”

 “Design of a generalized balanced multiple-valued file organization scheme of order two.”

 “Almost control-free (indeterministic) parallel computation on permit schemes.”

That’s why it’s so nice to realize, every once in a while, that there’s still lots of room for simplicity in the design business. The truly fundamental and practical ideas are usually not that complicated, though the article-writers are trying to convince us that we’d better retire and leave our problems to.the experts Well, before I give up I always try to apply the old army dictum, or design heuristic, known as KISS, for “Keep It Simple, Stupid.”

I have an opportunity to illustrate KISS because of a letter I got from a reader which said, in part:

 “Jerry Weinberg writes about a spelling correction and abbreviation algorithm. It is some years since I have seen any reference to algorithms for matching to misspellings, and I have recently encountered an application where such an algorithm would be a considerable use. I would be grateful if you would provide me with some references on the topic; publish an article; or print this letter in the hope that someone out there has solved the problem of users who can’t spell.”

On the subject of spelling, I happen to know a great deal—perhaps too much for a simple answer, for the question as framed is very broad. Thus it’s a good test to see if I still know how to KISS.

The first observation I’d like to make is something that George Bernard Shaw once said: “Anyone who can spell in English can’t be very bright.” I’ve repeated this quote to remind all my readers that

 	It’s not just your users who can’t spell.

 	Don’t approach spelling correction with an air of superiority.

Secondly, 60% of the time when I’m called upon to tackle a “spelling error” problem, it turns out to be a problem with the design’s rigidity, rather than the user’s prowess as a speller. For instance, the typical YES/NO reply module for interactive work requires the user to type YES or NO, not “Yes” or “No”—or even “yes” or “no.” The designers of such systems often blame the users, but I must disagree, especially when the system is intended for casual users.

Thirdly, a great many “spelling error” problems can be tackled by a most unsophisticated algorithm, using cheap, plentiful memory. This approach can be used whenever the spelling involves a modest list of “keywords” known in advance, or not growing very rapidly. Examples of this type are command lists, options, some types of product names, colors, brands, and transaction types.

To make the algorithm specific, let’s suppose we require the entry of one of four colors—RED, BLUE, GRAY, and YELLOW. The first thing to notice about this list is that none of the words are very similar to one another. That wouldn’t be as true in the list GREEN, GREY, BLUE, BLACK, so the first step, wherever possible, is to design the list of words.

In other words, if your list contains the words MASS, MAST, LAST, AND LASS, it’s going to be hard to detect typographical spelling errors, at least. Or if your list contains the names, JOHNSON, JONSON, JOHNSEN, JONSEN, and JOHNSSEN, there isn’t a spelling algorithm in the world that’s going to do you much good.

Once you’ve got a reasonable list, all you have, to do is to prepare a list of synonyms, something like this:

 	Entry
 	Synonym for

 	B
 	BLUE

 	BL
 	BLUE

 	BLU
 	BLUE

 	BLEW
 	BLUE

 	BLOO
 	BLUE

 	G
 	GRAY

 	GR
 	GRAY

And so forth. Then, instead of taking each entry as given, you filter it through a table search. The method of searching will depend on what sort of speed requirement you have, but often speed is not critical, as when the user is on-line with relatively little input, so the application’s response will seem instantaneous.

If accuracy is critical, you may not wish to accept BLOO for BLUE without comment. In that case, you might feed back to the user a request for confirmation, or at least a statement that we’ve interpreted BLOO to mean BLUE.

A single subroutine or macro can be used repeatedly with different lists for different input items, so the programming cost is not great. Indeed, a lot of “friendliness” can be designed into this routine, and we’ve found that this simple approach has sometimes improved user acceptance of a system by 100%.

Of course, it can also be used in situations where there really are synonyms, such as GREY and GRAY, or COLOR and COLOUR. Recalling Shaw’s observation, it’s better not to impute moral characteristics to the various alternatives.

Such a design also serves, in practice, as a spelling teacher. After a very short time, most users converge on the system standard spelling, so if speed is important, you may wish to search a separate list of “correct” spellings before searching for alternatives.

In the past, the use of memory was the main impediment to using this approach. In tiny systems, this limitation may still apply, but nowadays I mostly find that developers object to the work of preparing a list. And, in many installations programming and design are now much more costly than memory, so they are right to object.

The objection to the task of list preparation can be overcome by using a slightly more complex design—by allowing the table of synonyms to grow dynamically. Originally, you have only the “correct” spellings and perhaps a few acceptable alternatives. When a user enters an unrecognizable word, the interaction goes something like this:

BLOO

…We’re unable to recognize that word.

…Please try another spelling.

BLU

…We still can’t recognize BLOO.

…Can you find your word on this list of words?

The user is then presented with a list of words, perhaps starting with the same letter (which is almost always reliable), or with some potential alternative first letter (such as C for K). If the user can recognize the word on this list, it can be selected menu-style and the problem is solved.

If the spelling error is only occasional, this interaction wouldn’t be too clumsy—if you’re on-line, of course. But even this problem can be avoided after the first time by adding (in the example) BLOO and perhaps BLU to the list of synonyms for BLUE. In a short time, the system “trains” itself to the particular set of users, and interactions are reduced to their simplest form.

In some applications, you can have a separate table of synonyms for each user. When you do this, you smudge the distinction between spelling errors, abbreviations, and different languages. For instance, when I implemented this system in an on-line genealogical system, each anthropologist quickly created her own kinship terminology. Some terms were abbreviations, as B for BROTHER; some were translations, as FRERE for BROTHER; and some were abbreviations of translations, as BF for BROTHER-IN-LAW (BEAU-FRERE). The users were happy and comfortable with this design, for it adapted the computer personally to each of them.

Not knowing my letter-writer’s application, of course, I dare not speculate if something like these designs even approaches satisfying his needs, but I wanted to demonstrate that a design for spelling correction need not be complex, though it sounds complex when you first hear about it. Years ago, in our book, Humanized Input, Tom Gilb and I documented many such simple “correction” designs. We’ve heard from many readers that just one of these simple ideas has been worth a hundred times the cost of the book. For instance, I spoke to an analyst recently who told me that his firm saved $150,000 by applying the technique of selectively duplicating input numbers—as we do on checks—whenever the number was unusual and would have been rejected by ordinary edits. That’s a kind of spelling correction, too, and couldn’t be simpler.

In other words, the value of a design idea isn’t necessarily proportional to its complexity. Professionals easily fall into the trap of mistaking effort for value, especially if they’re managed by people who judge their work by effort, not results.

When you tackle a new design problem, remember to start with a KISS. Later on, if a lot of KISSing doesn’t lead to anything useful, you can try some of the more advanced stuff. But don’t be discouraged if all you ever do is KISS.

Why Must Designers Simplify?

I have to emphasize simplicity in design because customers always have more features, and designers seem compelled to keep adding to their design. Here’s what I wrote to an author who was about to build a book of about 600 pages. He had 550 pages already, but still had material he wanted to add.

 Here’s a thought. The subject and your data certainly require expansion, and 550 pages may be quite an underestimate. My experience with many books says that 550 pages can be a marketing impediment, not to speak of an imposing obstacle to people actually reading the book.

I asked him, “Is there a way to break up the project into smaller books?”

For instance, he might make a series of 100-page books, such as one volume for each development approach plus one volume explaining your tools and methods—and perhaps a summary volume. Among other advantages, this would allow him, if desired, to easily add other approaches as they become popular. Data on size vs. complexity undoubtedly apply to books as well as other information systems, so such a design could speed the release of the book(s), reduce his total effort, allow him to adapt later volumes to lessons learned from the response to earlier volumes.

Of course, I may have to follow my own advice as this book itself grows. Let’s see why.

The Square Law of Computation

Whereas in the past the only resource for dealing with biological systems was to try to minimize the interactions between the parts, thereby often losing the real focus of interest, today nothing but time and money prevent us from treating real biological systems in all their complexity and richness. - W. Ross Ashby

What is the cost of computation, in time and in money? How important was ignoring small bodies (the asteroids, comets, satellites and other pieces of space flotsam) to the economical calculation of planetary orbits? How important is it to ignore “small” interactions if we want to predict how any system will behave?

Consider first the equations needed to describe the most general system of only two objects. We must first describe how each object behaves by itself—the “isolated” behavior. We must also consider how the behavior of each body affects that of the other—the “interaction.” Finally, we must consider how things will behave if neither of the bodies is present—the “field” equation. Altogether, the most general two-body system requires four equations: two “isolated” equations, one “interaction” equation, and one “field” equation.

As the number of bodies increases, there remains but a single “field” equation, and only one “isolated” equation per body. The number of “interaction” equations, however, grows magnificently, with the result that for n bodies we would need 2n relationships!

To be more concrete, for 10 bodies we would need 2 to the 10th power = 1024 equations and for 100,000 bodies, about l0 to the 30,000th power (1 followed by 30,000 zeros). By “ignoring small masses,” then, the number of equations is reduced to approximately 1000. At least it would now be possible to write down the equations, even if we still could not afford to solve them.

How much effort is involved in solving equations, and why are we so interested in the question? In Newton’s day, the impact of mechanics on philosophical thought was pervasive. Many philosophers thought, with Laplace, that given precise observations on the position and velocity of every particle of matter, one could calculate the entire future of the universe. Although they realized that they would need a large computing machine, they lacked even the smallest computers. How could they possibly put a measure on the required computation?

Only in our lifetime have the dreams of the mechanists been realized, but with the realization came a revolution in philosophical thought. One aspect of this revolution was the more realistic concern for the question of computational cost, a question raised by the systems thinkers, but most notably and consistently by Ashby. This annoying question—how much “time and money”?—lies at the very foundation of the general systems movement.

Designers does not need exact measures. Instead, they merely want to estimate how the amount of computation increases as the size of their design increases. Experience has shown that unless some simplifications can be made, the amount of computation involved increases at least as fast as the square of the number of equations. This we call the “Square Law of Computation.”

Thus, if we double the number of equations, we shall have to find a computer four times as powerful to solve them in the same amount of time. Naturally, the time often goes up faster than this—particularly if some technical difficulty arises, such as a decrease in the precision of results. For our present arguments, however, we may conservatively use the Square Law of Computation to estimate how difficult it may be to predict what any given system will do.

Sometimes, designers assert that if they design a system they must understand it. In practice, though, there is an upper limit to the size of the system of equations that can be solved by any computer, including the brain. That’s why designers have to struggle to discover any simplifications they can, to make their systems more predictable.

Consistency

One way to keep things simple is to be consistent. I once had a Commodore personal computer that had a few different applications that I used regularly. The Commodore was a small machine, with limited memory, so applications were often designed with numerous abbreviations. Unfortunately, there was not the slightest consistency among those abbreviations. The one I remember to this day was on application that used K for Keep a file, while another used K for Kill a file. Although I remember those two after 50 years, I couldn’t remember which was which at the time, costing me many lost files.

Today, things are somewhat better because most of my work is on a Mac, and most Mac users won’t tolerate inconsistencies across applications. Several times, organizations ported popular PC applications to the Mac, only to discover that Mac users wouldn’t buy them unless the redesigned them to Mac standards.

In spite of all these years of experience, designers still fail to pay adequate attention to consistency, even within one application. Just today, I was using LinkedIn.com, replying to messages. Once I composed a message, I was told to click on SEND to send it. But on some other messages. I was told to hit the ENTER key. There’s not reason for such a design. At the very least, the interface could have said “Click on SEND or hit the ENTER key to send your message.”

People are different

Allowing either SEND or ENTER may seem clumsy, but such a design allows for a fact you may have noticed:

 People are different.

If nothing else, people differ in their experience with a system. A user interface ought to be consistent within the app for regular users, and with other apps and experiences for one-timers. For some reason, though, some designers cannot resist the temptation to be “original.”

Of course, people differ in more ways than their experiences with different systems. For instance, research shows that certain forms aid memory more than other forms. What may be confusing here is that the research shows that different people use different keys to memory. Some folks remember best if the information is tied to specific persons. Others are helped more by tying information to a specific place, or to a time, or an event. That’s why reporters are told to cover WHO, WHAT, WHEN, WHERE, so all kinds of memory are helped.

Testers and designers ought to keep those different memory keys in mind when writing reports. When did something happen; who was involved; where did it take place (in what systems, etc.), and what else was going on at the same time. Such diverse memory keys will tend to make a report more memorable.

We see the same diversity in preferred modalities. Some people do better with appearance, others with sound, some with touch, etc. When possible, designs for multiple users ought to provide information in every modality possible. But doesn’t that lead to inconsistency? Not if the design provides all modalities consistently.

Satisfying expectations

Each year in the United States, about a million people go to a hospital as a result of an accident on stairsâ€”and about 4,000 of them die. Many, if not most, of those accidents result from “a failure of expectations”â€”that is, something about the design of the stairs does not follow the customary design of stairs. (See, Templer, J. A. (1992). The staircase : studies of hazards, falls, and safer design. Cambridge, Mass.: MIT Press).

So, by copying the design of earlier staircases, we tend to satisfy expectations and prevent accidents. It turns out that copying has some real benefits, and shouldn’t be dismissed out of hand. Again, resist the temptation to be “original” just for the sake of originality.

Here’s a personal example. My 2007 Jeep does not have the window controls on each window, which is the conventional placement. Instead, the controls for all four side windows are together in a console between the two front seats. It took me two years go stop reaching to my left to raise or lower the driver’s side window. Eventually I learned, but my passengers always wind up groping to their right when they want to move their window. I don’t know what the Ford designers were thinking of, but they obviously didn’t place high value on consistency.

The Cybercrud Cudgel

In 1977, Tom Gilb and I published a book called Humanized Input: Techniques for Reliable Keyed Input. We hoped to improve the pitiful state of input design for computer systems, and ten years later, we imagined we were beginning to see some improvement. On-line systems were coming into vogue, and we expected their use could only improve the interface between humans and computers.

Alas, though some systems improved, there’s been a steady decline, especially in those parts of systems where the average user has to communicate something exceptional to a computer. Clueless developers of the computer system “design” whatever sort of interaction pops into their minds, while the poor user of their system has to conform to these designs, or else. It’s like arrogant nobles assigning tasks to powerless peasants. It’s a one-sided conflict—the developer side has all the weapons. while the users have to take their lumps and just grin and bear it.

But the Medieval world had its checks and balances, something we need in modern computing. In ancient Denmark, the laws of chivalry required that if a noble should ever duel with the peasant, the peasant had the right to choose the weapon. The nobles were trained in fancy weapons such as swords and dueling pistols, but the peasants had a preference for pitchforks and cudgels. As a result, any sensible noble went to great pains to settle disputes graciously with any peasant, no matter how gross and crude they might seem.

We need something like a cudgel to redress the balance between ordinary people and poorly crafted systems produced by thoughtless designers. Cudgels and pitchforks, however, could be found around any peasant household. Furthermore, there was a legitimate reason for them to be there. If the nobles wanted to eat, they could hardly outlaw pitchforks.

One way to fight the arrogance and insensitivity of computers is to use your own computer as your cudgel, but you don’t have to own a computer to be arrogant and insensitive. For those readers who lack a peasant’s pitchfork experience, I have catalogued a number of specific thrusts and countermoves. I’ve learned these tactics from the enemy, from the online and paper forms I’ve had to navigate to request support, report errors, reconcile billing disputes, claim rebates, or register products.

(1) Insist that any communication with you will have to go through your computer, and thus conform to the computer’s requirements, because “everyone knows that computers cannot be made to change in response to every trivial problem that people are having.”

(2) The required information will have to go on a form, one copy of which you’ll supply upon written request on another form.

(3) They will have to use the original form—no copies, please. If they should make a mistake in following the simple and convenient rules, they may write another letter and request another form. Without the original form, “our computer might not be able to read it.”

(4) Every piece of information requested on the form must be supplied. Nothing must be left blank, even when you already have that information recorded accurately in your computer’s files. To leave something blank would “require our computer to spend extra time accessing the information.” Even if the particular piece of information doesn’t apply (like a spouse’s name when there is no spouse), require that the field be filled in.

(5) Where information requested duplicates information already in our computer files it must be identical, character for character, including spaces. If someone asks you why it must be identical, you say that “our computer will be confused if it checks the information and finds differences.” If they ask why the information is needed, inasmuch as our computer is going to access the original in order to check, you reply that “the computer may decide not to check, and we can’t tell in advance which cases it might check.” (This is true by default because you don’t really have a computer.)

(6) Every item you fill in on the form must adhere strictly to our specified format, otherwise reject the form. Don’t accept alternatives that might be clear to human beings, because “they will require extra coding steps.” For example, even if the particular entry is a whole dollar amount, insist that “00” cents must be entered.

(7) The specified formats must be chosen to be unfamiliar to people, such as,
a. Last name first, first name last
b. Fill in all leading zeros, the more the better
c. Year, day, month
d. Local phone exchange, number, then area code
e. Zip code, followed by street address, then state and city
f. Numbers in scientific notation
g. Binary coded numbers

(And, yes, believe it or not, I’ve encountered each of these cases.)

(8) Because you can’t be certain that the formats in (7) are unnatural to people accustomed to working with computers, require that each time a similar item is needed, a different format is requested. For instance here are some variations in the dates I have had inflicted on me:
a. 2019 July 17
b. 17/7/19
c. 17/07/19
d. 17 VII 2019
e. 17-JUL-19
f. 7,17,19
g. July 17, 2019—but be careful of this one, it’s almost understandable.

(9) When numbers are needed, it’s best to have them be as long as possible. If they don’t have any long numbers, make up some. Since human memory is pretty reliable up to seven digits, it’s best to require at least 10 digits, but do not allow any internal punctuation. If you ask for 234-789-4001, they might get it right half the time, but 2347894001 will cut that percentage down to size. Also, every extra digit beyond 10 will pay huge dividends in erroneous forms, which can then be returned with rude notes implying inferior intellectual development. An effective technique is to pad out the number with large numbers of leading zeros, as in 00000002347894001. (How many zeros is that, anyway?)

(10) If you can get away with it, use at least two pages, back-to-back, for paper forms. A second page gives lots of special possibilities, such as,

(a) Information on the back that has to be copied onto the front, and vice versa.

(b) Information on the back that’s needed to understand the items on the front, and vice versa. For instance the set of codes that are to be used on page 1 can be listed on page 2. This technique works well with pages on websites, too.

Consecutive pages should be printed on opposite sides of one very porous and translucent sheet of paper. This technique guarantees that material from the other side will show through when copying. It also allows ink to flow through from one side to the other. Naturally, you don’t allow pencil, and require both sides to be clear of extraneous material.

(11) Because multi page forms allow copying from page to page, you have the opportunity to impose difficult copying tasks. For instance, on page 2 you can require copying the form number from page 1, just to make sure that “the two sides of the paper don’t get separated.” An appropriate form number is 1783562812354678-1A.

(12) Limit names and addresses to 20 characters each—or 18 if you dare—but do not allow truncation. If Daniela Schimmelpfennig complains, tell her she has no right to have a name that confuses computers. Suggest that she change her name to something more reasonable. Or, simply truncate her name in any way you like— Daniel Schimmelp, for example.

(13) When a limited field is required, allow far more space on the form than is allowed in the computer. For instance, if a number is limited to 12 digits, use a 13-digit space on the form. If possible, make no comment, but if your conscience bothers you, write an instruction saying, “For type A use leftmost 12 digits. For type B, use rightmost 12 digits.” Be sure there are several A’s and B’s on the form, thus creating doubt as to which is meant. This technique ensures that at least half of the forms will be wrong just as if you had given no instructions.

(14) Where the required information is essentially unlimited in length, use a space that is patently too small. An excellent example is these instructions:

 “Please explain your problem in your own words, giving all relevant information that might bear on our providing you with better service in the future.”

Then limit the response to 40 characters and/or follow this instruction with a space no longer than three quarters of an inch.

(15) If you can’t make the instructions actually contradictory, as suggested in (12), at least use sufficient jargon to ensure that they can’t be understood, as in (13). If you do this well, the people using the form will feel like fools.

(16) Jargon from (13) can be combined effectively with instructions given in the form of computer programs as in
“If the audit interval is greater than the contemplated discount, then enter the appropriate rate code from the conversion table on page 2 in place of the discount code, unless the audit interval falls within the operating system recovery. Or line 17 of page 2 will be left blank when following the instructions on that page under item 2.1.7.3.9.2.4/a.”

(17) When giving programmatic instructions, it is best to have at least one backward reference, such as (on line 5-1 on page 2),

 “If this figure is negative, change the value in line 17B page 2 to zero.”

Working in ink, this is sure to confuse, but just in case they have the sense to make a trial copy, include at least one cyclic reference. For instance, back on line 17B on page 2, you could say,

 “if this value is zero, change any negative value online 5.1, page 2, to positive.”

(Notice the inconsistent notation: 5-1 in one place, 5.1 in another. Inconsistency always helps increase confusion.)

(18) Set rigid deadlines for receipt of the form, and indicate that if the deadlines are missed, you cannot guarantee any particular date for a response. Then mail the blank forms so they arrive on the deadline date. (The next day is not as good, because some people just give up in despair. It’s better if they try to meet impossible deadlines and spend much money on special postage.)

(19) Naturally, the forms may not be folded, spindled, or mutilated in any way, so it’s best if they don’t fit in standard-size envelopes.

(20) Following these rules when responding to cyber crud ought to equalize the odds a bit in the never ending battle of peasants against the nobles. But just in case the above 19 rules don’t quite convince them that you actually have a computer, here’s one more that’s sure to crush all the remaining resistance:
Make sure your form is 1 mm wider than the handy return envelope you provide.

A Word to designers

Maybe next time you design one of these interfaces, you’ll take off your cloak of nobility and, for a few minutes at least, don the shabby rags of us poor peasants who are forced to use your product. You can do that, because, like me, you’ve also been on the peasant’s side more than you’d like.

Undo

Including UNDO in a computer system is a design heuristic that not only simplifies the user experience, but also the designer’s task. Design becomes simpler when participants in the system can undo mistakes they make while using it. This ability frees the design from anticipating every possible mistake a user can make.

On computer systems, of course, you can provide an UNDO command, which, whenever possible, should go as far back as the beginning of a session, or back to the most recent action that cannot be undone.

And, of course, just as in the physical world, computer systems can’t undo certain things, like something sent out of the machine. In such cases, however, the system should inform the users that something they’re about to do cannot be undone. Still, such a warning can easily become cumbersome, so experienced users ought to be able to turn it off.

Double Design

We speak of designing as solving a problem, but most of the time, a designer is trying to solve several problems at once. Sometimes the problems are closely related, but other times they are quite independent except for the fact that they are being solved simultaneously.

Here’s an example. I once designed a seminar building to be erected on a lot we owned right next door. Unfortunately, construction in our village can often be seriously constrained by building codes and interested neighbors. If I told people I was building a seminar building, I suspected I would be adding cost and delay to the project. Perhaps I would even causing the project to be prevented entirely.

My solution to this problem was to design the new building as a private home, one that might someday be sold for that purpose once I was no longer using it for workshops. In other words, the design solved two problems: private housing and seminar hosting. The seminar hosting, however, had to be kept a secret.

We shopped around and found a custom builder we liked. We visited a number or homes he had built, then gave him my rough design for our new building. He drew up more detailed plans, but in the process reduced the size of the living room (our secret meeting room for hosting seminars). He explained that in the New Mexico adobe style building, the roof was supported by vigas, which are a rough-hewn roof timbers or rafters. I wanted a 24-foot ceiling over the living room (the secret seminar room), but he said 24-foot vigas were much more expensive than the 16-footers he normally used in all his houses.

I told him that the 24-foot room span was absolutely essential, regardless of the cost. He responded by telling me how difficult it would be to lift 24-foot vigas into placed. Besides, he’d never done that, and all his customers were happy with the 16-footers. He, of course, was thinking of the house problem, but knew nothing about the secret seminar problem. And, I couldn’t tell him, or he would have had to seek an entirely different building permit, bringing the entire project to a dead stop.

We battled back and forth all through the building process, as designers and builders often do when designs are not conventional solutions. In the end, I got through to him that he would not be paid if the building did not have the 24-foot vigas, and I hired a friend to watch the construction every day until the vigas were in place.

There was an interesting sidelight to this tale. When the building was finished, the builder asked our permission to show it to some of his prospective customers as an example of his work. When he brought the first couple in to see the “house,” the instantly fell in love with the “extra-large” living room, something they hadn’t seen in any other builder’s houses. They signed up with our builder to provide the same 24-foot vigas in their new house (though I don’t think they were planning to hold seminars).

And soon after, he signed up another couple who wanted the extra-large living room, And another. And another. To this day, virtually all our builders customers come to him because of his famous trademark, the 24-foot living room.

Double design examples

Double-design situations are quite common in the computer business, though they do not always have such a happy ending as my seminar building. Here are just a few examples:

 	mixed customer support, some on a computer phone answering system, some with human operators.

 	one design for novices, another for experienced users.

 	similarly, one design for regular users, one for occasional users.

 	one design to conduct daily business, but one to secretly monitor employees at their work

 	one design for a customer catalog, but one to support store buyers in restocking inventory

 	one design to maintain student transcripts, but one to monitor faculty workloads, and perhaps even one to perform tuition accounting

What’s necessary to succeed in double-design

Double-designs, naturally, challenge the designer. Meeting that challenge begins with the act of thoroughly identifying and researching all “customers” who might have problems with the designed system. One of my most memorable clients invested a fortune in building an accounts payable system, only to discover, too late, that they had not sought input from the corporate audit department. When the auditors eventually examined the system, the declared it vulnerable to all sorts of dishonest dealing, and the entire project had to be scrapped.

And speaking of dishonest dealing, “customers” includes anyone who has an interest in the system, even if those particular customers are thieves trying to steal from it, or terrorists trying to destroy it. In such cases, the “problem” is thwarting them, but they must be identified if the design is to do its job. Similarly, the designer has to consider people who might be harmed by the system in some way, in this case, to protect them.

Even when all customers have been identified, the designer must be sure to monitor the construction so that all purposes are well-served. Otherwise, the builders will tend to drift toward emphasizing one problem over any others, as our builder did with his 16-foot vigas. Such monitoring, of course, is much more important when one or more of the problems has to be kept secret.

Putting Two Problems Together

Paradoxically, double design doesn’t always make design more difficult. Indeed, sometimes we can solve design problems by putting two of them together.

Here are a couple of examples:

We could design a retirement home adjoining to a nursery, so the old folks can spend some time with the kids, and vice versa.

Or perhaps an animal rescue organization could be next to the retirement home, so the old folks can play with the animals and perhaps tend to them.

Executives tend to spend too little time exercising. On the other hand, many organizations have parking that seems too remote from the office. So, instead of reserving executive parking closest to the office entrance, put it in the farthest corner of the parking area. That way, the executives will get a little walking exercise twice a day.

Estimating

Because designing requires knowledge of the future, but that knowledge is hidden from us, we need to be able to estimate unknown values. And not just in the future, because even present values can be difficult to discover.

Although we need the ability to estimate, I have no idea how to teach that ability, other than to practice estimating and measure how well you do. If you repeat such practice often enough, perhaps you will become a better estimator.

Here’s an exercise from Jim Batterson to get you started studying your own estimating mind:

Jim’s Estimation Exercise

This is an exercise that allows us to see how different people make estimates on incomplete information. If we work in teams, the teams should be independent and not share information. Please, no Google, Siri, or any such resources, just your head. After you estimate, you may wish to use these resources to check your estimates. Of course, in an actual design task, you should use any resources that can improve your estimating. This exercise may help you identify those resources for the future.

Some of the questions have answers that we can actually check. Other maybe not so much. Be ready to explain how you arrived at your answers. Time limit for answering all questions: 40 minutes.

When we do this exercise in a workshop, we hold a debriefing afterwards. In the debriefing, everyone learns techniques from the others, resulting in better future estimating ability.

Eleven questions:

1 1	How many tons of eggs were bought in Utah in the first two weeks of April this yea\
2 r?

 	What is the print circulation of the average Sunday Times (of London)?

 	What is the area of Indonesia in square miles?

 	How many calories in a meal consisting of a Big Mac, large fries and 16-oz non-diet coke?

 	How many gallons of water in a standard Olympic swimming pool?

 	What is the world record for solo circumnavigation of the globe in a sailboat? (Hint: Beginning and ending in France.)

 	How many more people voted for the top two presidential candidates in 1920 than in 1916?

 	What is the population of the 50th most populous country?

 	How much faster was the first woman Olympic gold-medal marathon winner than the first male Olympic gold-medal marathon winner?

Bonus Meta-questions:

 	Comparing team answers for the above nine questions, which question would have the largest ratio of difference? Why? And what is the ratio?

 	Which has the smallest ratio? What ratio? Of the questions 2 - 9, in which are you most confident of you team’s answer compared to actual? Least? Why?

12 For each question, how did you arrive at your answer?

Reflect on your (group) approach and identify any cognitive bias, e.g. anchoring.

Some answers

A few answers that Jim got with a little help from Google.

 Sunday Times (of London)

Circulation - 792,210 (Dec. 2016)

Indonesia 735,400 sq mi

Calories (BM 563. LF 510, CC 187) Total 1257

Olympic Pool 660,000 gallons

Circumnavigation 49 days 3 hrs (51,000 km)

Presidential elections

1920 Harding 16,144,093 Cox 9,139,661 Total 27,283,754

1916 Wilson 9,126,868 Hughes 8,548,728 Total 17,675,596

Difference 9,608,158

Note: 19th amendment giving women the right to vote passes August 18, 1920

Population (Angola) 26,655,513

 Marathon:

Joan Benoit (1984) 2:24:52

Spiridon Louis (1896) 2:58:50

Difference 33 min 58 seconds

Heuristics About Getting Information

Although designing may be an uncertain process, it can be made more certain if the designer obtains reliable information. In this section, we’ll examine some heuristics to help gain that reliable information.

Many writers have separated the design task into sequential tasks, generally called analysis and design. In my experience, however, all needed information cannot be obtained in one block of time and then dumped into a designer’s lap. Instead, the information gathering and designing proceed in parallel. Indeed, as we’ll see later, much design information isn’t available until we begin to implement the design.

Heuristics About Asking Questions

Don’t ask questions standing up (or otherwise seem impatient, as when someone is on hold, or it’s almost quitting time).

Wait for answers before you proceed. If you’re not sure the answer is finished, ask. Different people give different signs that they are finished. Sometimes the best information comes after a long pause that can be misinterpreted as an ending.

Give people time to hear their own answer and modify it.

Repeat the answer to help them hear what they said, and to confirm that you heard correctly.

Don’t start interpreting until you repeat and get a confirmation.

Don’t ask two questions at once, and certainly not more than two.

Don’t answer your own questions. Avoid building the answer into the question, as when you ask yes/no questionsâ€”particularly when your tone of voice indicates what you think the answer is.

However, it may be a good idea to have some questions to which you already (think you) know the answer. This can validate the person and/or you.

Don’t avoid a question because you’re afraid of the answer, or of one of the possible answers.

If you never ask a silly question, you’re not asking enough serious questions.

Listen to jokes. They contain difficult information. “That’s very funny. What about …?”
Two answers to one question are better than zero.

Timing is essential. The same question will be a different question at different times. Follow the flow of energy, and notice avoidance behavior.

You many find a list of possible questions useful, but don’t use a list to drive the sequence of questions. Instead, following the energy shown by the interviewee, then check your coverage against your list.

Persist in following up on questions where you feel the answer is incomplete, or misleading, or simply not understood by you.

Always end by asking for and receiving permission to return with further questions and clarifications.

(pagebreak)

Difficult Questions

Note: The following tale is adapted from my book, Rethinking Systems Analysis and Design.

Harlan Mills predicted that some day programmers will make so few errors that they’ll remember every one they ever made in their entire career. I’ve had a long career and I’ve made rather more than the one error per year that Harlan predicted. One a day might be more like it. But some errors were so gross or so costly that they stand out among the thousands.

Over sixty years ago, I was analyst-programmer for a service bureau studying a job that involved processing more than a million punch cards through the IBM 650 computer. Because of limitations on the 650’s ability to read cards, the only punches allowed in the cards were alphabetics and numerics. Special characters could not be read at all.

When questioning the client in our very first meeting,I asked, “Are there any special characters in the cards?”

“No,” he replied, “none whatsoever.”

“Good,” I said, “but I have to be sure. Are you certain that there are no special characters at all?”

“I’m quite certain. I know the data very well, and there are no special characters.”

On that assurance, we went ahead with designing and programming the application, only to discover on our first production run that the system was hanging up on cards like this:

THREADED BOLTâ€”1/2” #7

About sixty-five percent of the cards contained special characters, but when I confronted the client with this figure, he appeared genuinely puzzled, “But there are no special characters,” he pleaded.

“Oh, no,” I said triumphantly, “then what about this dash, slash, quote, and number .sign?”

“Those? What’s special about those? They’re in almost the cards.”

Some difficult questions

From this experience, I learned to assume that no matter whom I was interviewing, we would have differences in language.

 Did you get my last revision to this specification?

How would someone know if it was the last revision? Perhaps you are asking for the latest. Better would be “the revision dated xx/xx/xxxx.”

 Does everybody here approve of this change?

No individual can answer this, but each can answer for a single person. Better would be “Raise your hand if you approve of this change.”

 How many people didn’t use this service because of its poor human interface?

Who would know this number? Better to ask individuals what they did, and what were their reasons.

Be careful about any question about the future; such as…

**How often do you want this report? **

That depends on how good it is. They may not want to get it at all.

 How big will the error rate be?

That depends on how the system interface is designed, and the training of operators,

 What is the largest order you will ever get?

Nobody knows the answer to such a question.

 What have you overlooked?

If they knew that, they wouldn’t have overlooked it. But, you can ask metaquestions about the quality of your interview, such as, “What else do you think I should be asking your about?”

Visualizing

Interviewing and estimating may satisfy our need for numbers, but they’re not the only way to gather information about the future of your design. Here’s an example (with the full example given in my Experiential Learning series).

The Guinness Book of Records exercise

The Guinness Book simulation is designed to teach a variety of lessons about the way teams make decisions. We use the Guinness book ranking as a source of authoritative facts, but any other reference can be used as long as it can be the ultimate referee of the “right” answers.

The participants are told to rank the measurements of ten items by size, as they were listed in a recent Guinness Book of World Records. They’re not allowed to use the internet or any reference material. They are to use integers 1 through 10, once each, in their ranking, so there will be no duplicate ranks. The item with the smallest measurement (height, length, or distance, as applicable) should be ranked number 1â€”the smallest number. The item with the largest measurement should be ranked number 10.

The perfect method of ranking

Over the years, and hundreds of individual ranking the Guinness items, we’ve experienced only two perfect scores. Both were by women, and both had announced upon seeing the exercise, “I’m no good with numbers.”

After they saw their perfect scores, they were asked about their method of ranking the items. Each of them said essentially the same thing: “I pictured all the items in my mind, then arranged the pictures in a row according to their size.”

All the participants who were “good with numbers” were astounded by this explanation. I suppose they could say, “I’m not good with pictures.”

But many people are good with pictures. To me, what this result shows is the superiority of direct observation over indirect measurement and fancy mathematics. It also shows how much better visualization can be in some circumstances, which is the main reason we use visual models of our designs.

Not all visualizing is visual

Some people may have other ways of gathering such information. One of my students could not order a meal in a restaurant unless the menu was read aloud. The menus had pictures of the various dishes, but they were of no use to her. She was an “auditory” person, as was my friend Kevin, who is blind. Auditory people “visualize” a system better if they can hear conversations among people using the system.

In the United States of America, the majority of people depend primarily on what they see, but a substantial minority base most of their impressions on auditory information. Also, perhaps, there are some who prefer smell, taste, or touch, so a designer has to be alert to these possibilities. When working up a design with Kevin, we couldn’t think of an auditory modeling method that helped him participate, so we brought in modeling clay and built a touchable model of each of our design variations.

I’ve sometimes wished I could think of a way to model a system with scents, because then everyone will probably be able to tell when a particular design stinks. Alas, I haven’t yet found a way.

Changing point of view

We were having a good time shopping for groceries until my four-year-old daughter was unable to reach her favorite breakfast cereal on its high shelf. She began to cry about being too short for lots of things that bigger kids could do. I started to tell her that when she was older, she would be taller, too, but I realized that she wanted to be taller now, not five or ten years from now. I hadn’t had any empathy for her point of view.

When we got home, I got down on my knees to be her height while we toured our apartment together, finding lots of simple things to correct so she would be able to experience our home in a much different way. I rearranged some shelves, not just putting things she wanted to reach lower, but actually moving higher some dangerous items she could reach.

In order to satisfy a diverse population, a designer has to be able to share the perspectives of others. Make yourself shorter, or taller. Try to live in an environment where you don’t know the local language. Attempt to use computer applications while blindfolded, or wearing ear plugs or mittens. Sit in a wheelchair. Wear a neck brace that restricts your head movement.

Imagine yourself as the person who must keep the system up to date. Look at things as if you are the auditor, the representative of the Internal Revenue Service, the janitor, the CEO, the technician who repairs the computers. If possible, gather a few friends and conduct a role-play with you playing each of these parts in diverse situations.

Bad Decision Making

In the course of design, many people make many decisions. The way they make decisions may be flawed, so the designers have to be aware of the design of decision processes. They must also be capable of shaping those decision processes just as they shape the design of other systems. Here are a couple of common examples we saw in our Guiness Book exercise (described in the chapter on Visualization). Roughly, the exercise requires participants to estimate world-record sizes of a variety of items.

Control by eyebrow

When doing in-house courses, we often use real work teams in our exercises. In such cases, the Guinness exercise often provided powerful insights into a team’s working patterns. To give just one example, I recall an engineering team in a company that built control systems. The team consisted of four male engineers and their team leader, Louanne, a fifty-something grandmother who was under five-feet tall.

The engineers did quite well on their ranking, with scores ranging from 65 to 88 out of 100. Louanne’s score was 32, but the team’s score when they worked together was also 32. Louanne’s influence score was 100, showing that the four engineers allowed themselves to be dominated by Louanne’s opinions. Louanne, however, didn’t believe she had that kind of influence. “I hardly said a word,” she protested loudly. I didn’t influence their decision at all.”

The numbers said otherwise, and fortunately, this was one of the times we had a video of their team meeting. “See,” said Louanne after watching the video. “I hardly said a word.”

“Yes,” I said, “that’s true. But watch your eyebrows.”

We ran the video again, and everyone could now see how Louanne controlled the opinions of the four men by moving her eyebrows up and down expressively. Needless to say, from that moment on, their team changed its method of decision making. Also from that time on, when leading design decisions, I always made myself watch clues from eyebrows and other body parts.

A lousy decision process

The Guinness exercise often reveals flaws in team decision making. We watched another team with four guys and a gal debate the length of longest earthworm. Each of the four guys told a fisherman’s tale of their longest earthworm. Their worms averaged about 2 feet long. Riley, their female teammate, then told about seeing a television movie in which a gang of South American men stretched out an earthworm to about 20 feet in length.

The teammates argued and argued, but neither side would give in, so they “compromised.” They averaged 2 feet and 20 feet, giving their team’s length of 11 feet. Because the ranking was based on the world record earthworm, it’s easy to see that 11 feet was bound to be a terrible answer. If the gentlemen were right, then 11 feet was way too long, but if their lady was right, 11 feet was way too short. It was a perfect example of a lousy decision process, a great learning for all of us.

There may be a place for “compromise” in design processes, but most of the time such compromises on facts lead to poor designs. Better to take the trouble to obtain the real information, or the best estimate you can calculate. And, if you’re not sure of the facts, at least guess that the facts are those that will subject the design to the hardest test.

(pagebreak)

Designing to Intimidate

The daughter of an old programming colleague of mine recently took a degree in Computer Science. She is now writing Ruby programs for an IBM mainframe, which prompted someone to remark that she was a second generation programmer working in a third generation language on a fourth generation machine. “Yes,” she said, “and with first generation users.”

What defines a computing generation, anyway? In the end, it’s neither hardware nor software nor genetics, but the development of a new breed of user—one that will no longer be intimidated by the systems of the previous generation. Each generation of users expects the features of the previous generation as their minimum requirement, and goes on from there to demand new features.

In hardware, the best speed, capacity, and reliability of the previous generation come to be seen as slow, small, and unstable. In software, the best features and tools become primitive and clumsy. And in human systems, the good managers, analysts, and programmers become blind, blundering boors. When you’re trapped in a revolution of rising expectations, it takes all the running you can do just to stay in the same place.

The History and Psychology of Intimidation

When a new “generation” of technology first appears, it enjoys a grace period in which its users are intimidated by its very newness. Intimidation is an ancient method used by one group to control the behavior of another. In ancient times—and still today—architects created public buildings using tricks of the trade to make the average person feel insignificant. For instance, stairs with low risers and deep treads make the climber feel too small to dare approach this building. Massive doors make the opener feel weak. Marble floors make the walker feel cheap, and noisy. Profound inscriptions in dead languages on granite friezes supported by high columns make the reader’s neck bend backwards—as if looking upon angels—and mind bend sideways—as if listening to the words of prophets.

Such monumental architecture helps soften the citizens for processing by their government, but in the computer age there are even more subtle and effective methods of intimidation. When you pay your taxes, you are confronted with bizarre forms, covered with arbitrary codes and warnings about what will happen if you don’t confine your printing to the tiny boxes allowed, using a black ball-point pen, and pressing hard enough to write through seven copies. In case you should start to learn how to use the form, thus lessening that intimidated feeling, the form is changed in arbitrary ways each year—or even within the same year. Deadlines for submitting the forms are enforced with heavy penalties, but nothing is promised about when you will get a response, or even an acknowledgement that the form has been received. And, as a final ploy to make you feel stupid and inadequate, the envelope provided with the form is one millimeter narrower than the form itself.

The IT Center as Intimidator

It’s easy for a taxpayer to believe that designers of government forms are, like the designers of government buildings, consciously trying to intimidate the citizens, but it’s not so. Forms designers, and IT people in general, are much too far out of control to work on conscious intimidation of their customers. Their intimidating designs arise from pressure on one side to keep up with the technology and bureaucracy, with no corresponding pressure on the other side to serve their customers’ needs. They would certainly have no objection to designing forms that the customers could understand and enjoy using, if only they had the time. And knew how. But their good intentions don’t help their poor customers.

For a generation now—a human generation, that is—computer users have allowed themselves to be intimidated by large, centralized information processing organizations that were functioning very much like government bureaucrats. Like the government, these centralized organizations were the sole source of certain essential services, so customers were afraid to assert themselves against intimidating practices.

If you wanted a program developed, you took it at whatever cost and schedule you were offered. If it was delivered without some of the required functions, you adapted the way you did business to work around those functions. If the reports were in a complex format, you spent hours with ruler and pencil and calculator producing a derived report in understandable form. If the program produced obvious errors, you were forced to deal with a snotty young technician who considered you a moron for not knowing how to interpret the hexadecimal error messages.

The personal computer is bringing an end to the era of intimidation, but in a roundabout way that confuses traditional IT management. Whenever I’m called in to consult about a “users’ revolt,” the first thing the IT manager tells me is that the PCs don’t actually provide what the information center provides.”They use out-of-date information,” one manager told me. “It’s not accurate in the first place, and covers only a small part of the business. Of course they can get it faster and more conveniently from their Mac or PC, but I could give it to them faster, too, if it didn’t have to be right.”

Another manager greeted me with a careful analysis of the true cost to the company of providing a certain report on a PC versus his mainframe. Not too surprisingly, the report showed that the PC version cost 80 times as much.

What all these managers fail to understand is what every taxpayer knows. It’s not the amount of tax that drives people to revolution, but the way that tax is presented to them. People will quietly pay a much higher rate of tax if they don’t have to fill out tax returns or deal with bureaucrats. Why? Because nobody likes to be intimidated. If they have alternatives to intimidation, they’ll take them gladly, and pay a premium.

The managers may know about intimidation—they are, after all, taxpayers, too—but they fail to understand how it applies to them. “How could I possibly intimidate them?” one manager asked me. “If they have any problems with the machine or my staff, all they have to do is fill out one of these Special Problem forms. I personally check to see that they’re all handled properly.”

“And how many of these forms get filled out every month by your 800 customers?”

“Not very many—perhaps 10 or 12 valid ones.”

“Valid ones?”

“Unfortunately, many of them are rejected because they’re not filled out correctly. Which just goes to show how careless our users are. Maybe they like the PC because they can make mistakes without anybody seeing them. Or maybe they’re just acting like rebellious teenagers with a taste of freedom.”

In psychological circles, this type of self-blind analysis is known as “blaming the victim.”

They’ll Be Back

This same manager told me, “They’ll come around. They’re going through the same stuff we went through 20 years ago. As soon as they realize the shortcomings of their toy computers, they’re in here on their knees, begging for a more professional job.” His remark is only half right. They’ll be back, but not on their knees. More likely, they’ll be on his toes. They won’t be back as users, but as customers.

Many IT managers don’t understand the difference between a user and a customer. As one of our clients explained, “I never really noticed being called a user until a vendor referred to me as a customer. Then I realized that I was considered less important to our IT organization than their’ system, which I was graciously being allowed to use. Now when they call me a user, I correct them. I’ve even taken to crossing the word off their nasty little forms.”

What’s the essential difference between a user and a customer? A professor of library science once explained to me that there are two kinds of librarians: those who think their job is to make books available to their customers, and those who think their job is to protect the books from their users. Protecting the books started out as a means to an end—as part of the job of making books available—and for some librarians became an end in itself. Can it be that the same thing is happening to us as we become “information systems managers,” rather than “information service providers?” Is the system now more important than the customer?

What is more intimidating than a protective librarian? Yet who ever met an intimidating bookstore owner? Bookstores serve essentially the same functions as libraries, but they would go out of business rather quickly if they intimidated their paying customers. Customers have real cash to spend and can be intimidated only insofar as they have no place else to go.

Users can be intimidated because they don’t have choices. Using the free public library puts you in a user position. So does using the free—or “funny money”—information processing center. Cash is a magical leveller of abuses by both sides in a service transaction. Customers whose work threatens to reduce the service to other customers can be charged appropriately.

Without fines for late or lost books, libraries would have to be even more intimidating. Free services don’t have the benefit of cash to perform their intimidation, and so have to resort to more subtle means. Information processing services with a history of charging real money to their customers tend to be far less intimidating than free or funny-money services.

What follows are some of the little intimidating factors that we in the information processing business have traditionally used to intimidate our users. When they come back transformed into customers, these are the things they won’t be willing to put up with:

Filling in forms

Once they’ve gotten used to working on line, most customers will no longer allow themselves to be intimidated by forms. If they have to give information to the computer, they’ll expect an on-line entry system to be at least as “friendly” as their favorite PC package.

A large mainframe complex should be able to create a far friendlier environment than a tiny PC. In order to provide such service, however, some ancient systems will have to be redesigned, or at least given new front ends. That requires resources and, even more, attention from management.

Properly designed and implemented, a mainframe front end could do wonders for improving the relationship between an information center and its customers. Indeed, it could even introduce an element of dissatisfaction with PCs. For a long time, the mainframe advocates have been saying that they could do better than the PCs, if they wanted to. Now it’s time they started wanting to.

Insolent error messages

The switch from user to customer will have to be reflected in every interaction between the information center and its customers. It may be acceptable to respond to a user’s entry with ILLEGAL SYNTAX or COMMAND ERROR, but customers won’t put up with such an accusing tone. They’ll be much happier with

**UNABLE TO INTERPRET LEFT PARENTHESIS WITH NO MATCHING RIGHT PARENTHESIS **

or, perhaps,

 NO FILE IS OPEN; WHICH FILE WOULD YOU LIKE TO READ?

And, speaking of intimidation, wouldn’t it be nice if those messages simply read:

Unable to interpret left parenthesis with no matching right parenthesis

or,

 No file is open; which file would you like to read?

Nothing is quite so intimidating as the telegraphic shouting of messages in all capitals, a throwback to the very early days of very limited computers. The messages emanating from old applications have to be reviewed. Vague, hostile, misleading, and discouraging error messages have to be replaced with others that are more friendly, specific, beneficial, and encouraging. Mechanically, this is not such a difficult task, once there is a will to undertake it. In the few places where it has proved difficult, it’s always because the underlying software was a mess that needed redesigning for other reasons.

Big bad manuals

When handed a huge technical manual in response to a problem, users may be intimidated, but customers will not. PC manuals may be terrible, but at least they’re smaller than the typical mainframe manual. At best, they’re well written, with the customer in mind, and no customer who has experienced an excellent manual will ever willingly put up with a poor one. At the very least, PC users have learned to hack their way through problems on-line, rather than refer to poorly written or clumsily organized manuals. They’ll expect no less than such hacker access (“hackcess”?) to the mainframe as a source of information.

Rude treatment

One way to keep these new customers from hacking at the mainframe is to offer them the helpful, friendly, courteous, kind, cheerful service of a real human being who speaks intelligibly in the customer’s own language. Such human beings are in short supply in the typical IT organization—or so thinks the typical user. My own observation is that even the most esoteric technical workers can be helpful, friendly, courteous, kind, and cheerful to customers—if they’ve been told that’s part of their job. And if they’ve been given a little training. If they’re not, then it’s a management failure, and thus easily remedied if the design of a system includes this kind of training as a required part.

Slow service

Even with the nicest people in the information center, slow response time can make the customer feel that service is awful. With a PC on your desk, you can keep hacking away at your problem, so even if you’re not getting anywhere, you’re doing something about it. Action, even though ineffective, is the best preventive for what psychologists call “learned helplessness”—a condition that leads to depression and despair.

Staffing in information centers has often been done under the same design principle that doctors use—”it’s inefficient if our medical people are ever kept waiting by our patients.” (Maybe that’s why they’re called “patients.” The separate information center was created to address this very problem. Unfortunately, some information centers are being staffed under the same “doctor principle.”

As a rule of thumb, customer service people in an information center should be “idle” at least half the time—that is, not engaged with a customer and thus available for dealing with another customer. In one “information center” we visited, however, 10 of 12 staff members were spending their full time doing jobs assigned by the Director of Information Processing, leaving only 2 to serve the needs of over a thousand customers. All 12 had been originally assigned to helping customers, but each worker who was found “idle”—i.e., studying manuals or trying out new systems—was immediately assigned a project to “fill in.” Because the project came from the person’s boss, it was implicitly higher priority than any customer request.

Jargon

The first generation of PCs managed to create a community of customers who will no longer be put off by talk of bits and bytes. They may not know all the mainframe jargon, but they’ve learned the hard way not to be afraid to ask. Thus, information professionals have lost one of their main weapons of intimidation. This would be a good time for all designers to master plain language used for clear communication. It may not intimidate customers, but it might truly impress them.

What’s Our Business, Anyway?

Having pointed out all these intimidating practices, I should also take the information processing side of the controversy. Many of these intimidating practices are genuinely unintentional, caused by not really noticing the problem from the customer’s point of view. Unfortunately, good intentions are not enough when customers have choices.

And, it’s only fair to say that some of our customers are rude and intimidating to us. But most of these customers are acting obnoxiously out of sheer frustration with the rude intimidations of computer systems. And who among us does not know that feeling?

Life will become much better when both sides learn that people come before machines. Who knows? We may even find ourselves returning to the Golden Days B.C. (Before Computer) when people actually talked (not texted) to each other.

Who does your design intimidate?

So, now that I’ve given you a recipe for intimating the customers of an information system, how will you use the recipe?

It wasn’t really my intention to teach you how to intimidate customers, but, rather, to alert you to ways in which your designs might do just that, but unintentionally. If your designs simply avoid all these intimidation errors, they will be far better received, even if they’re not brilliantly executed.

It’s all too easy to allow intimidation to slip into your designs. I know, because I’ve been guilty of doing just that. I learned the hard way to avoid many of these intimidations by always, always, keeping in mind that information systems are ultimately for people. That’s why I always start my design process by discovering who matters.

Who uses the system?

Of course you can’t do a perfect job of identifying all potential users of your software and determining what they value, but that doesn’t mean you won’t benefit from trying. In fact, you’ll probably find it beneficial just to try doing it in your head. Once you’ve experienced those benefits, you may decide to interview at least a few major users to find out where their values lie.

Because of the conservative nature of culture, attempts to change are always met with “resistance.” You will be better able to cope with such “resistance” if you recognize it as attempts to be safe, to preserve what is good about the old way of doing things. Even better will be to begin a change project by acknowledging the value of the old way, and determining which characteristics you wish to preserve, even though changing the cultural pattern.

Wherever possible, when starting a design project, we like to broadcast what we are doing, inviting anybody with an interest to come talk to the designer. One danger, though, is implying a promise to implement any suggestions made by those who respond.

Another danger is self-imposed by the designer who receives numerous suggestions but cannot say “no.” And make it stick.

Another remote danger occurs if the system fails in some way that injures some party, physically or financially. I’ve heard lawyers argue that it’s better not to ask for suggestions because if the system does fail, you may be less liable if you never thought of the danger than if someone suggested a protection but you didn’t include their suggestion. I’m no lawyer, so I don’t know the strength of this objection, but I have heard of cases where this argument was made in a legal case.

Designs often fail when the designer fails to consider fully who will be using the system. And not just who uses it, but how they use it. Here are a few examples:

The anthropology exam

Curiously, though, some algorithms are faster with large data sets than small ones. Here’s a striking example: When my wife, Dani, wanted to generate tests in her large Anthropology class, she gave 20 questions to a programmer who said he already had a program that would do that job. The program, however, seemed to fall into an infinite loop.

Here’s what happened: The program was originally built to select random test questions from a large (500+ questions) data base. The algorithm would construct a test by choosing, say, twenty questions at random, then checking the twenty to see if there were any duplicates. If there were duplicates, the program would discard that test and construct another.

With a 500 question data base, there was very little chance that twenty questions chosen at random would contain a duplicate, so throwing out a few test candidates didn’t materially affect performance. But, when the data base had only twenty questions, and all Dani wanted was to randomize the order of the questions to prevent cheating, the situation was quite different. Choosing twenty from twenty at random (with replacement) was VERY likely to produce duplicates, so virtually every candidate was discarded, but the program just ground away, trying to find that rare set of twenty without duplicates.

As an exercise, you might want to figure out the probability of a non-duplicate set of twenty. Indeed, that’s another way to eliminate unnecessary code: by analyzing your algorithm before coding it.

The first ATM robbery

When the first ATM machines were introduced, an enormous amount of design attention was paid to security. The designers consider every possible way someone at the machine could steal money or add money falsely to a bank account. They were so proud of their work, they held a press conference as the first machine was put into use outside the building.

While the brilliant security design was being extolled to reporters in the building, a panel truck pulled up outside. Three masked men emerged from the truck with jack hammers and proceeded to remove the entire ATM machine from the sidewalk, carry it into their truck, and drive off with tens of thousands of dollars in cash.

In this case, the designers had thought about foiling robbers, but they had failed to realize that robbers did not necessarily live in the mental world of systems analysis, but in the physical world of jack hammers. In other words, it’s not sufficient to identify potential users or abusers of the system. For your design to be effective, you must have accurate models of all the people on your list.

The plumber on the stock exchange

The executives of a stock exchange decided to make its trading system available to the general public for marketing appeal. The designers, of course, knew better than to allow members of the general public to initiate trades, so the system was read-only.

Conservatively, they opened the new function on a Tuesday, after the exchange had been smoothly open for two hours—on a single, permanently connected terminal in a popular mega-store. However, about a minute after the new system went live, the entire stock exchange crashed.

They immediately realized that the crash was likely due to the new system, so they packed two programmers into a taxi and sent them across town to see what had happened. The store was all the way across town, and the taxi took about the same time to reach the store as it took the operators to restore the exchange, perhaps 45 minutes. As the programmers entered the store, two things happened. First, they received a call that the exchange was now running. Second, across the floor, they saw a man in work jeans crashing the exchange a second time.

How did it happen? Above the terminal was a sign inviting the store’s customers to access information on stocks. The sign provided a series of carefully designed, “foolproof” steps for “naive” users to access the system. The first step, of course, was to turn on the terminal, because a naive user might not know to do that. So, before you read further, ask yourself what was the first thing the plumber saw when he performed step one.

PAUSE for an answer.

I’ve asked this question of dozens of IT professionals, but they all failed, just as the system’s designers had failed. What the plumber saw was a pinpoint of light in the center of the screen, a light that then expanded to fill the entire screen. The plumber thought that was cool, so he turned off the power and turned it back on again. He then repeated the sequence several dozen times, watching the show as the light flashed on and off—until the exchange crashed.

He then stayed at the terminal while he waited for his wife to finish her shopping, repeating the sequence until the programmers were approaching.

The system had crashed because the designers assumed that the users would all be “serious” and perhaps “professional.” Each time a terminal powered up, a block of storage was allocated and dedicated to that terminal. That block stayed allocated until the system was shut down each night, so each time the plumber turned the terminal off, the block stayed allocated. Then, when he turned the terminal back on, an additional block was allocated. Finally, all memory was used up, and the system crashed.

When we asked the designers about this activity of turning the terminal on and off, they said, “Nobody would ever do that.” Translated, that meant, “None of the IT people we know would do that.” But, of course, they didn’t really know any plumbers, or anyone else who might think their very important, very secure system, was an amusing toy.

Changing point of view

We were having a good time shopping for groceries until my four-year-old daughter was unable to reach her favorite breakfast cereal on its high shelf. She began to cry about being too short for lots of things that bigger kids could do. I started to tell her that when she was older, she would be taller, too, but I realized that she wanted to be taller now, not five or ten years from now. I hadn’t had any empathy for her point of view.

When we got home, I got down on my knees to be her height while we toured our apartment together, finding lots of simple things to correct so she would be able to experience our home in a much different way. I rearranged some shelves, not just putting things she wanted to reach lower, but actually moving higher some dangerous items she could reach.

In order to satisfy a diverse population, a designer has to be able to share the perspectives of others. Make yourself shorter, or taller. Try to live in an environment where you don’t know the local language. Attempt to use computer applications while blindfolded, or wearing ear plugs or mittens. Sit in a wheelchair. Wear a neck brace that restricts your head movement.

Imagine yourself as the person who must keep the system up to date. Look at things as if you are the auditor, the representative of the Internal Revenue Service, the janitor, the CEO, the technician who repairs the computers. If possible, gather a few friends and conduct a role-play with you playing each of these parts in diverse situations.

Tradeoffs

We’re all familiar with tradeoffs given in conventional wisdom. For example,

• Look before you leap, but he who hesitates is lost.

• A stitch in time saves nine, but haste makes waste.

Probably, anything worth remembering is part of a contradiction, and designers run into these all the time. For example:

Make it easy to use, but easy to program when building.

Make access easy, but maximize security.

Tradeoffs are the essence of most design predicaments, and the daily bread of designers.

Tradeoffs change with time

Christopher Latham Sholes invented the first practical typewriter. Perhaps his greatest contribution was the QWERTY keyboard, which slowed the typist, but was designed to keep adjacent letters from being struck in sequence, to keep the keys from sticking.

But sticking is what the QWERTY keyboard design has done for more than a century, well after the mechanical need for non-sticking keys disappeared.

Now, the tradeoffs are different—retraining of hundreds of millions of keyboard users being the greatest expense and barrier to adoption of some other keyboard layout design. It may very well be that keyboards will eventually go to their death before “reforming” Sholes’ great invention to something “better,” like the Dvorak keyboard layout.

It’s not taken 150 years, but the same change of tradeoff balance happens all the time in the ever-changing systems business. For example, with the rise of cyber terrorism, the balance of “make access easy, but maximize security” tilts way over to the security side. And, when security is not considered at the highest level of design, many systems designs have to be started over from scratch,

Features become errors

Time does not heal all wounds. Just as errors can become features, features can become errors.

• The yellow light on my gas gauge is drifting off center, and now comes on when the gas tank is half full, or more. It’s become an annoyance, and wasn’t that useful to begin with.

• Many of the beginner’s helpers in software have this quality. Once you learn the shortcuts, these “features” start to become nuisances. Hopefully the design allows you to turn them off.

• There’s a similar problem when there are too many features, and they begin to collide with one another, leaving no Hamming distance between operations. Every little keying mistake sends the operator into unanticipated and perhaps unknown territory. Designers can prevent this type of error by keeping the codes for different features separated from one another. This can be done, for instance, by requiring two=character codes, though this trades off against ease of use.

Constraints

Dani’s new van seemed to be having trouble with tire inflation. One tire had a “hole” and was replaced two days after she took delivery. Four days later, a warning message on the console said another was dangerously low. She found a tire gauge in the glove box and tested all four tires. The readings were inconsistent, so she rushed over to PEP Boys to have them check.

Sure enough, one of the tires (the new replacement, ironically) was dangerously low, and the other three were well below specification. PEP Boys filled all tires to spec, free of charge.

Dani decided it would be a good idea to acquire a better gauge, and she was in the right place. The clerk told her where to find a gauge. She fetched one and stood with it in the checkout line. The man in front of her asked her if the gauge was for a car or truck.

“It’s a van,” she said. “Sort of in between.”

“Trucks and vans require higher tire pressure. What’s the spec on yours?”

“The books says 64 pounds.”

He held out his hand. “Let me see that gauge.”

She handed over the package. He turned it over and read, “…up to 60 pounds.” He shook his head, knowingly. “I think you don’t want this one.”

“Thank you,” she said warmly and turned to the checkout clerk. “Do you have any other gauges, ones that go above 60 pounds?”

“Sure,” said the clerk. “But they’re more expensive.”

 MORAL: If you want a gauge that doesn’t have to work, it can be very cheap.

The First Law of Software Engineering

In other words, this story illustrates the First Law of Software Engineering (or any engineering or design, for that matter):

 If the system doesn’t have to work, it can meet any other requirement.

After a bit of thought, this Law seems obvious, but what specifically does it have to do with design, and particularly Agile design?

For any system, the things it must (or must not) do are constraints. For a system to “work,” then, it must satisfy a number of such constraints, and each constraint makes the design job just that much more difficult. When buying or building a produce (such as the tire pressure gauge), we’re not going to be satisfied if we don’t know what it’s supposed to do—what it means to work.

The PEP clerk didn’t know that Dani had a van, so he guessed (or assumed) that she wanted to measure low pressure tires. That’s what designers often do—guess or assume what constraints the system must satisfy. But why would they do this, since it obviously exposes them to error?

For one thing, their customer may not know their constraints. Dani, for example, didn’t know that she needed high pressure measurement.

For another, the designer (or clerk) may have some problem communicating with the customer. On Agile development teams, a special person—a customer surrogate—is supposed to know what the customer wants and communicate those wants to the team. For many Agile teams, this role of customer surrogate is the weakest link.

Everything in Agile is based on the redundancy of team members, but the customer surrogate is often a single person—a single point of failure. Successful Agile teams may just be lucky to have an outstanding, error-free customer surrogate, or else they provide some form of redundancy. In Dani’s story, she was lucky that the man in front of her in line supplied such redundancy.

In other cases, the designers know the customer’s requirements but decide to simplify their task by relaxing some constraint. Perhaps the PEP store has no van-capable gauges, but the clerk wants to make the sale. He might say to himself, “Sure, she has a van and needs a gauge that goes up to 64 pounds, but one that goes up to 60 ought to work pretty well. That would save her running all over town to find a van gauge, and she won’t know the difference. Giving her one of our gauges is for her own good.”

“For her own good”—it’s a common reason for giving a customer something that’s not what they want.

Performance By Design

Years ago, C Northcote Parkinson formulated his famous law:

 “Work expands to fill the time available for its completion.”

Today, people with personal computers are learning an expensive corollary of that law—Parkinson’s computer corollary:

 Computing work expands to fill the computer power available for its completion—and then some.

To defeat Parkinson’s corollary without spending a fortune on gargantuan computers, designers need to learn how to fight with a few “mathematical” principles of their own. But before we get into that, let’s see what happened to a company that thought it could defeat Parkinson with raw spending power.

Peeble’s Pebble Parlors (PPP) supplies crushed rock for a variety of ornamental and industrial uses. Like any large company, PPP was a firm believer in the utility of computers for handling administrative tasks. In Year Zero they bought their first computer, for $1,500,000, but our story actually begins in Year Five, when the gardening boom had driven Peeble’s orders to new heights. This boom pleased the stockholders, but swamped their computer. Like thousands of other computer users, they decided to upgrade to a bigger machine, but how big a machine did they need?

One way to measure the “power” of a computer is to measure the time it takes to perform a standard battery of tasks. The less time the computer takes to complete the tasks, the greater its power. Looked at another way, the “power” of a machine is the number of standard, tasks it can perform in a fixed amount of time.

Peeble’s Year Zero machine had a processing power of 5. When the crush came in Year Five, they determined that they needed a machine with power 20. Consulting a price-performance chart, they found out that such a machine would cost them about $1, 500,000. This seemed a good bargain, because their old machine, with a quarter the power, had cost about the same just five years earlier.

PPP thought their new machine, would last forever, but by Year Ten, they were swamped again. This time they calculated that they’d need a machine that was 20 times as powerful as their original machine—power 100. In Year Five, 100 units of processing power would have cost them a lot of money, but fortunately, by Year Ten new central processing unit technology was on the market, creating a new price-performance curve. Using the Year Ten curve, they selected a new processor for, $1,500,000, the same price they had paid for a much less powerful machine five years earlier. Clearly, PPP had benefitted from the improvements in computer technology.

But five years later, their business had once again forged ahead, and they needed about 500 units of processing power. Based on their previous experiences, they were confident that they could get what they needed, probably for around $1,500,000. But when they looked at the Year Fifteen price-performance curve, they got a nasty surprise. Although they could have replaced their current, machine for around $600,000—a tremendous bargain—they could not obtain a power 500 machine at any price! It was beyond the present technology.

Up to Year Fifteen, Peebles had used only one strategy in meeting the expanding needs for computing power: spend more money. But with the failure of that approach, they were forced to take drastic steps. First, they decided to order the best machine they could get a power 400 machine at $3,000,000. Then, they called in a computer science consultant to see if there wasn’t some way they could squeeze just a little more power out of this new machine they were about to buy.

After a careful study of their order processing application, the consultant signed a contract to make just two small modifications to their programs. When these modifications were finished, the system worked in exactly the same way. But there was one little difference: processing a day’s orders, which formerly took 11 hours overnight, now took exactly 10 minutes.

Peebles executives couldn’t believe that the two versions of the application were identical in function. They ordered exhaustive tests which revealed not the slightest difference—except for the 100 times reduction in processing time. They were somewhat deflated to learn that they weren’t going to need the world’s most expensive and powerful computer, but the millions in savings helped to soften the blow.

How could the consultant have achieved so much in so little time? One of the important components of Peeble’s programs was a routine that searched through their list of customers. Whenever a customer placed an order, the computer’s first job was to retrieve the customer’s identification number, credit rating, and related information. Because Peeble’s programs had grown large over the years, it was difficult for them to isolate the behavior of any portion, like the customer search, to see how it affected the processing time. For the same reason, it would be difficult for us to explore their programs, so instead, I will simplify the example by looking at another PPP company, much smaller, but with similar problems.

Presidential Portraits Perpetually runs a mail-order business in hand-painted presidential portraits. Many customers order portraits by name, but some wanted the president inaugurated in a particular year. Therefore, they used a search program that finds which president was inaugurated in a particular year.

The data is stored with the inauguration year in a key table and the presidents’ names in another table. The key table is in no particular order, and looked something like this:

 	Key
 	Record

 	1889
 	Harrison

 	1853
 	Pierce

 	1909
 	Taft

 	1841
 	Tyler

A searching problem couldn’t be much simpler than this. All their program had to do was look down the first column until it found the right year, then return the corresponding name from the second column. Counting two-termers, their table contained fewer than sixty entries. Assuming that there is no particular pattern to the mail orders, each search had to examine about half the table, or perhaps 30 inauguration years.

But suppose there is a pattern. Suppose that most of the orders are for recent presidents—the more recent, the more orders. If the table starts with Washington (1789 and 1793), followed by Adams (1797), Jefferson (1801), and so forth, most searches are going to scan through almost the entire set of presidents before finding a modern president. If we measured the performance of the program in this situation, we might find that the average search scanned through 50 presidents. This is almost twice as long as the search for “random” requests.

The First Searching Axiom

To improve the original search time, this PPP didn’t need to expend a huge consulting fee. The president’s 13-year-old son looked at the problem and said, “Don’t start searching from the top of the table, start from the bottom!”

The president was greatly impressed with this suggestion, and not just because it came from his own son. He was quick to realize it was an application of a more general principle, one he eventually had engraved on a brass plate above the door of the computer room: The First Searching Axiom:

 The proper search technique depends upon the way the collection is designed.

Seems simple, doesn’t it? Just about as simple as the plane geometry axiom, “through every pair of points we can draw exactly one straight line.” But it’s easy to overlook the obvious, when caught up in the complexities of a computer application. That’s why we give obvious things fancy names, like “axiom”—to remind us how important the obvious can be.

The Second Searching Axiom

After some experimentation with backwards searching, PPP found that the average number of searches was down to about 10. Encouraged by his son’s success, the president called in his daughter, a college student studying computer science. She pointed out that they could have arrived at the same improvement in a different way. Instead of changing the direction of search, they could have changed the direction of storage. By storing the presidents backwards in time, and searching forward, they would have obtained the same average search time.

Her father wasn’t too impressed with the value of a college education, until his daughter pointed out that she had applied another powerful axiom—the Second Searching Axiom:

 The proper structure for a searched collection depends on the kinds of searches we will make.

“And why is this so important?” he asked.

“Because it makes us look beyond the obvious,” she replied. “Once I started to think of changing the order of the table, I realized there were two kinds of searches that accounted for most of the mail orders. Sure, most of the people ordered the most recent presidents, but there are still a substantial number that want the earliest presidents. “The First Searching Axiom suggests that we change the search technique, but when we go backwards, the early presidents start taking a lot of time.”

“So how does the Second Axiom help?”

“By suggesting that there might be a better order one that meets the requirements of both types of searches at once.”

“How can you do that?”

“When I studied our orders—the kinds of searches we will make—I came up with a list of presidents arranged with the most frequently ordered first. By arranging the table in this order, I dropped the average search from 10 to about 4.”

The president, with paternal pride, decided to have the Second Searching Axiom put on the door, alongside the first.

Divide and conquer

The first and second axioms may be suitable for the little PPP, but could they really have been sufficiently powerful to reduce Peeble’s daily searching time from 11 hours to 10 minutes? Although they differed in size and complexity, the two PPP’s problems were actually quite similar.

True, Peeble’s Pebbles had over 300,000 customers. (How many people do you know who own at least one pebble?) Like Presidential Portraits, they were searching a table for a match on one item—customer name rather than inauguration date. And usually we find that the larger the table, the more benefit there is in applying a careful analytical approach.

In mathematics, we combine axioms into theorems. In computing, we combine them into solutions.

Peeble’s consultant had quickly realized it would take more than one axiom to solve Peeble’s problem. A few of their customers— about a thousand nurseries, construction companies, and wholesalers—placed orders almost every day. The bulk of their 300,000 customers, however, placed orders rather infrequently. Applying the second searching axiom—just as the president’s daughter had done—Peeble’s consultant saw that search time for the frequent customers could be reduced by arranging customers in terms of their ordering frequency.

Even so, this single application of the axiom didn’t help with the remaining 299,000 customers. Whenever one of the less frequent customers was sought, it would require nearly 150,000 searches. Even worse, to check that someone who claimed to be a new customer wasn’t actually an old deadbeat, they’d have to search through the entire list of 300,000 names.

Such a deadbeat search would actually have been faster under the old system, where names were stored alphabetically. That way, the average order would have cost 150,000 searches. Applying the second axiom could reduce their processing power needs from 500 to 400, but the cost of a 400-power machine would still take a hefty chunk out of Peeble’s annual earnings.

When Peeble’s consultant drove home after his first day’s work, he felt that a better solution was just outside his grasp. Luckily, when he entered his front door, he happened to glance up and see the motto on his brass plate:

 The primary programming postulate: To divide is to conquer.

That was his way of remembering the Square Law of Computation. The consultant realized that it made no sense to treat the infrequent customers in the same way as the frequent ones. Instead, they could be ordered alphabetically, as before. Since there was no way for the program to know in advance which customer was which type, the program would always have to look first at the 1,000 frequent customers. But if the customer wasn’t on this list, the program would search the large alphabetical list. There it would search only 150,000 items, on average, because if it were searching for Ms Orange, it could stop when the sort name was Mr Plum. This double arrangement reduced the searches for infrequent customers from 300,000 to about 150,000, and the consultant went to sleep with a contented smile on his face.

Binary search

Alas, he woke up with a cold, so he went to call Peeble’s to tell them he’d be a little late. When he looked up their number in the phone directory, did he start with AAAAA, Aardvark Grooming on the first page? Would you? Of course not: Like you, he opened the directory to approximately where he thought the Ps would be. It happened to fall open at Noguchi-Nussbaum, so he tried again, a little further in the book. This turned out to be Ranerjii-Rasputin, but in only two more tries, he had located Peeble’s.

Because of his cold, we can excuse the consultant for not seeing the application of his directory searching method to Peeble’s problem until he got stuck in a traffic jam on the freeway. Sitting there breathing fumes, with lots of time on his hands, he figured out that he could search the alphabetized customer list starting with McGoff, right in the middle. If he was searching for Daniels, the program would have to move up in the list. Searching for Rinehart, it would have to move down. Either way, with each successive search the program would eliminate half of the remaining list. He had imitated the “binary search.”

Using this design, the resulting search would never have to make more than 19 searches of the low frequency customers. By following the first searching axiom, and picking a search technique that took maximum advantage of the order in which data was stored, he was able to speed up Peeble’s application by a factor of more than 60, thus saving them a few million dollars.

In a perfect world, the consultant could have gone several steps further—eliminating, for example, the separation into frequent and infrequent customers, or searching the frequent customers by a binary search technique. But Peeble’s data file was too big to fit conveniently in main memory, and searching through disk drive takes much longer than a corresponding search through main memory. Since the frequent customers did fit in main memory, the thousand searches through that list actually cost much less time than the 19 searches through the disk file.

Need we point out that by adapting his strategy to these two facts about memory size and speed he was once again applying the first searching axiom? So, there’s really not much to our new math, after all. Just a few simple principles, Which could have been deduced even more easily if we’d examined the way we search through things ourselves, without computers, just as Peeble’s consultant did when he noticed how he searched the telephone directory.

The First Foundation of Effective Computing

So why don’t some designers think this way more often? Probably because they believe computing effectiveness is obtained through coding tricks, so they look in the wrong place. They would do well to be guided by another simple rule—The First Foundation of Effective Computing:

 When you need efficiency, think about the design of algorithms and data structures, not about code.

The first foundation brings hope to all of those who are not, and never hope to be, hackers. Quite frequently, we can improve the performance of an application without even having the slightest idea of what language it’s written in by reordering some data structure. If we can’t alter the data structure, perhaps we can use an option in the same package—to gain a fantastic improvement that saves us having to buy a new computer.

The Second Foundation of Effective Computing

And where do we get the ideas necessary to make these decisions. We certainly search through our unordered recipe file differently from the way we look for phone numbers. Pebbles could certainly have solved their problem without help had they merely tried doing it a few times by hand.

Which brings us to the most powerful, and most overlooked principle in all of computing—The Second Foundation of Effective Computing:

 Quite likely, you already know how to do it better than the program.

It’s true, of course, that there are some instances where a non-obvious technique will produce great savings. In the Peeble’s case, the consultant could have made a further reduction by applying a computer science technique known as “hashing.”

If hashing was not practical, the order of the list could be optimized adaptively by a self-organizing process known as transposition.

The Third Foundation of Effective Computing

But once Peebles had reduced their processing time down to 10 minutes a day, why bother? As a consultant, not a hacker, their consultant understood The Third Foundation of Effective Computing:

 Stop optimizing and be satisfied when enough is enough.

In Praise of Efficiency

When you’re given a new design assignment, you’ll quite likely to be told your customers want an efficient system. That’s a great idea, but be sure you understand what they mean by “efficiency”—because they probably don’t. Are they talking about time efficiency, capacity efficiency, feedback delay efficiency, or some vaguely defined total efficiency?

One way to clarify their desires is to ask:

 Who pays when the system is inefficient?

Those are the people you’ll have to satisfy with your “efficient” design. Be sure you understand their constraints and parameters, so you’ll know when to quit trying to be more efficient.

Is enough enough?

The Third Foundation of Effective Computing says:

 Stop optimizing and be satisfied when enough is enough.

When first proposed, that Foundation was a revolutionary idea. But every revolutionary idea has its limits. Improved public health is limited by the appearance of “cleanliness diseases,” such as polio. Non-violence is limited by insane aggressors attacking one’s person. And, in computing, the modern idea of ignoring efficiency is limited by human fallibility and folly.

For those of us who cut our programming teeth on machines with multi-millisecond add times, “efficiency” was the “divine right of kings.” Then came the revolution—not liberty, equality, and fraternity, but mips, micros, and megabytes. We were devastated. Whenever we raised a question about the efficiency of the latest high level language, data base, or software package, were weren’t guillotined, we were simply laughed out of the discussion.

Some years ago, for instance, I submitted a paper to the Communications of the ACM about inefficiency in virtual memory systems. The paper took the point of view of the programmer, rather than the operating system designer, and suggested ways in which pathological inefficiencies could be avoided. The referee’s comments seemed barely able to suppress a snigger as they rather rudely stated that “programmers need not be concerned with efficiency of paging—the operating system scheduling algorithms will smooth out any aberrant behavior.”

Like the religious fanatic with a blind devotion to non-violence, this referee must have had no experience with real aberrant behavior. Otherwise, he might have tempered his zeal with a grain of humility. Those of us who’ve been in the programming slums could never have made this arrogant mistake. We knew, deep in our hearts, that someday the aberrant behavior would once again rear its ugly head.

Many years ago, when I worked for IBM, a potential customer asked me, “How many programmers does it take to keep a 7094 busy?” I thought about typical installations I had visited and came up with the number fifty. But before I answered, I remembered one installation dominated by an aberrant programmer. “Fifty,” I answered, “if they’re good enough. And only one, if he’s bad enough.”

Worst-first optimization

At the time, this kind of thinking was against the IBM party line. IBM, after all, made its living entirely from the sale and rental of hardware. If aberrant behavior consumed more machine time, then we definitely didn’t want to discourage aberrant behavior. But now, perhaps, the times are changing. Possibly we’re coming to the limit of problem solving by brute force, raw speed, and gargantuan capacity. IBM no longer applies those old.

Contributing to this change at IBM was an old report by Gerald Waldbaum from the IBM Research Laboratory. (RJ2409-31920-12/4/78, “Tuning Computer Users’ Programs”). Waldbaum “ described how the Yorktown Computing Center improved the efficiency of computer programs that were using large amounts of CPU time and other computer resources.-“ He provided an excellent general discussion of the sources of inefficiency, the effects on a computer installation, and the methods available for attack. But to me the most impressive part of the paper was the 8 case studies—sketches of 8 aberrant programs and how they were tamed.

For instance, his Case 1 was a Monte Carlo simulation that essentially consumed 24.5% of all prime shift TSS CPU time for the month of September–this was one user out of 408! In two days of tuning, the program was made to consume 59% less CPU time. As Waldbaum pointed out, none of this tuning was particularly sophisticated. Mostly, in fact, it was trivial—like using the OPT=2 compiler option instead of OPT=1.

Now wouldn’t you think a user who was consuming a quarter of the system’s resources would at least have the brains to ask the compiler for optimization? Or, lacking brains, the courtesy to others? Well, not if you’d been around as much as I’ve been around you wouldn’t think so. The simple fact is that if there are 408 users, one or two or three of them is going to be able to hog whatever resources you make available, now and forever more.

Some time ago, I wrote about “worst-first maintenance.” Waldbaum’s attack on these efficiency hogs was a perfect example of this philosophy applied to questions of performance. In order for his approach to make any sense, he couldn’t attack the programs of all 408 users at the same time. Somehow, he had to place priorities on the work of his efficiency team. To do this, they used accounting information, insofar as it was available to them, to rank the users in “worst first” order.

What they found over five different systems in use was a startlingly consistent picture of aberrant behavior. On TSS, 1.5% of the users consumed 50% of the prime shift billed CPU time. On OS, it took 4.0% of the users to consume 50%; on the 168 VM/370, 4.4%; on the 145 VM/370, 2.9%; and on APLSV, 1.0%. Thus, by addressing only a handful of programs, they were able to make substantial reductions in hardware requirements.

Waldbaum summarized the benefits of the tuning his team performed as follows:

 	The user whose program is tuned benefits, by being charged less and having a faster turnaround.

 	All users benefit by being able to do more work faster.

 	The computing center has better relationships with its users.

 	The financial staff (but perhaps not the IBM salesperson) is overjoyed at increased throughput and fewer demands for more hardware.

 	Programming errors are discovered in the process of tuning. I’ve preached this, sermon for years—if the customer is confused about a program’s performance characteristics, you can be darn sure customer is confused about the program’s function.

 	Better designs can be found for solving the customer’s problems. This is an extension of the above sermon, but in this case the results may be even more dramatic. Waldbaum cited one case in which a program consuming 25 hours of prime CPU time every two weeks was replaced by a 2 minute manual procedure worked out by the tuner!

The First Rule of Optimization

In short, if you’ve gotten dogmatic about the revolutionary idea that “we don’t need to be concerned about efficiency anymore,” it’s time you backed off just a little bit. And start backing off with the “worst first” approach. Instead of either ignoring efficiency or trying to optimize ever last part of a system, focus your design work on that part of the system that’s going to contribute the most to inefficiency. This design heuristic is based on The First Rule of Optimization:

 At most one part of a system can consume more than half the resources.

This Rule applies to all “parts” of a system, including the human components. I cannot count the number of times I’ve seen designers “optimizing” a program when the virtually all of the delay in providing a service was in the hands of the people providing the service. The most egregious example of this kind was the executives who spent millions on new hardware and software tools attempting to cut the typical 5-year application development time in half. When I was brought in as a consultant to help them achieve this goal, a bit of examination of history revealed that the first four years of a project were consumed by these same executives trying to decide how much to fund the project. There was only one place to cut the time in half, and that place was the executive meeting room.

The Curse of Optimization

Designing a system to be more efficient is one thing. “Optimizing” a system is something quite different. “Optimizing” sounds terrific. Who could be against optimization?

Well, think again. “Optimizing” implies that one system attribute is more important than all the others. For example, several clients have told me that they were trying to “minimize costs.” Minimization, of course, is one type of “optimization.”

I learned to reply to them, “In that case, shut down all your operations and go out of business. That will reduce your costs to zero, surely the minimum that can be achieved.”

Later, I learned to deliver this message gently, to increase the chance that they would hear what I was saying: optimization is a false idea. Instead of optimizing, try satisfying. Perhaps, after you have a design that satisfies all constraints and wishes, you’ll have time and motivation to “optimize,” but you probably won’t. Instead, you’ll probably want to move on to another design project that satisfies your customers.

Now versus later

“With high hopes for the future, no prediction in regard to it is ventured.”—Abraham Lincoln, second inaugural address, 1865.

Not long after, this speech, Lincoln was assassinated.

Designers work in the future, with people in the present, using information from the past. Consequently, one of the persistent tradeoffs in the design business is now versus later. Many times, we feel we can do something now that will pay off later, but convincing others may prove difficult because the future is so uncertain.

What do we know about the future?

Our future could end at any time on any day, and we have no way of knowing when, Still, our past was once the future, and we can study that past. In the past, the future was like the past, so perhaps our future will resemble our past. Here are a few future bets I’d be willing to make:

 	As time goes by, systems will get older, patched, out of date, and difficult to modify.

 	As time goes by, systems tend to grow bigger

 	As a system is used, it becomes more encompassing.

 	The easier systems will have been implemented, leaving the residue of more difficult systems.

So, in the future, our systems will be older, bigger, more encompassing, more difficult to modify or build anew.

What can we extrapolate from these predictions about the future? Is it all negative? Aren’t there any things that will get better?

 	Standards of workmanship will improve, but expectations will grow, perhaps faster than these standards.

 	Common solution parts will be more available, but may no longer be appropriate. Also, there may be so many common solutions that picking one of the many becomes a problem.

 	Users of systems will grow smarter, but only about the past. Here’s one familiar example: the documentation of a new system may not be as good as it might be. People try to use the documentation, but if they don’t find it helpful, the learn to use other avenues for assistance. Some of these people complain, with specific issues, and the documentation improves. As the system matures, the documentation may become excellent, but everybody has learned not to use it.

Lifetimes

Designs are for the future, so designers need to predict, or at least imagine, what sort of future the system is expected to have. We can classify three different kinds of future for a system:

• single use, then throw away: no future

• eternal, like the pyramids, though they’re not really eternal

• anticipated life (and who pays, now or later?)

It’s easy to imagine your system will live forever, but it won’t. Even if it’s to last a long time, it will probably need ongoing maintenance. So, paradoxically, you protect your system from change by making it readily changeable.

A horrible example of failure to consider system lifetime was the mess called Y2K—the change of dates from 1999 to 2000. Although I have emphasized how designers don’t know the future, year 2000 was a pretty good bet to come after 1999. Even so thousands, perhaps millions, of systems had been designed using date fields such as 12/31/99. They simply had to be redesigned for the new millennium—and in a hurry

We have two general strategies for successful designing:

 	Designers can guess the future, but even when the future is rather predictable, as was Y2K, many designers simply fail to take it into account. One manager said to me, “We didn’t see it coming.”

 	Designers can create designs that work regardless of what the future brings. We may not know in detail how the system will need to change, but we can sometimes make the system adaptive (portable, language modifiable, …).

 	Did I say two? Actually, there’s a third possible strategy that many designers ignore. If you broaden your view of “system,” part of your system design my include modifying the future. For example, the design might include plans for selling the solution (making it marketable: setting the price, choosing the features, tying in to prior systems, creating an educational system to teach all aspects of the system to new people).

Robust Designs

The designer’s bet is for the short term, but the client’s bet is long term. One test of a design is how it handles situations that were not even thought of in the design process. Example: A file reorganization program started by copying the original file. Although some designers criticized this intermediate file as wasteful of performance, it turned out to save their bacon when the system once crashed in the middle of a reorganization. The intermediate file became a backup to restore the original.

Here’s another way to memorize this heuristic:

 Design ideas should last longer than coding details.

So, the designer ought to think about this heuristic always when making choices, but often the pressure is for short-term performance, so customers don’t see the long-term choices, or see them and don’t understand. Thus, the designer has a communication task—either to show what she has done or hide what she has done, perhaps disguising it as something else.

In October 1927, construction began on the George Washington Bridge connecting New York and New Jersey. It came to life four years later, with one deck and four lanes. Unknown to most of the politicians, Othmar Ammann, the chief engineer, designed the bridge so it would easily handle the addition of a second deck many years later. The unknown but anticipated second deck was added in 1962, more than 40 years after the original design.

What do we know about the past?

This seems a good place for a word of advice to use when examining previously designed systems. First, realize that when those past designers did their work, they didn’t know their future. Their future may be your present, and know very well by you, but they didn’t know that way back then. Best you know their past before making critical judgments.

When we build the world-wide NASA space-tracking system, we used teletypes to communicate all around the globe. A generation later, a designer criticized this choice. Various networks, he said, we far more reliable and fast than teletypes. The only problem with his criticism was that his fast, reliable networks covering the entire planet did not exist in 1958 when we started the project. We did the best we could with the only world-wide digital network we had.

This designer’s criticism made him look like a fool. Because it was my design he was criticizing, it didn’t make him my best friend, either. Really, when designing systems, you need all the friends you can get. Don’t antagonize your predecessors. You’ll have plenty of other opportunities to look ignorant.

Size

In the study of fracture mechanics, “the larger the structure the lower the stress which may have to be accepted in the interests of safety. This is one of the factors which tend to place a limit on the size of large ships and bridges.” - Gordon, James Edward, Structures: or Why Things Don’t Fall Down, DeCapo Press, Inc., New York, NY, 1978

We’ve seen that not every building analogy holds for information systems, but Gordon’s observation does. Information systems sometimes crash from small stresses, and big ones tend to crash harder, more often, and stay down longer.

Standard parts

“Size” is easy to talk about, but hard to pin down. For instance, to the extent that the design uses standard, tested parts, the system is “smaller.” It’s more reliable and not as difficult to maintain. The heuristic here might be

 Know what standard, reliable parts are available to be used in you design.

Scale

Bigness can cause so much trouble, a designer must struggle to keep things as small as possible, but, of course, no smaller. For instance, though large size is sufficient psychological reason for decomposition, small size is never a sufficient reason for re-composition:

 Bigger is harder.

Here’s an example. Some years ago the people who build refineries and other chemical plants began to notice a trend in failures. Although a bigger plant was more economical when in production, it naturally cost more to have it out of production. Moreover, because it was bigger, more things could go wrong, so things went wrong more often—and could take it out of production. And finally, because it was bigger, it was generally more difficult to figure out what had gone wrong, so each time it failed, it was out of production for a longer tune. Does that sound like any systems you know?

Just as you can compute the cost of producing one unit, you can also compute the cost of not producing one unit. This cost of lost production because of the failures of your production facility must be amortized and added to the production cost of each unit. The plant could be an oil refinery or a chemical processing plant of any kind. Or many information processing “plants.”

When the plant is small, the production curve is orders of magnitude bigger than the failure curve, so failure is merely a minor nuisance. The plant is simple, so it doesn’t fail often, and is easily fixed when it does fail. But even while it is out of action the loss of production is small, so the net effect is usually ignored.

As plant size increases management may finally become aware of the cost of failure, but will attribute it to “loose operating procedures,” or “worker indifference,” or “poor quality control.” All of these may be factors affecting the slope of the failure curve, but the general nature of the curve has to do only with the ultimate difference in design between bigness and smallness.

Dispersion of work

Of course, the gross size is not the key factor, because that size can be used in different designs—dispersion, for instance. A system with multiples of each unit will be much better suited to the job of reliable processing/availability because of the advantage accruing to dispersion of work throughout the system, especially the invulnerability to removal of parts. This kind of dispersion is the first principle of reliability on the Internet.

But for this kind of dispersion to provide reliability, the parts must be different in their vulnerability to threats. For example, if they are all on one power supply, one lightning strike can bring them all down at the same time.

Dispersion of demands

A famous example of another kind of failure took place on April 12, 1945, when Franklin Delano Roosevelt died. I remember that day very well, though I was not quite a teenager. I was playing catch with friends when their mother called them into the house to tell them that the President had died. She knew a bit before most people because her husband worked for the telegraph company. He called her as soon as he saw the notice on the wire.

A few minutes later, it turned out that most of the people in the USA had the same instinct to call someone the moment they heard the news on the radio. Because the telephone systems had been relied on dispersion for reliability and availability, they could not handle that many simultaneous calls. Everything crashed. The designers had assumed that calls all over the country would be made at random, and that assumption worked until all the radio stations announced FDR’s death.

Designers have learned this lesson, but often forget to apply it, or to notice correlations among the system’s user population. It’s worth apply another heuristic:

 Check the user population for correlations.

Large numbers of users

Systems used locally, such as, in-house information systems, are obvious candidates for correlated usage. Systems with large number of users spread geographically and institutionally are less likely to show such correlation. That’s why companies that insure real property try to spread their policies over a wide map. Failure to follow this heuristic has actually bankrupt a number of insurers.

Though large numbers of users may prevent correlation problems, other problems arise because of large number of users. First of all, the more uncorrelated users a system serves, the more rare errors turn up. Designers must then decide whether or not to change the design to accommodate a situation that affects perhaps 0.0001 percent of users.

The cost of frequent updates is another problem stemming from large numbers of users. One small update may cost virtually nothing for the developers, but if ten million users have to make an update that costs them an hour of work, that means ten million hours of lost labor. Even at $10 per hour, that’s a cost of a hundred million dollars.

Of course, the hundred million is distributed so widely that maybe nobody notices or cares, but it is a cost to society nonetheless. And it is multiplied by the number of systems that have to be updated in this way. In my own experience, I have two or three updates to perform weekly. And sometimes one of those updates doesn’t work properly, costing me many hours of testing and fixing.

Designers are not responsible for coding errors that require fixing, but they are responsible for requirements errors and design oversights. If they are true system designers, they should also be responsible for the size and rate of system updates. In doing so, they encounter tradeoffs. Combining more updates in a single release may reduce the number of releases, but increases the chances that a release will not work well with all users.

Of course, if updates are poorly tested, then errors come to dominate. For that reason, the systems designer must also be involved with designing the entire testing process—including the development process that creates the errors in the first place.

Hack Attract

Read that title carefully. You may have read it as “hack attack,” and it does mean that, but in a somewhat different way than it usually does. As systems grow to service large numbers of users, its attractiveness to hackers and crackers grows along with it. So,

 The large the user population, the more attention the designer must pay to system security.

Often, when a system grows from small beginnings, the attention to security is minimal, or missing altogether. That’s one reason the designer’s job is never done. What may have been adequate for a small system becomes inadequate as the system grows. That’s why we emphasize the next heuristic.

Growth produces bigness

So, what can we extrapolate about the future of design, from the foregoing analysis? Perhaps the most important dynamic affecting design is the indisputable principle:

 Growth produces bigness.

So, when a system is successful, it may grow. It may have new features added. It may attract many new users. And so we have another principle:

 Success (at being small) can produce failure (from being large)

There are many reasons why a large system is not the same as a small system grown big, but before we look at some of them, let’s look at one reason that dominates all:

Is the design just too big to be implemented?

The Astronomical Test

One of the first things a designer should do is test a potential solution approach for how it scales, especially watching for some kind of exponential growth.

Use the astronomical test. If each of the 10^73 particles in the universe were a supercomputer, could you have completed this process starting with the Big Bang, maybe 15 billion years ago? In my career, I’ve run across a number of design ideas that didn’t pass this astronomical test.

For instance, some military folks wanted to simulate a device that consisted of about 30 components. Each component had a range of operating values, averaging about 40 values each. They wanted me to design a program that would cycle through every component value, for each component, to predict performance of the system. I didn’t compute the number of combinations exactly, but 3040 is close enough to 1073 to fail the astronomical test.

How much output?

A company the made precision resistors wanted to print a catalog. They could manufacture more than a dozen types of resistor, and each resistor had a number of parameters: resistance, precision, size, color coding, input connector, output connector, heat dissipation, and others, at least ten in all. When someone phoned in an order, the receiving clerk apploed a four-function calculator to their rather complex pricing algorithm. The clerks made far too many mistakes, so the company’s idea was to print a catalog so when clerks took a phone request, they could simply look up the price.

Well, if each possible combination was printed on one line, their catalog would have had about 1,000,000,000,000 lines. Even printing on both sides of each page, they could only squeeze about 100 lines per page, which would have resulted in a 10,000,000,000 page catalog. Not bigger than the universe, but too big to fit in all their warehouses even if they were otherwise empty. They abandoned the idea of a catalog, replacing it with a small computer for each clerk, with software that could compute each individual resistor price in milliseconds.

Obviously, designers need to test their ideas for the project’s amount of output. Even if it’s on-line output, there’s only so much a system user can tolerate when scrolling through a long listing.

Failing to scale

But even when the growth is not astronomical, we have the problem of scaling, because we often sketch design ideas, or even simulate them, with small examples and fail to see the scaling problems.

In one case, a backup system was designed to record all billable transaction in an on-line switching system. Every transaction was logged, and the logging was fast enough not to be noticeable by the system’s users. Then one day, the system crashed and the backup software was invoked. After an hour waiting for the system to restart, the operators decided to take a closer look.

As it turned out, the logging system would have taken two months to restore one day of the system’s transactions. The backup had taken only a few minutes when tested with a hundred transactions, but the designers had not noticed that the backup scaled up non-linearly. The company lost a day’s billing, and a new backup-restore design was implemented and tested for scaling.

Long-life systems

Systems don’t live forever, but when they live longer than the designer figured, there are effects that the design may not handle properly. Of course, even a tiny system can live a long time, but large systems must usually live a long time in order to pay off development debt.

Among the many consequences of design for a long life, the designer will have to consider the following:

• Maintainability becomes more important.

• Maintainability will somehow have to be maintained, or the system will die from maintenance debt.

• Portability and hardware independence become important because it’s likely that computers, at least, will be changed every few years.

• “Satisficing” will be preferred over “optimizing,” because over a long life, the conditions for which the system was supposedly optimized will change. Indeed, the optimizing may easily become pessimising.

• Evolutionary development will be more likely to succeed than “pristine” design.

• Over time, more constraints will accumulate, if only to counter various forms of “gaming” that users invent.

• The environment and the system will tend to become more closely coupled, making the system even bigger, with small changes in what was previously “outside” now being part of the system.

The JIGSAW analogy

Designers must not only estimate the scaling of their designs, but they must also estimate the scaling of the design process itself. How can this be accomplished? How long does a design take?

Some say that designing an information system is like assembling a thousand-piece jigsaw puzzle. There’s much truth in the analogy, but it falls short on several counts.

Most jigsaw strategies start with recognizing and assembling the border. That’s not a bad way to start designingâ€”setting the bounds on the problemâ€”but real-life design problems usually have neither finite nor easily recognizable boundaries.

In a jigsaw puzzle, all pieces are more-or-less equal in importance. Not so in design. Designers cannot ignore the political differences among aspects of any design solution. Nor can they ignore that some parts can be grossly designed while others must be subject to microscopic analysis.

In a jigsaw puzzle, once a piece is fit into place, it stays there. Not so in design, where the greatest progress may depend on cutting out a piece, discarding it, replacing it with a different piece, or moving it to another place.

In a jigsaw, all pieces are used, and none are missing. I don’t think I’ve ever seen a real system design with those characteristics.

Nevertheless, like in jigsaw solving, design difficulty grows exponentially with size, one of the reasons a designer has to be able to say “NO” to a swarm of terrific design ideas.

Bye the way, I can’t resist mentioning the largest jigsaw puzzle I ever saw, It hung in the main lobby of Oneida Community, and was put together by the community in moments stolen from regular work. It was a scene of the Community itself, with about 30,000 pieces covering over 30 square feet. I saw it over 50 years ago, and it made a lasting impression on me. At the time, I couldn’t imagine myself assembling such a puzzle.

On the other hand, I’ve seen numerous information systems whose programs had well over a million lines of code. Those impress me even more, so I never take the task of system design lightly.

Passing to the limit

In the United States, schools generally don’t do a good job of teaching statistics. Perhaps advertisers and politicians want it that way, but for designers, the lack of statistical knowledge can be disastrous. But even when statistics teaching is done well, it’s usually about the statistics of central tendencies, which is important for designers, but not everything. What’s usually omitted is the statistics of extremes, which is what designers really need to know.

One powerful way to test a design is by passing to the limit. For instance, what would be the effects on system design if we had

 	zero cost data transmission?

 	infinite storage at zero access time?

 	zero time for arithmetic operations?

 	zero learning time for users?

 	zero users?

 	much higher values of these factors?

Light loads

Some designers have learned to test how their designs function under heavy loads, but in my experience, most ignore systems that perform poorly under light loads. For example:

 	The hot water system in a hotel, because low occupancy leads to long delays to prime the system, especially on upper floors

 	Buffet restaurants, because low usage means food sits for a long time on the buffet table, which leads to wilting, overcooking, cooling or warming. And, then, these effects lead to low customer satisfaction, which leads to even fewer customers which leads to a worse buffet, and on until death

 	Fire-alarm systems and alarm systems generally, must be invoked from time to time, as in the example of an Ann Arbor bank robbery where the teller activated the alarm, but the policeman who saw the alarm go off in the police station thought the alarm was broken, and took apart the console.

 	The time-sharing system being used late at night, when there’s only one user.

Designing the startup

When a new system is just starting, that’s also an extreme situation, something designers must consider. Suppose, for example, you designed a remote communication system that allowed any subscriber to communicate with any other subscriber. How would you sell the system to the first subscriber? Why would someone want to pay for such a system when there were no other subscribers to talk to? The design of such a system would have to include a design for starting up, like adding the first group of subscribers for free.

My own workshops were always sold by “organic marketing.” That is, we never advertised. Instead, people came to the workshops because they were told to come by their friends who had already participated. That approach works well if the workshops are outstanding, but how do you get the process started from zero? That requires a special startup design.

Crowding effects

By “size,” we don’t mean merely the number of components, but how closely packed, or crowded those components are in the design.

The Tragedy of the Commons

Perhaps the best known crowding effect is The Tragedy of the Commons, a model which describes a shared-resource system where individual users acting in their own self-interest behave contrary to the common good of all users. Through their collective but uncoordinated and unregulated actions they deplete or spoil the resource.

A frequent example in computing systems occurs when multiple users can independently grab memory with no central coordination. As more users are packed into the system, it may reach the point where no new user has access. Or, in some systems, where each user starts to suffer from not being allocated the memory they desire.

The Public Address Law

The Public Address Law is different from the Tragedy of the Commons, but it does have to do with one of the effects of crowding.

The Public Address Law says that the more crowded you become, the worse things get because of broadcast interactions. Consider

• public address systems, which bother everybody

• sirens (growing 10db louder per decade)

• the so-called Cocktail Party Effect when the loud voices of many people in a room require that everybody has to talk louder to be heard

• air pollution or water pollution, where people trying to purify their own air or water manage to pollute the air and water for others

• litter, to the extent that people seeing litter tend to be more careless with their own trash

Note, though, that “public address” may work the other way, to produce beneficial effects. When people see less litter, may be less likely to litter. Or, when most people enter a quiet library, they tend moderate their own voices.

Deadlocks

The deadlock problem is obviously related to crowding. A deadlock arises when members of a group of processes which hold resources are blocked by other processes within the group, and these processes hold resources needed by the first.

To prevent deadlocks, a design must ensure violation of at least one of 3 conditions:

• processes request exclusive control of resources

• processes hold resources allocated to them while waiting for additional ones

• no preemption of a resource from a process can be done without aborting the process.

Segmented systems

“A segmented mirror has numerous advantages over a monolithic mirror. High-quality mirror blanks are readily available in small sizes. The equipment for handling and aluminizing small segments is more affordable. A damaged or destroyed mirror segment can be replaced, and does not disable the telescope, whereas a damaged monolithic mirror can be catastrophic. Small segments can be made thin, reducing the weight and thermal inertia of the primary mirror and the overall weight of the supporting telescope structure. Also, a segmented mirror allows for modular production, an advantage during operational testing of the telescope. Many essential checkout procedures can be undertaken with only a small complement of mirror segments, thereby allowing for simultaneous debugging and manufacture of the telescope.”* - “The Keck Telescope,” -Jerry Nelson, American Scientist, Volume 77, March-April 1989, pp170-176

With a segmented system, the designer trades off conceptual simplicity for manufacturing, operational, and maintenance simplicity. To do this, however, the designer adds the problems of interfacing among the segments. The Keck telescope was built with 36 hexagonal mirror segments, but why not 360 or 3,600? Presumably 36 achieved a balance among the tradeoffs. More segments would have pushed the interface costs above the minimum cost of building the telescope.

To take an example from computing, some organizations use a standard requiring all systems be built with modules no larger than 50 lines of (high-level) code. Eliminating the monolithic source program provides the same sorts of advantages as the segmented telescope, especially in the ability to build and test by many teams simultaneously. A system with a 500 lines of code might be broken into ten pieces that can be built at one time, potentially cutting development time by a factor of ten (or more, if development time is a non-linear function of code size).

But that’s not the entire story. To the development time, we must add the time to integrate the pieces and test the entire system. Just as the time to code a module may grow non-linearly with lines of code, so can the integration time grow non-linearly with the number of modules to integrate. Without this integration effect, we could build a 500-line application by giving each of 500 individuals the task of writing one line of code. Can you imagine the chaos?

Simplicity is not some extreme design, but a balanced design taking all factors into account

Problem avoidance through modularization

Modular programming has been around a long time. Though the experts disagree on definitions most everyone agrees on benefits. Russell M.-Anderson, in his book, Modular Programming in Cobol, gives a pretty comprehensive quick list of the potential benefits of modular programming:

 	Problems can be more easily solved.

 	A modular system is more easily tested and debugged.

 	Modules may be reused, saving development time.

 	Programming tasks may be assigned more independently of the “critical path” in a project.

 	Estimates for the resources required for a project are improved for modular systems.

 	A system may be more easily changed.

Other authors express some of these points in different ways, but they do agree that the list is comprehensive. Of course, not everyone realizes these benefits when they “modularize.” Indeed, many people have concludedâ€”especially during integration of modules–that the disadvantages far outweigh all of these benefits. After listening to several disgruntled modularizers, it becomes difficult to understand why the approach remains so popular.

Perhaps we can gain a clue from another currently popular phenomenonâ€”the flight of large computer users to personal computers, tablets, and smart phones. After all, what is a personal computer but a highly independent hardware-software module forming part of some larger “system”? The PCs within one department or section of a large firm may interact with other parts of the firm’s overall information system. Any interactions, however, are carefully circumscribed.

These interactions may be restricted to a simple data link controlled by the mini, or to physically passed data sets, or even a few handwritten morsels of data. And, should the central computing center propose a more intimate link, the “no thank you” is often clear and swift.

Because of the physical separation of a PC and the computing center, it is easier for us to understand the emotional basis for this severe separation. To put it quite bluntly, after decades of eating the computing center’s crumbs, many users have grown to hate professional computing people. At the very least, they fear some particular computing person. As soon as these oppressed users realized that computing power could now be obtained as whole cookies, rather than as crumbs from a huge cake, they stopped eating crumbs.

Not every computer user has been eating crumbs. Many have been given a few slices of delicious, graciously served cake, and have no appetite for tiny cookies baked from an old recipe. But there’s no ignoring the hordes of users who’ve eaten crumbs for so long they continue to extoll their cookies even when their new PC proves stale and moldy.

Fully integrated?

There’s no doubt that a fully integrated system could be more efficient than a collection of PCs and ad hoc interfaces. Similarly, a fully integrated program could be more efficient than a collection of modules, and could be more efficiently produced by a single, well-integrated team. But life outside of Disneyland is never quite so lovely as that. One person on a project thinks another is incompetent. One worker believes someone else is trying to make him look bad. Two programmers fall in love during the design phase but have a lovers’ quarrel just when it’s time to do system test. Or someone just can’t stand another’s “vibes,” or “chemistry.”

The skilled and attentive manager can moderate the effects of such emotional clashes. But we could never extinguish them, even if there were nothing else for managers to do. People can be placed in widely separated offices, but if they must coordinate parts of the system, separation will merely bring the clashes out into no-man’s-land. Or, if separation is maintained, the system will remain uncoordinated.

Modularization of the system’s design is far more effective than physical separation of ‘the peopleâ€”if the modularization makes sense for the system as well as the for the conflicting personalities. Therefore, the lucky designer will have a problem which divides into modules along lines that can be used to avoid personal conflict within the project. With the right problem structure, many personal problems seem to disappear, and the managers may even be able to leave early on Fridays for a round of golf.

Poor modularization

What about managers who aren’t “lucky”? Although modularization is a choice technique for avoiding problems of personal conflict, poor modularization may merely substitute technical problems for personal problems. Many of the users who rushed out to purchase the first PCs quickly discovered there was more to the computing business than they had been allowed to see.

Most of them simply bit their tongues and muddled through their technical problems, unwilling to give even a sniff of satisfaction to those the computing center. In the same way, many programmers muddle through their assigned module, pushing all problems back to the never-never-land of system integration.

In a “friendly” project, when one module’s producer runs into trouble, other producers are consulted. In this way, many problems are re-routed before they reach system integration.

In a “unfriendly” project, it’s unlikely one producer will say anything to another producer, but especially not that his or her own module is in trouble. Wherever possible, the troubled producer will change the interface specification–unilaterally–to simplify the problem. When the interface discrepancy is finally revealed–during integration–the culprit adopts an innocent look and claims that this was the agreed interpretation. In many cases, the culprit can convince management that the enemy group changed the interface specification.

Interface treaties

When operating in such an unfriendly environment, the total strategy requires more than simple modularizing the warring camps out of touch with one another. Although you can eliminate personal contact, you cannot entirely eliminate contact between modules. The module interface is the border between two warring states. To stop border wars, you must write treaties.

In programming projects, a “treaty” is more or less identical to a treaty between political units. The treaty implicitly recognizes the independence of the two units, and their ability to enter freely into agreements on technical matters. Although managers or designers quite likely acts as negotiators, treaties will not work if the two parties are coerced into signing.

After signing, coercion is permitted, if necessary, to enforce the pact the two parties agreed upon. In other words, once each party freely gives its signature, the matter is no longer a purely technical one, but becomes political.

Why? Because after the agreement, one party could make the other look very bad by covertly changing the agreement. A written treaty seals off this avenue for expressing the animosity that exists between the parties.

Management support for design

Managers, of course, must back up the designers choices for the modular design to be effective. When each group knows management will enforce each of the treaties affecting its module, it can quit bickering and get down to the business of programming. No other group can make its work look bad by changing the rules in the middle of the game. What will look bad is failing to meet the interface specifications agreed upon in the treaty.

Sometimes, one party to the treaty makes a poor deal. For instance, we might have agreed to pass error-free data in return for 2 milliseconds more execution time during the design negotiation. When programming the error-handling, however, we discover that we’ve undertaken too large a task. We would like to buy more execution time, or somehow simplify our assignment, but we are locked in by the treaty.

In such cases, the treaty does not mean we can never change the specifications, but only that we cannot change them without opening a new round of treaty negotiations. In the renegotiation, we may have to trade something else for the relief we seek, even something offering our “enemy” an easier job. This offering may prove a bitter pill, especially as the renegotiation is done in front of management, but we must know unilateral changes to treaties will be much more unpleasant for the perpetrator.

In the beginning, the treaty system seems awkward, unfamiliar, and overly formal. But from history we know a certain degree of formality is needed if former antagonists are to work together cooperatively. White ties are optional, however, and quite soon the awkwardness dissipates.

Signatures, however, are necessary. Our clients have frequently experienced resistance to actually signing a design treaty, but this resistance always reveals the resisting party as uncertain. Because the whole process is designed to eliminate uncertainties in modularization, resistance tells us what we want to know–there is still more design work to be done. We may hope that the design job is finished, but the strong commitment implied by a signature prevents us from mistaking hope for reality.

By keeping matters on the level of reality, rather than hope, we create a few problems today, but avoid bigger problems tomorrow. We could modularize a design to the complete specification of a Jackson, a Constantine, a Myers, or an Anderson, yet fail to address the real interpersonal problems on a large project. By making the assignment of modules a strategy for peace, we avoid the hardest problems of all, the interpersonal conflicts. And problem-avoidance is what “adaptive programming” is all about.

Evolution Heuristics

There’s at least four possible situations ahead for your design:

 	It won’t be accepted by any users.

 	The environment will change, so the design won’t be as good as you thought (or, once in a great while, it will be better, but you don’t really have to worry too much about that).

 	It will be used in ways you didn’t anticipate.

 	Your system itself will change the environment in which it’s supposed to operate.

Let’s explore some of these.

The Axiom of Experience

The Axiom of Experience states:

 The future will be like the past (because in the past, the future was like the pastâ€”and besides, what else is there to go on.

The designer must use the Axiom of Experience, but design concentrates on the meaning of “like.” So, what does “like” mean?

There’s nothing like a hot dog:

There’s nothing like a watermelon:

Therefore, a hot dog is like a watermelon.

Hot dogs and watermelons both belong to the set of all things that have nothing like them. But that means that they do have something like them. This is Russell’s Paradox. Is it a meaningless abstraction?

Perhaps the future will be like the past in this sense:

 In the past, other engineering disciplines experienced large failures. We in the systems business are like other engineering disciplines, so we will therefore experience large failures

In the past; other engineering disciplines were insular, and failed to recognize that they were like previous ones. They then committed the same kinds of errors. Therefore, if we recognize that we are like other engineering disciplines, we may not be like them in the sense of failures

So Russell’s Paradox is very relevant.

Fisher’s Fundamental Theorem of Natural Selection

Or perhaps “like” has this sense:

In the past we “optimized” for certain things which turned out to be the wrong things when the future happened. Will we do this again? How can we avoid doing it?

One way is to avoid optimizing. Another is to work for a clearer image of the future. In the 1930s, Marius von Senden performed surgeries that gave sight to congenitally blind patients. He wrote of his work in the classic, Space and sight: The perception of space and shape in the congenitally blind before and after operation. Without vision, von Senden’s patients had developed ideas about what the visual world was like. In one case, the patient thought a three-quarter-moon was like pie with a wedge sliced out of it. He was shocked when he actually saw the moon, and simply could not recognize what it was.

We are blind to the future, so we get similar shocks when the future comes around, so there is essentially no chance of getting our “optimization” right. Therefore, we must avoid optimizing to some extent. And certainly not trust it.

At best, wherever possible we should postpone any optimizing until the design is implemented, but prepare for it by making our designs clean and easily modifiable. We should, in short, pay attention to Fisher’s Fundamental Theorem of Natural Selection:

 The better adapted (optimized for one environment) a system is, the less adaptable it is.

Designs change their assumptions

There’s at least one reason the future won’t be like the past. If we place bets on the future (that is, if we design things), we change the future. Of course, that was true in the past, so maybe it will be true in the future.

Consider the act of growing older. Growing older is not difficult. It happens every year without effort but in a sense we design the future simply by attempting to stay alive.

What is difficult is predicting the consequences of growing older. Younger people familiar with Shakespeare’s poetry know that older people are “Sans teeth, sans eyes, sans taste, sans everything,” What the Bard didn’t mention, however, was “sans usefulness”—and for some of us dodderers, that’s the hardest part of growing older. That’s why we love to tell stories of our past usefulness, as long as our failing memory holds out. And that’s why Don Willerton and I love to share lunch once a month after the First Friday writers’ meeting.

A FORTRAN story

Don isn’t as old a timer as I am, but he’s already retired from a long career at the Los Alamos Lab doing scientific programming. Like most Lab old-timers, he was fluent in FORTRAN, but I was not only fluent, but had been present for its birth. As a test of just how long he’d been around that ancient language, I asked him what FORTRAN statement took the most work to implement in the compiler.

Don made several good guesses, but missed the answer. When I told him, his face wrinkled in puzzlement. “The FREQUENCY statement? What’s that?”

To explain, I had to provide historical background, way back to 1957 when I spent time in the IBM Computing Center in New York City watching and waiting for the FORTRAN development team. I was waiting for my turn on the IBM 704-serial-number-one, then the largest computer in the world.

I was waiting because IBM executives believed FORTRAN would eliminate those pesky programmers (though we weren’t called “programmers” yet). Getting rid of programmers was so high on the executives’ wish list that the FORTRAN team had been granted top priority access to the 704. (Nobody saw the irony in using programmers to get rid of programmers.)

The machine was so rare and valuable I had to fly all the way from California to New York (no jets yet) to use it, but compared with today’s computers, it was pitifully slow (worse than that watch on your wrist). Indeed, inefficiency was the principle argument against higher-level languages. While we waited to get our hands on the 704, we analyzed object code produced by the FORTRAN compiler and found ways to write far more efficient code by hand. With our examples, we mocked FORTRAN and predicted it wouldn’t last. It’s now more than 60 years later, and I still think FORTRAN won’t last.

The FORTRAN development team were well aware of our mockery, so about half the team was devoted to the problem of optimizing the code their compiler produced. To assist that effort, they used the FREQUENCY-statement. Here’s how:

The FORTRAN IF-statement was a three-way branch. The FREQUENCY-statement allowed the programmer to specify estimates of the frequency each of the three branches would take. Based on those estimates, the compiler could allocate scarce registers to the blocks of code that would be most frequently executed, thus speeding up the calculation.

Speeding up the calculation? Aye, there’s the rub. Before FORTRAN, there were no widely-used higher-level languages, and therefore, no compilers. Assemblers of symbolic machine code existed, but they were fast enough not to be of concern. The FORTRAN compiler wasn’t fast enough.

The majority of FORTRAN programs were compiled many times for testing before they were sufficiently error-free to risk the full-blooded calculation—but the FORTRAN design team didn’t realize this at first. As a result, far more valuable 704 time was spent executing the compilation than in executing the “optimized” object code.

But why did the compiler take so much time? Oh, it was spending most of its time optimizing the object code—code that didn’t need to be optimized until after one final compile. In short, the compiler was using more time to save time than it was saving. Users quickly demanded something better.

The first solution was to use one of the “sense-switches” on the 704 console to indicate that you didn’t want a particular compilation optimized. (This was before operating systems, so one program was run at a time, with manual control. Ironically, we were waiting to put our hands on the 704 so we could build the first operating system, one that could run many programs without operator intervention. But that’s another story.)

In succeeding years, this sense-switch approach was so popular that whenever I visited one of the 704 installations, I could always tell when FORTRAN was running because that sense-switch was down. (Decades later, I saw a 704 photo in the Los Alamos Lab computing center and knew it was printed in reverse, because the wrong sense-switch was down.) Eventually, everybody realized how clumsy the sense-switch approach was, so the “optimizing” code was dropped out of the FORTRAN compiler, and the FREQUENCY-statement was dropped out of the language and forgotten. That’s why Don and other later-arrivals had never heard of it.

And that’s also why the standard practice in the FORTRAN world was to do just what we used to do in the ready room while waiting for the FORTRAN team to stop hogging the 704. A program would be compiled and run, but if it proved too slow, compiled code was replaced with far faster, hand-optimized machine code. That’s why the second edition of our Computer Programming Fundamentals taught programmers how to integrate FORTRAN and assembly language.

Implementation challenges assumptions

Needless to say, living through this history taught me an extremely important design lesson:

 Your design, when implemented, can change the very assumptions on which that design was based.

The Highway Law

We experience this principle every time a new highway or bridge is built to relieve traffic congestion. At first, the new design works. Congestion is reduced. Traffic flows more smoothly, which encourages more drivers to use the new route. Real estate developers also respond to the improved traffic to build homes and businesses along the route, further increasing traffic. Pretty soon, the original congestion is back, and worse.

1 The same things has happened repeatedly in the computing industry. Following the 704\
2 series, IBM started the STRETCH project. One STRETCH machine had more capacity than\
3 two 7094s, and IBM was worried STRETCH would hurt sales, so they cautiously restric\
4 ted its sale.

The IBM executives believed there was no need in the world for more than a handful of STRETCH machines, but they were taking no chances, so I was assigned to turn prospective customers away from buying STRETCH. STRETCH was by far the fastest computer at the time, but now millions of people wear a more powerful computer on their wrists.

All in all, this story again illustrates what I call the Highway Law:

 Traffic always fills highways, so congestion always follows highways.

This may be another example of Parkinson’s Law.

Feedback

Because designs are conceptual, not physical, we cannot test them the way we test software. So, how do we test design ideas? How do we obtain feedback on the quality of our designs?

For the most part, we obtain feedback through design reviews, some formal and many, informal. From one point of view, a design has failed to the extent that testing is required. Of course, some testing is needed to confirm that sight hasn’t failed, as with hidden construction flaws or misestimates. There will always be typographical errors, so there will always be some testing, no matter how good the design. In other words, the degree of required testing (or testability) is one measure of design. Put another way, whatever is missing in the system design must be put into the test design.

A Design So Bad It’s Good (for a Laugh)

When teaching how to design systems, I’ve always sought good design ideas to illustrate principles. I also seek a few bad ideas, because some ideas are so bad that their badness may become a source of both amusement and learning.To see what I mean, let’s look at one particularly bad anonymous example.

The author of the idea in question is obviously a most intelligent person, full of nice bits of information. This author’s book attempts to develop the worthy design theme that many problems may be solved at the level of changed perception and communication: And many of the anecdotes do demonstrate that point. But at bottom, the author is a think-tanker, and many of his examples are as naive as scenes from a movie such as Cheerleaders Without Uniforms.

The most outrageous example in the book was the author’s opinion of how the 1974 kidnapping of heiress Patricia Hearst ought to have been handled by the investigating authorities. He suggests they should have used Milton Erickson’s Confusion Technique in the following way:

 “Utilizing the same channels of delivery as the abductors, it would have been relatively simple for them to deliver to the mass media fake messages, contradicting the real ones but similarly threatening the life of Patricia Hearst if they were not complied with.”

How does the author believe this would work? He goes on to explain:

 “Very quickly a situation of total confusion would have been set up. None of the threats and demands could have been believed because every message would have been contradicted or confused by another, allegedly coming from the real abductors…”

Sound plausible? Oh, the author—in true think-tanker fashion—sets up some straw men in opposition to his pet idea, then knocks them down as when he writes:

 “Needless to say, in our era of alarming electronic progress, the production of perfectly genuine-sounding tapes would have presented no technical difficulties whatsoever.”

Let’s Ignore the ignorance this displays of the techniques for detecting counterfeit tapes—in our era of alarming technical progress. Notice, instead, how enthusiasm for one’s pet idea can cloud the mind

It’s difficult for me to believe that the author ever thought critically about this idea for 15 seconds, but its naiveté is typical for this genre of speculative systems writing. It’s also typical for systems designers in general, for their work is inherently speculative. Think for a moment with the mind of the field marshal of the Symbionese Liberation Army that kidnapped Ms. Hearst. Would you allow the Confusion Technique to get in the way of your world-shaking plan? Not on your life.

Every designer’s ideas must be tested

People in ivory towers can think rather effectively in the idiom of their clients—government leaders, corporate executives, and the like—but for that very reason, perhaps, they can’t bring themselves to think like the mass of people who don’t sit in high positions of power.

I’m being descriptive, not critical, for each of us is severely limited by the blinders of our culture, our education, our job, and our social circle. That’s why we don’t all laugh at Cheerleaders Without Uniforms.

 That’s why nobody can be allowed to make serious systems design decisions without submitting those decisions to the most rigorous and diverse tests.

Sometimes we can test the decisions on the very people who will be affected by them, but in many life-and-death situations, that kind of testing won’t be possible. In those cases, the ivory tower designer has got to attack every Idea and assumption with the same vigor we usually reserve for drive-in movie criticism.

Suppose, for instance, we were writing a script for a kidnap movie. The heiress is kidnapped, and the investigating authorities put the Confusion Technique into action.Then Field Marshall Cinque, not being constrained by the niceties of the upper classes, simply authenticates his next message by sending along one of Ms. Hearst’s fingers!

But that’s revolting, you say. Unthinkable! Admittedly, it’s not very nice, but who said terrorists were nice? Coming from another world than the systems designers, they should be expected to think differently—and, in this case, more effectively, with or without doctorates.

Even with “alarming electronic progress,” we’re not likely to be able to counterfeit a fingerprint if it’s accompanied by the finger itself.

And by the time the field marshal runs out of message verifiers (including toes), the victim’s family will have long since run out of patience with the investigating authorities and their oh-so-clever system designers.

Unhappily this is not such a far-fetched example. I run into similar modes of thinking every time I examine grand systems desIgns. For instance, consider the software and hardware experts who designed their absolutely secure curb-side cash dispenser, only to have the crooks drive up in a van and remove the entire dispenser using jack-hammers.

There is simply too much distance between the high-level designers and the people with whom their systems are supposed to work, This limitation applies to security and privacy systems as well as anti-terrorist systems, but it also applies even more strongly to the most mundane information processing systems we can imagine. As systems grow more vast, more complex, our techniques of thinking about them have to get tougher and more realistic.

Of course we still need high-level abstraction, but not at the price of losing touch with day-to-day reality. So maybe we should develop the habit of putting all our great design ideas through a second run and let everyone laugh at them. As they say, “laughter is the best medicine.”

Design reviews

 Preparation

First make sure any documents are clearly written and clearly understood. Don’t confuse the documentation of a design with the design itself.

Also, in certain types of reviews (e.g. walkthroughs), someone presents the design orally. As we saw in the Patricia Hearst example, a smooth write can convince readers that a poor design is brilliant. In the same way, a smooth talker can totally mislead a design walkthrough.

Wherever possible, base the design review on documents, not oratory. And, of course, be sure all documents have been updated to reflect accurately any design changes.

Example: Out-of-date documents

My client had set up a test lab where they could watch real people using their new computer system. The first subject was an executive secretary, the best they had in the company. We watched through a one-way mirror while she attempted to use the system, but she never really got started.

Instead, she just kept looking at the screen, then looking at the keyboard on the console, then looking at the screen again. She kept up this cycle for about five minutes, until we finally had mercy on her, stopped the process, and asked her what her problem was.

She pointed to the instructions on the screen, which was on its first page. “It says the first most important thing is to find the ENTER key, which is the red key on the keyboard. But there is no red key on the keyboard. What am I supposed to do.”

We looked at they keyboard, and sure enough, the ENTER key was blue, not red. Upon investigation, we found that the designer had indeed specified RED, which went into the instruction screen. But there was also a review by the safety board, which applied the standard that RED was to be used only for emergency items. They changed the spec to BLUE, but nobody told the authors of the instruction screen.

In other words, you not only have to have design reviews, but you have to communicate the result of those reviews to all affected parties. And, any changes to the design must be re-reviewed.d

How Important Are Design Reviews?

But aren’t most errors in the code, rather than in the design?

Where most errors are found depends on the state of the art at the installation. Where no reviews at all are practiced, even informal code reviews within a programming team, most errors are at the coding level. Even then, though, the design errors may prove more serious, on the average, than the coding errors. It’s not the number of errors that matters, but their seriousness.

When compared with coding errors, design errors are, on the average, harder to detect, harder to pin down once detected, and require far more extensive and costly modifications to set right. For instance, in a TRW study (Boehm, McClean, Urfirg, 1975), the diagnostic time for design errors averaged 3.1 hours as opposed to 2.2 hours for coding errors. Correction time averaged 4.0 hours against 0.8 hours—a five to one ratio that seems congruent with our own experiences.

General rules about reviews

• Errors made earlier in the development process tend to have wider implications, so specification errors are potentially more devastating than design errors, design errors are potentially more devastating than coding errors, and so forth.

• Without reviews, earlier errors tend to show up later.

• The later an error shows up, the more work has to be done to find its cause among many possible causes.

• The later an error is diagnosed, the more parts of a system are likely to be changed by a correction, so that even when a single part has to be changed, many parts have to be examined to be sure they don’t have to be changed or aren’t changed implicitly.

• Where code reviews have already been in practice, we may find that a large majority of errors are design and/or specification errors, since many of the coding errors are eliminated before system testing. In the same study, TRW found that as many as 75 percent of errors found at system test were design errors. Since each design error was more than twice as costly to diagnose and correct than each coding error, we can infer that, in these systems, much more was spent dealing with design errors in system test than in dealing with coding errors.

• Finally, there are those systems in which the design errors prove so gross that no system test is ever reached—the system collapses of its own developmental weight before integration is achieved. How many of these facts does it take to justify the institution of design reviews?

Which design level is the better choice for reviews?

To clarify this question, a client wrote: “We employ a two-stage design process. First there is a high level, or preliminary, design, followed by detailed design to elaborate on this general approach.Which level is best to review?”

Neither. Or both. If you fail to review the high level design, your detailed design work will be partially devoted to eliminating the design errors. If you fail to review the detailed design, you’ll waste a lot of time coding the errors of that phase. Why not review both designs?

The general principle is simple. Whenever the system becomes embodied in a new form or passes from one hand to another, there should be a review to ensure that nothing has been lost, gained, or done wrong in the transformation. If you have seventeen levels of design, then there should be seventeen levels of review.

What about reviewing logical vs. physical design?

This question came to us with a clarifying statement: “We don’t use high level and low level designs, but rather a concept of logical design and physical design. How does this approach affect design reviews?”

According to our principles, you should naturally have two kinds of review. This separation of logical and physical designs can prove helpful in partitioning the review and maintaining proper size and interest on the review committee.

A user might be extremely interested in some aspect of the logical design—such as the boundary between the human and automated parts of the system—yet have not the slightest interest in the sorting algorithms or storage devices used in carrying out the process. Such a user might well attend the review of the operator protocols—a review that might be of little interest to systems programmers. As always, the important thing is to have all—and only—relevant people at the review.

Isn’t correct or incorrect a matter of opinion with designs?

It is true that design is still considered more of an art form than is coding. Indeed, design will probably always be more intuitive than rigorous. Nevertheless, there are “rules” of good design and, more important, rules for recognizing bad or flawed designs.

For example, if two designs carry out an equivalent function, the simpler one is the better choice. Though “simple” may be a complex attribute to recognize in some situations, in most cases it will be easy for the review committee to agree on

• Which design is simpler?

• Do two designs in fact carry out equivalent functions?

• Is a certain design too complicated?

Another example of a broad and powerful design principle that can be used effectively in reviews is that a good design should consider and anticipate future changes. An adaptable design, in other words, is recognizably superior to one that is rigidly tied to present circumstances.

A third example of a deep design principle is that a design that accepts more user variation without being disturbed is superior to one that requires strict adherence to a non-humanized format. And who else can better recognize a humanized format than human beings, sitting in review?

Designs can indeed be evaluated, not necessarily in the abstract, but certainly when specific alternatives are discussed under review discipline in the context of the environment in which they are supposed to operate.

Is it possible, then, to develop checklists for design reviews?

It is not only possible but desirable—as long as you don’t get carried away and start believing that mechanical application of a checklist can do all the work of the review. For example, we present below one examples of a design checklist. It covers “preliminary” or “high level” design as practiced at Boeing Computer Services. Additional checklists can be found in our Handbook of Technical Reviews.

One of these is a checklist in the form of an inspection report as used at IBM Kingston to guide the review of detailed module design. The IBM and BCS checklists comprise a nicely contrasting pair—the BCS checklist being more open and intuitive, as appropriate for high level design, and the IBM checklist being very highly structured, as would be more appropriate as the design creeps closer and closer to the actual code.

Following the BCS and IBM checklists, we added a “design misfit” checklist based on the work of Don Gause. The categories of this checklist are chosen to cut “across the grain” of many other checking systems. After you’ve asked your usual questions about the design, try asking these.

The BCS Preliminary Design Document Review Checklist

This checklist suggests things that a reviewer should expect to find as results of the Preliminary Design task. These results are all presented in the Preliminary Design Document. This is not an exhaustive list, and the reviewer is encouraged to look for other items as results of Preliminary Design.

(1) Are the preliminary design objectives clearly stated?

(2) Does the Preliminary Design Document contain a description of the procedure that was used to do preliminary design or is there a reference to such a procedure? Such a procedure should include the following:
	a. A description of the design technique used. 	b. An explanation of the design representation. 	c. A description of the test procedures, test cases, test results, and test analysis that were used. 	d. A description of the evaluation procedures and criteria that were used.

(3) Is there a list of the functions that are to be provided by the computing system?

(4) Is there a model of the user interface to the computing system? Such a model should provide the following:
	a. A description of the languages available to the user. 	b. Enough detail to allow you to simulate the use of the computing system at your desk. 	c. Information about the flexibility, adaptability, and extendability of the user interface. 	d. Information about tutorials, assistance, etc. for the user. 	e. A description of the functions available to the user and the actual access to those functions. 	f. An appreciation of the ease of use of the computing system. 	g. The detail required to formulate and practice the user procedures that will be required to use the computing system.

(5) Are there models and/or descriptions of all other interfaces to the computing system?

(6) Is there a high level functional model of the proposed computing system? Such a mode should be accompanied by the following:
	a. An operational description. 	b. An explanation of the test procedure, test cases, test results, and test analysts used to ensure that the model is correct. 	c. An evaluation of the model with respect to the requirements to ensure that the requirements are satisfied. (Preliminary Design does not provide detailed results that allow for detailed qualitative and quantitative analysis.) 	d A discussion of the alternatives that were considered and the reasons for the rejection of each alternative.

(7) Are the major implementation alternatives and their evaluations represented in the document? For each of these alternatives you should expect to find the following:

 1 a. A complete, precise, and unambiguous model that identifies the modules, the input\
 2 and output sets of the modules, the operational sequences of the modules, and the c\
 3 riteria for the execution of each operational sequence in the model.
 4 b. An evaluation of the model that ensures that the requirements will be satisfied. \
 5 Some of the things to look for in this evaluation are: performance, storage requirem\
 6 ents, quality of results, ease of use, maintainability, adaptability, generality, te\
 7 chnical excellence, simplicity, flexibility, readability, portability, and modular\
 8 ity.
 9
10 c. An examination of these models should include both the functional model and the a\
11 ssociated data models.
12
13 d. Estimates of the costs, time, and other resources that will be required to implem\
14 ent the alternative. These estimates should be accompanied with a description of the\
15 estimating technique used, the source of the data used in making the estimates, and\
16 the confidence factor associated with each estimate
17 e. An identification of the modules that will be implemented as hardware and those t\
18 hat will be implemented as software. (Some will be a combination of hardware and sof\
19 tware.) This should also include recommendations to buy, buy and modify, or build ea\
20 ch module. Each recommendation should be accompanied with supporting information.

(8) Is there a recommendation from the Preliminary Design team to implement one of the alternatives?

(9) Is the recommendation of the Preliminary Design team adequately supported?

(10) Does the information presented in the Preliminary Design Document and during the Preliminary Design Review give you confidence that the computing system can be implemented to satisfy the requirements to such an extent that you would use the proposed system?

Heuristics for designer behavior

Now let’s switch our attention from the design to the designer. What follows are some principles that will help to keep you on track, principles that I’ve seen put into practice by the best designers I know.

Humility

Daniel Read succinctly described what may be first principle of designer behavior. Don’t assume that your design is the best design just because you’re the one who came up with it.

Never forget this, and to help you remember, let’s rephrase it more succinctly:

 Design with humility.

There are many reasons why a humble designer so important to successful design. First, arrogant designers turn off the very people whose cooperation they require to be successful. Second, the arrogant designer is less likely to listen to feedback about the quality of the design. Third, arrogant designers probably think that anything they don’t know isn’t worth learning about.

So, that’s three strikes and out with arrogance.

Congruence with tools

Over the years, I’ve consulted with many organizations that build software tool to aid in building software. When I first come to such a company, I ask them to show me their tool products in use. Some of them show me, but others say, “Oh, we don’t use our tools. We don’t need them.” This is usually said with an air of superiority, a sign of arrogance that puts me on notice that I’m going to find some crap in the organization. So far, the sign has never failed.

As a counter to this sad state in a design organization, Sai Shankar proposed that the design of the tools we use has to be done using (some of) the same principles that we consider desirable in the usage of the tool. Meta-thinking is good, within limits.

I love meta-principles. In fact, this one is principles all the way down:

The design of the tools we use for designing tools has to be done using (some of) the same principles that we consider desirable in the usage of the tool-building tool. Or, in an old and more familiar form:

 Practice what your own tool preaches.

Be as direct as possible

Bob Lee gave me a design approach he says he learned the hard way:

Wherever feasible, use the actual data in preference to an encoding of it

Levels of indirection in handling simple data make human comprehension difficult, leading to misunderstandings and errors. System testing and log analysis is much easier with natural data rather than numeric encodings.

Bob said, “I believe the bulk of the ‘just code that numerically’ originates in the small memory machines of early UNIX boxes. Today, I glanced at a hardware catalog and saw ‘Free 512MB ram upgrade with…’ I don’t think we’re in Kansas anymore, Toto!”

Saving one byte of memory or saving milliseconds per decade is an outdated viewpoint. If you actually are memory footprint constrained (say, on an embedded application), optimize as necessary, but know you’re going to pay in testing and maintenance costs for the unnatural twists and turns involved.

Know why

I suppose this is a special case of another meta-principle:

 Don’t use any design principle if you don’t know WHY you’re using it

Say why

And don’t just know why you’re using something a bit indirect. Document why you’ve done it, so those who encounter the design later will know what they can adjust and what they should leave alone. Situations change, and what were once thought to be universal principles were indeed conditional.

I’ve known designers and programmers who believe they’re super-smart because they can design things that other people cannot understand. To me, that attitude just shows they’re super-dumb. A truly smart design creates things that other look at and say, “oooh, yes, I see that.”

Hey, remember when physicists said that energy could never be created or destroyed? Then came Einstein with e = mc^2. If physics can change, computing certainly can. So be kind to your descendants.

Be wary of your tools

A fool with a tool is still a fool. - Scott Ambler:

True. Actually, tools tend to multiply foolishness, so a fool with a tool is more of a fool. I learned in woodworking that a fool with a powerful tool is able to spoil a lot more perfectly good wood in a lot less time than a fool without.

And, as Pirmin Braun reminded me, the same rule applies in design. It’s possible to design a bad program with any methodology or programming language

Â Dwayne Phillips extended this principle, in two ways. First of all, regardless of the tools you use, it’s possible to design a program that is hard to maintain. Second, using virtually any set of tools, it’s possible to create a program that is relatively easy to maintain.

Stay congruent with what’s important

What made the difference in Dwayne’s experience was a project that had a big statement on the wall (some call it a charter, others a policy, others a rule) that said:

 “Strive for software that is easy to maintain.”

The general principle behind this action is,

 Decide what is really important for this project and product and post it so everyone sees and uses it everyday.

And don’t just talk about what’s important. Act in accordance with what’s important. Every day. In every way. Nothing rots an organization faster than incongruence between stated principles and actions. Quick fixes, patches, temporaries, shortcutsâ€”you know what I’m talking about. Take the time to do it right, rather than spend more time doing it over.

Politics

If you ask designers what they hate about their work, many of them will say, “politics.” But, because any design involves a choice among multiple people and multiple decisions, design is inherently political. Political issues are always there, so designers have to learn to live with them. So, what is (or are) politics?

The definition of politics I find most useful for designers is what Virginia Satir called “The Big Game,” or “Who gets to tell who what to do?” In other words, politics is all about the people side of designing the future. A designer who knows how to use politics:

• considers people

• knows about people

• cares about people

• uses people as a valuable resource

Aa systems grow more vast, design becomes more political because more people are involved, with more diverse interests. In the past, design was less political because everyone accepted the designer’s right to “define the situation.” For example, a designer could make others accept a design by saying things such as,

• “The computer can’t do that …”

• “People will like this …”

• That will cost too much…”

• “People can’t do that …”

• “People won’t do that …”

Nowadays, more people have experience with computers, and won’t simply accept these assertions. Now the question becomes, “Whose opinions matter?”

Who defines goodness?

The fit of the design to the environment is measured by an evaluation function which defines “goodness.” Each different observer may have a personal evaluation function (like the IBM salesman—is it good for IBM?).

The relative weight given to the various observers’ goodness functions in the final design is a political decision that in the past was often made almost by default, as in design by veto. Now, the politics have become more explicit and have come to encompass more and more goodness functions. For example, consider a credit card company showing the pain that comes on moving into this new future. “Privacy”—the present generation of designers are screaming that “privacy” will raise the cost and lower the “efficiency” of credit card systems by factors of 20%, 200%, 2000%.

The screaming will continue, because the designers don’t want their jobs complicated, and never did. In the past, they screamed when understandability, maintainability, reliability, and portability became their customers’ issues. In the future, it will be “privacy,” “responsiveness,” and what else?

Political vs. technical solutions

Politics has also been defined as the art of compromise, but design is not the art of compromise. Design includes the art of compromise, but there’s much more to it. But, yes, we often hope this weren’t true and we could solve design probems simply by compromising.

One of the things we could hopefully look for when designing is a “solution” that doesn’t involve compromise. Such a solution is called a Pareto optimization: nobody is worse off than before, and some are better off.

Of course, it’s the perception that matters. Some people may feel they’re better off, but think they ought to be even better off. Possibly they’re comparing what they get from the new design to what others get, and think, “we didn’t get our fair share.”

Such is the power of ideas that sometimes design solutions are possible with characteristics of a Pareto optimization. Or, should we say, a Pareto “amelioration”?

Take, for example, the one-way toll system to island cities, like Manhattan. It certain cut down stalled traffic in one direction, which was probably a good thing, but who was hurt? Well, there were the toll takers, half of whom lost their jobs. And what about the vendors who sold ice cream and other goodies to the stalled traffic? Again, half that business was lost. The designers of the one-way system may not have cared about these people, but many were hurt by the new design, even though millions benefitted.

So be careful. Veblen pointed out long ago that there is no such thing as a real Pareto optimization. Every change injures someone and helps someone else. So beware of political implications, always, even if you hope they aren’t present. Here’s a useful heuristic:

 Think explicitly of three persons the design might harm.

Know about people

Some designers would consider the following to be exemplary documentation of an input format design:

 “Occasionally, there will be a series of measurements which, for one reason or another, have missing values. You can indicate a not-present value to the input routine by not placing a value between the two commas or semicolons. For instance, you type:

Input measure: .01, .02, ,2.4, 3.4, 7.9, 8.2, 9.3

Notice that two commas occur in a row in the place where the value is not present in the data.” - Robert Horn, in Datamation

The experienced designer knows that exemplary documentation can’t fight natural human tendencies:

“… a speed advantage may exist for positional type encoding. Considering the performance impact and dollar cost of errors in data processing, however, the speed advantage becomes insignificant when compared with the higher error rates associated with the positional format. … Higher error rates, especially errors of omission (or positional commas) appear to be inherent … positional coding formats should be avoided until methods for reducing positional errors are established.” - W. R. Fraser, IBM Research Report

So, here’s a design that addresses this human problem with positional input formats:

 Occasionally there will be a series of measurements which, for one reason or another, have missing values. You indicate missing values this way, with a question mark:

 Input measure: .01, .02,? ,2.4, 3.4, 7.9, 8.2, 9.3

Or, an even better description:

 If the item is missing, use a question mark (?) in its place.

Another fact about people:

People who experience good designs usually demand more. Therefore, good designs are extensible, as in this example:

 If an item is inappropriate for a particular input list, mark its position with a slash (/):

 Input measure: .01, .02, / ,2.4, 3.4, 7.9, 8.2, 9.3

Care about people

Here’s an example of a utility bill we received some years ago:

 [image:]

This was the first utility bill using a new format. No supplementary explanation was given to the customer, except that on the reverse side, under H, was the statement that H means a refund, and will be explained on the left of the other side—that is, this side, which contains no such explanation.

My students and I performed a design review of this bill and came up with the following issues:

 	The date given as 072776 for returning the bill, but five other dates are in the form May 28.

 	Nebraska is abbreviated NB in one place, but NE in another.

 	Name is printed in inhuman form, without even the courtesy of a comma.

 	The two places for the account number are formatted differently, even assuming you need an account number.

 	No decimal points are used, though there is plenty of space for them.

 	“Pressure fact,” may abbreviate “pressure factor,” but why abbreviate in this space? And what is a pressure factor anyway?

 	There is a light blue printing (not shown here but almost invisible on the original). It’s necessary for their optical character recognition (OCR) system, but makes it very hard for people to read it. (We tested its readability.)

 	There are any number of meaningless codes which are not explained to the customer—including another H which we thought might be used for form alignment.

 	No explanation was given, nor any warning, when the new form appeared in our mailbox, but things on the previous form had been dropped, such as, hi-low estimates. Some of these dripped items had been quite useful.

 	Perhaps the worst design feature is the misleading placement of the due amount.

Designs or excuses?

I wrote them a complaint about the form. Here is the letter I received in response. (I had to write because there is no phone number on the bill, and no listing of such a number in the phone directory.)

 “The new gas bills were designed to meet the requirements of commissions of several states. A lot of thought was put into them and did not seem to confuse many people, but understandably people were used to the old format and were somewhat surprised with the new billing.”

Requirements of commissions? Why not of people—their customers?

A lot of thought? Why not some testing?

Not many people were confused? How many is “not many”?

Somewhat surprised? So much that they didn’t know how to respond, or were not given any clue as to where to respond?

The new letter actually had a phone number, which I called. I told the woman who answered that I was a writer developing an article about the company’s billing practices. She immediately transferred my call to a “presidential assistant,” who provided me with a litany of excuses for the company’s billing practices.

 “Our customers don’t pay on time, or get in their meter readings on time.”

But we aren’t helping them by using different date formats, having two or more “due” dates, and using lots of irrelevant dates in prominent places …

 “Our customers can’t read their meters correctly.”

But we are helping them by dropping the hi-low estimate which would have helped them to check for gross errors, by sending one form that’s supposed to fit all the different types of meters, and by using analog meters (which are “cheaper”).

 “The stupid data-entry girls make so many errors that we spend over half our money on data preparation.”

But we really help them out by using 10-digit non-mnemonic codes, using various abbreviations but accepting only one form as input, printing names backwards without commas, and many other features that sure help make the computer’s and programmer’s jobs easier.

 “But customers always seem to pay the wrong amount.”

But we’re helping them by making the most prominent amount on the bill be the wrong amount. Of course, if they overpay, that’s their problem.

Are these design problems due to incompetence or conscious chiseling the customers with the following algorithm?

 If the payment is the gross amount, then accept it as full payment. But if the payment is the net amount, then check the payment date against the cutoff date. If the payment is on time or early, then accept it as full payment. Otherwise, bill the customer a penalty for underpayment.

Blaming the victim

This presidential assistant went on to say,

 “But what else can we do? The computer needs the last name first, and we can’t print one thing more prominently than another, and …”

What else can they do? Well, in the same week, I received another letter from another company, addressed to “Mr. D. Weinberg. (Note: There is no Mr. D. Weinberg, in spite of their “carefully selected audience.”)

————-

 You can be certain, Mr. Weinberg, that this letter is not popping up in everyone’s mail in Lincoln.

 Dear Mr. Weinberg

 Should you decide not to accept this unique invitation, please do not pass it along to anyone else. We would rather that you simply throw it away.

 You see, I am writing this letter only to a carefully selected audience. The list upon which I found your name would indicate that you are an involved and informed individual. That’s why in this election year I want to invite you to join our family of readers with this exceptional lifetime half-price offer to read Newsweek for the rest of your life and never pay more than half the cover price!

 Although I’m sure, Mr. Weinberg you are already acquainted with Newsweek, you may not know how much surprising news it brings you each and every week. For example, I’ll bet you’d be startled to learn how “doctor’s orders” cause millions of Americans to risk their health, even their lives unnecessarily. Or about the unexpected way in which 27% of America’s workers are unsuited for their jobs.

 Mr. Weinberg, I’ll also wager that you didn’t know about the fiery plague that has been spreading North from Latin America. It has already infested the lower U.S. and threatens to overrun the entire nation—even places around Lincoln.

 You didn’t know? With Newsweek, the Weinberg household would.

A drastic design approach

The letter continues from there, but that’s enough. We can now see how the utility company could do something about their stupid customers, using this magazine’s tried-and-true techniques:

———-

 Mr. Weinberg, if you’re one of the 27% of Americans who don’t READ YOU METER RIGHT, and if you don’t send us $11.62 by JULY 22, we’re going to send a FIERY PLAGUE to your house in LINCOLN—and cause the WHOLE WEINBERG FAMILY to risk their health!

A reasonable design approach

Well, nothing this drastic had to happen. As a result of the feedback (complaints) from dozens of customers, the utility did redesign their bills, including a brochure explaining the new design. The brochure contained a picture of the newly designed bill, with 20 different parts identified:

 	Account number assigned to each customer for billing purposes. When contacting our office, this number will help serve as a reference to help expedite your inquiry.

 	Service address where the meter is located.

 	Kind of service for which the gas is used.

 	Period of service. Day the meter was read or estimated in prior and current period.

 	Total number of days in this period’s service.

 	Company assigned rate schedule for billing purposes. This number is not the gas rate and cannot be used to calculate your bill. For additional information, contact our office shown on the return portion of the bill.

 	Pressure factor is identified on those accounts having elevated pressures and a factor is used to calculate actual gas consumption.

 	Date the bill was prepared.

… and so on, in the same clear manner, for all 20 fields on the bill. Further, as a preface to all this, we find the following text:

 We want to bring to your attention a change in the lower portion of your gas bill which shows the items “Net Amount Due,” “Penalty,” “Gross Amount,” and “Pay By.” These same items were on your previous bills, but have now been rearranged to make your bill easier to read and understand.

 In case you have other questions about your bill, we’ve included in this brochure a complete explanation of it. We hope you’ll read and keep this brochure for further reference. If you have any questions now or in the future, please contact our local office listed on the return portion of your actual bill.

What a difference in the design when they pay attention to the customers! And notice that all of these features could have been done the first time around, if only the designers had tested the new form with real customers. It’s still not perfect, but that’s the nature of designs—they must be tested before use and then in real use.

In this case, when this new design was used, they discovered their mistake in putting the office address only on the “return portion” of the bill. Once the bill was returned, the customer no longer had the address handy.

Use people as a valuable resource

Perhaps I should say a little about those “stupid data entry girls.” Here’s a paraphrase of an article headlined “PSYCHOLOGY REDUCES DATA ENTRY INEFFICIENCY”:

 “A study of data entry personnel reveals two major factors underlying the majority of problems: the low education level. .and the lack of any feeling of responsibility to the employer. The first leads to slowness in learning and distrust of new equipment; the second to tardiness, absenteeism, and a marked reduction in the number of hours spent working instead of conversing, using the telephone or making prolonged trips to the water fountain. Almost all data entry problems can be traced to one of these two factors…”

A designer who doesn’t value people as a resource might produce the following suggestions for “solving” these data entry problems:

•	Keep careful check on each new staff member.

• Maintain constant close supervision to discourage inactivity.

• Allow smoking in the data entry area, but near ducts.

• Keep toilets and telephones within sight.

• Allow only one operator at a time to use the toilet.

• Permit coffee, water, or some other beverage at machine.

• Give each operator only a few jobs.

• Fire troublemakers.

• Rearrange seating to reduce conversation.

Designs like this send a rather clear message to the employees: “We don’t ask the data entry operators to think, or to be involved in their work, because then our system is sure to fail.”

One reader responded with to this approach with this note:

 “I can agree that the data entry is the weak link in data processing, but this is not because of the quality of the operators. It is primarily the fault of the quality of the source documents and instructions coming into the department.”

It turns out that a number of states tried to “solve” their data entry problems by outsourcing data entry to their prisons and chaining the operators (prisoners) to their data entry machines. Unfortunately, the designers failed to consider what someone serving a life sentence might do with and to their data.

Ford’s Fundamental Feedback Formula

When personnel are highly paid, well-motivated, knowledgeable, bright people—and when documentation is clear and well-designed, you receive better results. So why don’t you hire, pay, and manage people with this information in mind?

Here’s a test I’ve used with many groups of students, so they know what it feels like to be a data entry “girl.” The data were borrowed from an actual client’s data entry room.

Instructions: Copy the following data. I won’t tell you what they are because you wouldn’t understand them anyway.

D5.10/16 MT90-16T 28H94729 14 2745154

D3.50/18 MT90-18 28H94701C 12 2451098

D4.00/18 MM90-18 28H94767C 12 2877122

D4.50/18 MR90-18 28H94702C 14 2874125

D3.50/19 MJ90-19 07 2500089 28H94779 24

D3.50/16 1790090 18K94719C 08 1973076 11

D2.50/16 UT99009 18K94753C 05 1204045 1

There was an entire page of this stuff, which I’ll spare my reader, though even this sample may provide some idea of what the task of keying this data was like. After the students finished keying these data into their personal computers, we checked it against the original to detect any keying errors. Then I asked them some questions:

 	Do you now have some idea of how it feels to be a data entry clerk?

 	How many didn’t finish (took a walk to the water cooler?)

 	How many errors did my computer find you had made?

 	How many of you didn’t finish the job?

 	How many would like to do this 8 hours a day?

 	How many thought of ways to shortcut, circumvent, or sabotage the job?

They now understood why the alienated mind turns to sabotage. Some of their sabotage ideas were:

• Claim their work passed verification when it didn’t.

• Key without using any shortcuts that were available, like tabs.

• Dump the job onto another operator.

• Jam the equipment.

• Simply fabricate data that might look real.

In short, within a few minutes, these students were able to develop the mind-set of convicted, imprisoned criminals. That’s how easy it is to understand people who will be using your design, if you take the trouble to test it.

Instead of this kind of heavy-handed design, the designer could rely on Ford’s Fundamental Feedback Formula. Early in the Twentieth Century, Henry Ford was invited to testify before a congressional committee planning legislation to block water pollution. Ford told them they needed only one law:

Anybody dumping water into a river to take their input water *downstream from where they dumped the waste water.*

Ford’s Formula would suggest a design based on two simple principles:

• Get the involved people interested.

• Get the interested people involved.

Those tasks are all part of the design that takes the entire system into account—not just the operators and machines, but also the other people and the processes they’ve defined.

Speculation

 “It would appear that learning to read and write in an alphabetic language is easier than in a picture-based system (such as Chinese).”

So said a writer in a book on computer programming for computer literacy, when commenting on the design of programming languages. But this “fact” was mere speculation on the part of an author who presumably grew up using an “alphabetic language.” But speculation about human behavior is a dangerous heuristic for designers, because, as in this case, the facts are rather different:

As many as 20% of Americans, British, and European children suffer from dyslexia—reading disorders. Reading counselors are found in every school, trained professionals for helping these children learn to read. In Japan and China, reading counselors don’t exist because dyslexia doesn’t exist—no more than 0.2%, at most, of children have anything resembling a “reading disorder.”

If programming language designers are no better informed than this speculating writer, how can they be expected to produce high-quality language designs?

Average or extreme?

In a democratic society, electoral candidates attempt to design their positions to reach the largest number of voters. They try to please the average voter, but that’s not the job of the system designer.

Be warned! It may be a good idea to learn about human behavior by reading behavioral science literature, but be sure to remember you’re not usually designing for the average person. Behavioral sciences often seek only the average person’s characteristics. That’s not usually good enough for the designer. The extremes will often kill your design.

When I lived in Mt. Crested Butte, Colorado, I sometimes hiked across the mountains to Aspen. There were five hiking trails that I knew of, all of them former toll roads from the old gold-mining days when the only way to reach Aspen was through Crested Butte. As I struggled to breathe going up these 13,000+ foot passes, I often wondered why there were five toll roads. But the time I’d hiked all five, I knew the answer. There were five toll roads because none of them were very good.

Dessigners are frequently given the task of estimating, or helping to estimate, projects. To start with, they’re asked to estimate how long it’s going to take to solve their client’s problem—a problem which is usually poorly defined. Although there have been billions of words written on dozens of methods of estimating projects, most of them are, in my opinion, useless or nonsensical. Or both. Like toll roads to Aspen, there are so many because none of them are very good.

Why do I say they’re not very good? Well, why were the toll roads to Aspen not very good? Mostly, I think, because if you’re walking from Crested Butte to Aspen, you have to cross an extremely high barrier. We might want to be able to hike over a 13,000 foot pass without breathing hard, but it’s impossible without supplementary oxygen (at least for most of us). Humans are not infinitely capable of anything a designer might require, so knowing human limitations is an essential part of design success. Some designs, when faced by real human beings, are just not likely to be as good as you can imagine.

What constitutes design success?

Only success distinguishes between good and poor designers, but since design is a wager on the future, success can be only statistical, and determined in the future. Nobody wins all bets, and no designer succeeds all the time.

But design failures can often be concealed by reframing:

 In medicine, when the patient recovers, it’s a brilliant diagnosis and treatment. When the patient dies, it’s an “act of God.”

 In teaching, when the student learns, it’s a brilliant course. When the student fails, it’s a lazy, stupid student.

In design generally, when the system works, it’s a brilliant design. When the design fails, it’s poor motivation, inadequate training, unclear documentation, misguided maintenance, uncooperative customers … There’s no end to reasons intended to excuse poor designs. Poor designers use people as an alibi for failure. Good designers engage people as a resource for success.

That’s why we try to practice total system design—design that covers everything that might influence success—with no excuses:

• What motivates the people who work with the system?

• How are the people selected?

• How are the people trained?

• How are all aspects of the system documented?

• What guides and controls maintenance?

• What incentives ensure customer cooperation?

A number of enterprises have used the phrase “total system design” as a description of their process or product, but with various ideas of what “total” means. For some, it meant both software and hardware—certainly an innovation for most software developers. Others have used “total” to describe the design of a service that includes both the service and the accounting for that service. For some others, “total” means all the hardware components of, say, a music system, including amplifiers, tuners, speakers, cabinets, and such.

Overall, after surveying all these uses of the word, I concluded that “total” seems to mean “considering more factors than our competitors.” I’ve also concluded that “total” cannot mean “all factors.” How does your design perform if an alien spaceship visits Earth? Oh, you didn’t consider that? It may be a long shot, but if it does happen, I’d venture you’ll lose your design wager—and so would everyone else.

Leading the people

Several designers have told me they’ve chosen design over management because they don’t want to lead people. I’ve always felt they were foolish to take this position, because most designers do more leading than most managers.

How can that be? It’s simple. In a well-functioning organization, development (and developers) follow the design, which was produced by the designers, not the managers. In effect, the designers have delivered a series of tasks to be performedâ€”ideally telling what to do, not how to do it. In short, they have delegated tasks to others, so they should have a basic understanding of delegation.

Delegating tasks

Here are some things to consider when delegating tasks:

 	What were they doing before they met you? What else is on their mind? On their plate?

 	Different people have different expectations, different skills, and different difficult areas.

 	Don’t ever make it harder for them than it has to be. Real tasks are hard enough.

 	People who are turned away the first time may never come back. Be ready to respond to their questions and suggestions in a positive way. You may think their suggestions are no good, but suggesting is always good. They are trying to participate.

 	People in chaos easily see others as adversaries, and a new task is always a foreign element that sends people into chaos of some sort.

 	People are amazingly responsive to roles and titles, so be careful how you name their roles on the delegated tasks.

 	People are more easily intimidated than you think, especially by you.

 	“I don’t know” is an essential phrase for you to learn, but it can be hard to say convincingly when you are considered an authority figure.

 	People are not so different from you, but people will always surprise you. You can use yourself as a model, but don’t depend on that model for too much. In particular, don’t tell them that you are smarter than they are.

Also By Gerald M. Weinberg

Non-fiction

Experiential Learning: Beginning

Experiential Learning 2: Inventing

Experiential Learning 3: Simulation

Experiential Learning 4: Sample Exercises

What Did You Say? The Art of Giving and Receiving Feedback

Change Artistry

Agile Impressions

PSL Reader

Becoming a Technical Leader

Handbook of Technical Reviews, Fourth Edition

How Software Is Built

The Secrets of Consulting

More Secrets of Consulting

Perfect Software

General Systems Thinking

Are Your Lights On?

Weinberg on Writing

The Psychology of Computer Programming

Why Software Gets In Trouble

How To Observe Software Systems

Responding to Significant Software Events

Managing Yourself and Others

Managing Teams Congruently

Becoming a Change Artist

CHANGE: Planned & Unplanned

Change Done Well

Passive Regulation

Active Regulation

Rethinking Systems Analysis and Design

Exploring Requirements One

Exploring Requirements Two

Errors

Fiction

Nine Science Fiction Stories

Feebles for the Fable-Minded

The Blind Warrior

Fabulous Feebles

The Death Lottery

Where There’s a Will There’s a Murder

Freshman Murders

The Hands of God

Mistress of Molecules

Earth’s Endless Effort

The Aremac Project

Aremac Power

The Quantum String Quartet

The Quantum String Sextet

The Quantum String Band

cover.jpeg
SYSTEM
DESIGN
HEURISTICS

Gerald M. Weinberg

(Award-winning author)

OEBPS/images/Utility_bill_1.png
Peoples
Katural Gos ouwm

f
N

WEEPING WATER, NB 68463

T T

Fatast serum s soson wik vour ravaint Thand You

CODE METER READING ON REVERSE SIDE
THIS FORM AND RETURN PRIOR TO 072776

07 [FAVEY
#12848

2053211302
WEINBERG DANTELA
ROUTE 2
LINCOLN NE 68505

0

comin G,

ﬂ we; 9662‘71}
SALES 'TAX

REFUND
CURRENT BILLING

JuL

OEBPS/images/leanpub-logo.png
[

Leanpub

kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

function turnOnNightMode(nightModeOn) {
	var body = document.getElementsByTagName('body')[0].style;
	var aTags = document.getElementsByTagName('a');

	var textColor;
	var bgColor;

	if (nightModeOn > 0) {
		textColor = "#FFFFFF !important";
		bgColor = "#000000 !important";
	} else {
		textColor = "#000000 !important";
		bgColor = "#FFFFFF !important";
	}

	for (i = 0; i < aTags.length; i++) {
		aTags[i].style.color = textColor;
	}

	body.color = textColor;
	body.backgroundColor = bgColor;

	window.device.turnOnNightModeDone();
}

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = '0px !important';
	body.marginRight = '0px !important';
	body.marginTop = '0px !important';
	body.marginBottom = '0px !important';
	body.paddingTop = '0px !important';
	body.paddingBottom = '0px !important';
	body.webkitNbspMode = 'space';

 var bc = document.getElementById('book-columns').style;
 bc.width = (window.innerWidth * 2) + 'px !important';
 bc.height = window.innerHeight + 'px !important';
 bc.marginTop = '0px !important';
 bc.webkitColumnWidth = window.innerWidth + 'px !important';
 bc.webkitColumnGap = '0px !important';
	bc.overflow = 'none';
	bc.paddingTop = '0px !important';
	bc.paddingBottom = '0px !important';
	gCurrentPage = 1;
	gProgress = gPosition = 0;

	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '10px';
	bi.marginRight = '10px';
	bi.padding = '0';

	window.device.print ("bc.height = "+ bc.height);
	window.device.print ("window.innerHeight ="+ window.innerHeight);

	gPageCount = document.body.scrollWidth / window.innerWidth;

	if (gClientHeight < window.innerHeight) {
		gPageCount = 1;
	}
}

function paginate(tagId)
{
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}

	setupBookColumns();
	//window.scrollTo(0, window.innerHeight);

	window.device.reportPageCount(gPageCount);
	var tagIdPageNumber = 0;
	if (tagId.length > 0) {
		tagIdPageNumber = estimatePageNumberForAnchor (tagId);
	}
	window.device.finishedPagination(tagId, tagIdPageNumber);
}

function repaginate(tagId) {
	window.device.print ("repaginating, gPageCount:" + gPageCount);
	paginate(tagId);
}

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

function updateBookmark()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
	var anchorName = estimateFirstAnchorForPageNumber(gCurrentPage - 1);
	window.device.finishedUpdateBookmark(anchorName);
}

function goBack()
{
	if (gCurrentPage > 1)
	{
		--gCurrentPage;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.previousChapter();
	}
}

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		++gCurrentPage;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		window.device.pageChanged();
	} else {
		window.device.nextChapter();
	}
}

function goPage(pageNumber, callPageReadyWhenDone)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		if (callPageReadyWhenDone > 0) {
			window.device.pageReady();
		} else {
			window.device.pageChanged();
		}
	}
}

function goProgress(progress)
{
	progress += 0.0001;

	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;

	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}

	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();
}

/* BOOKMARKING CODE */

/**
 * Estimate the first anchor for the specified page number. This is used on the broken WebKit
 * where we do not know for sure if the specific anchor actually is on the page.
 */

function estimateFirstAnchorForPageNumber(page)
{
	var spans = document.getElementsByTagName('span');
	var lastKoboSpanId = "";
	for (var i = 0; i < spans.length; i++) {
		if (spans[i].id.substr(0, 5) == "kobo.") {
			lastKoboSpanId = spans[i].id;
			if (spans[i].offsetTop >= (page * window.innerHeight)) {
				return spans[i].id;
			}
		}
	}
	return lastKoboSpanId;
}

/**
 * Estimate the page number for the specified anchor. This is used on the broken WebKit where we
 * do not know for sure how things are columnized. The page number returned is zero based.
 */

function estimatePageNumberForAnchor(spanId)
{
	var span = document.getElementById(spanId);
	if (span) {
		return Math.floor(span.offsetTop / window.innerHeight);
	}
	return 0;
}

